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The observation that type Ia supernovae �SNe Ia� are fainter than expected given their redshifts has
led to the conclusion that the expansion of the universe is accelerating. The widely accepted
hypothesis is that this acceleration is caused by a cosmological constant or some dark energy field
that pervades the universe. We explore what the supernovae data tell us about this hypothesis by
answering the question: Can these data be explained with a model in which the strength of gravity
varies on a cosmic timescale? We conclude that they can and find that the supernovae data alone are
insufficient to distinguish between a model with a cosmological constant and one in which G varies.
However, the varying-G models are not viable when other data are taken into account. The topic is
an ideal one for undergraduate physics majors. © 2011 American Association of Physics Teachers.
�DOI: 10.1119/1.3486585�
I. INTRODUCTION

Physical cosmology is concerned with the large scale
structure and evolution of the universe.1,2 To achieve our
current understanding of the universe, the physics of the very
small and the physics of the very large are both needed. It is
remarkable, for example, that quantum fluctuations that oc-
curred on microscopic scales in the very early universe may
have left an imprint on the largest structures in the universe.
The observation that the universe contains matter with only
trace amounts of antimatter, rather than matter and antimatter
in equal amounts, might find its explanation using Earth
bound particle accelerators. Dark matter, for which there is
much compelling evidence,3 might yet turn out to comprise
weakly interacting particles which may be accessible in labo-
ratories. The relatively recent synergy between the theories
of the very small and the very large is a thrilling achieve-
ment. However, there is a cloud on the horizon called dark
energy.4,5

A big surprise came in 1998 when the High-Z Team6 and
the Supernova Cosmology Project7 independently observed
that type Ia supernovae were fainter than expected. After
careful consideration of alternative explanations, both teams
of researchers interpreted their observations as evidence that
the SNe Ia are further away than expected given their red-
shifts and assuming a decelerating universal expansion. If the
SNe Ia are further away than expected, then the average
expansion rate of the universe since the Big Bang must be
higher than previously thought. Both teams went further:
They concluded that the expansion of the universe is accel-
erating. Today, the broadly accepted hypothesis is that this
acceleration is driven by a form of energy called dark energy
that pervades the universe. In the simplest model dark energy
is identified with the cosmological constant �, which appears
in the general form of Einstein’s theory of gravity, general
relativity. In more complicated models,5 dark energy is mod-
eled as a dynamical field.

Cosmologists have created a compelling and coherent cos-
mology based on the Friedmann equation,

� ȧ

a
�2

=
8�G

3
� −

Kc2

a2 +
�c2

3
, �1�

and the associated Friedmann–Lemaître–Robertson–Walker
1
�FLRW� metric,
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ds2 = c2dt2 − a2�t�� dr2

1 − Kr2 + r2�d�2 + sin2 �d�2�� , �2�

where a�t� is the dimensionless scale factor, normalized so
that a�t0�=1 at the present time t= t0, ȧ	da /dt, G is the
gravitational constant, � is the density of all forms of energy8

excluding the contribution from the cosmological constant
�, and −��K�� is the spatial curvature. The radial coor-
dinate r is defined so that the proper area of a sphere, cen-
tered at any conveniently chosen origin, is A0=4�r2 at the
present time. Symbols with a subscript of zero denote quan-
tities evaluated at t= t0.

The comoving distance � associated with the radial coor-
dinate r is given by

� = 

0

r dr�
�1 − Kr�2

= sin−1�K1/2r�/K1/2, �3�

and d�t�=a�t�� is the proper distance at time t. By construc-
tion, the comoving and proper distances are numerically
identical today. The radial coordinate r, comoving distance
�, radius of curvature K−1/2, and the proper distance d�t� are
conventionally measured in megaparsecs �Mpc�. We invert
Eq. �3� to obtain

r = sin�K1/2��/K1/2. �4�

For a spatially flat universe, that is, one with K=0, Eq. �4�
simplifies to r=�.

The standard model of cosmology, with K=0 and �	0,
works remarkably well. However, current theory predicts4 a
value of the cosmological constant � that exceeds the ob-
served value by a factor of at least 1050. This difficulty mo-
tivates the exploration of alternative explanations, such as
ones that invoke time-varying “constants.”9 After all, we
know of no compelling reasons why the parameters that ap-
pear in our current theories of the physical universe should
be independent of space and time. From some perspectives,
the puzzle is why they should be constant at all.10

Another motivation for exploring alternative explanations
of the supernovae data is to determine whether they alone are
sufficient to distinguish between a model with a cosmologi-
cal constant and one without, such as the varying-G models

we consider in this paper.
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A third, rather different motivation, is the pedagogical
value of such investigations. This topic is ideally suited for
directed study by undergraduate physics majors. It is exciting
and lends itself to open-ended exploration. The work we re-
port was undertaken by one of the authors �R.D.�, an under-
graduate physics major, under the supervision of the other.
Ideally, all undergraduates should have the opportunity to
engage in authentic research, but many exciting topics re-
quire more material than can be mastered in a reasonable
amount of time by a busy student. The advantage of cosmol-
ogy is that it is intrinsically interesting to many students and,
provided the topic is chosen carefully and appropriate con-
ceptual approximations are made, interesting cosmological
studies can be done using mathematics and concepts that are
accessible to a motivated undergraduate student. We fully
endorse the idea that for such students, a “mathematics first”
approach, followed by applications is less desirable than the
“physics first” approach, as advocated by Hartle for general
relativity.2 The cosmological investigation described below
was done in that spirit.

This paper explores two simple phenomenological models
of varying-G cosmology9 using the data compiled by Kow-
alski et al.11 on 307 supernovae. We assume a spatially flat
�K=0� universe �motivated in part by the expectations from
inflation1� and set �=0. However, for completeness, we
write all expressions in a form that is valid for arbitrary
values of K and �.

We find fits to the supernovae data that are competitive
with the simplest dark energy model. The fact that nondark
energy models can account for these data implies that the
supernovae data alone are insufficient to establish dark en-
ergy as the preferred hypothesis. That hypothesis becomes
compelling only when different datasets are analyzed to-
gether. Likewise, any varying-G model must fit not only the
supernovae data, but must also be in accord with other data.
Given our goal to provide an example of a research project
that can be conducted in its entirety by an undergraduate
student, we restrict the scope to only one other datum: The

bounds on Ġ /G at our current epoch. We find that our two

varying-G models fail the bounds on Ġ /G, thereby ruling out
this form of variation in G. An interesting aspect of the first
model is that the scale factor becomes infinite in a finite
amount of time. In this model the universe comes to an end
in a catastrophic shredding of everything, a doomsday sce-
nario that has been dubbed the big rip.12

II. SUPERNOVA COSMOLOGY

A key problem in observational cosmology is measuring
distances to galaxies. To do so, we need a standard candle
and an operational definition of distance. We consider first
the standard candle.

A standard candle is a source whose absolute luminosity is
known. Type Ia supernovae13 are currently the best “stan-
dard” candles for very large distances. A type Ia supernova is
believed to occur when a star in a binary system overflows
its Roche lobe �the region within which its matter is gravita-
tionally bound�, causing material from it to accrete onto the
companion white dwarf. The mass of the white dwarf gradu-
ally increases toward the Chandrasekhar limit �of about 1.4
solar masses�,14 triggering runaway nuclear burning within
the star that releases more energy in a matter of weeks than

the Sun will emit in 10 billion years. In another class of
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models, an explosion is triggered by the merging of two
low-mass white dwarfs. In a third class of models, a carbon-
oxygen low-mass white dwarf explodes when the helium,
accreted from a companion star, detonates. For a good re-
view of type Ia supernovae models, see Ref. 15. By measur-
ing specific characteristics of the supernovae light curves
�plots of brightness as a function of time�, it is possible to
make empirically derived corrections for the observed varia-
tions in SNe Ia brightness and thereby create well-calibrated
standard candles.16

A. Luminosity distance

The proper distance between two points in space is a well-
defined concept, but cannot be measured in practice. Instead,
astronomers use a definition of distance based on the flux of
energy received on Earth from the luminous object, that is,
the energy received per unit area per unit time,

f =
L

4�r2 , �5�

where L=dE /dt is the object’s luminosity �its rate of total
energy emission� and A0=4�r2 is the proper area at t= t0 of
the sphere centered at the location once occupied by the su-
pernova. This relation for the flux is valid for a static uni-
verse and for a source that emits energy isotropically. In an
expanding universe the luminosity L crossing this sphere is
diminished by the factor �1+z�2. By definition, the redshift
z	�
r−
e� /
e, where 
e and 
r are the emitted and received
wavelengths, respectively. One factor of 1+z arises from the
reduction in energy of each photon received on Earth relative
to the energy it had at emission, yielding dE→dE / �1+z�.
The second factor of 1+z is due to the reduction in the rate
of arrival of photons at Earth, which yields 1 /dt
→ �1 /dt� / �1+z�. The corrected expression for the flux is

f =
L

4���1 + z�r�2 	
L

4�dL
2 , �6�

where dL	�1+z�r is the luminosity distance. For arbitrary
values of the curvature K, the radial coordinate r is related to
the comoving distance � via Eq. �4�, which reduces to r=�
when K=0.

B. Distance modulus

Astronomers measure energy fluxes. By convention, fluxes
are converted into magnitudes m by f =q10−2m/5=L / �4�dL

2�,
where q is the flux from objects of magnitude zero, with the
luminosity distance dL measured in megaparsecs �Mpc�. The
absolute magnitude M is defined by fM =q10−2M/5

=L / �4�dM
2 �, where dM =10−5 Mpc; that is, it is the magni-

tude of an object viewed from a distance of 10 pc. Astrono-
mers take the logarithm of the ratio fM / f =100.4�m−M�

= �dL /10−5�2 to arrive at

m − M = 5 log10�dL/10−5� = 5 log10��1 + z�r�z�/10−5� . �7�

Note that the constant q cancels. The difference �	m−M
between the apparent magnitude m of a source and its abso-
lute magnitude M is the distance modulus. The analysis of a
supernova light curve results ultimately in two measured

quantities: � and z.
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The data11 used in our study are plotted in Fig. 1.17 The
cosmology is contained in the dependence of the radial dis-
tance r, or, equivalently, the comoving distance �, on the
redshift z. The redshift is related to the dimensionless scale
factor, a�t�, as

a = 1/�1 + z� . �8�

Given a functional relation between the comoving distance �
and the redshift z, the distance modulus function in Eq. �7�
can be fitted to the data in Fig. 1 to extract the parameters of
the cosmological model. An equation for the comoving dis-
tance � can be deduced from the FLRW metric in Eq. �2� by
noting that light in vacuum travels on null worldlines �for
which ds=0�. Therefore, a light ray from a supernova at
redshift z satisfies the relation cdt=a�t�d�. Hence,

��z� = c

�1 + z�−1

1 da

aȧ
, �9�

where the light ray was emitted when the scale factor was
a=1 / �1+z� and received today when it assumes the value
unity.

III. A VARYING-G FRIEDMANN EQUATION

Our first assumption is that the universe has zero spatial
curvature. Our second assumption is that the Friedmann
equation �Eq. �1�� for a K=�=0 universe remains applicable
when G is allowed to vary with time; that is, Eq. �1� is a
good approximation to some �unknown� exact equation de-
scribing the evolution of the scale factor in a universe in
which G varies. This assumption is an example of an ap-
proximation that renders the problem tractable for an under-
graduate student. If we wish to remain strictly within the
framework of general relativity, we should be cautious about
replacing Eq. �1� by one in which G is a function of time
because the Friedmann equation is derived from Einstein’s
equations,

G�� + �g�� =
8�G

c4 T��, �10�

which do not allow variations9 in G. The tensors G�� and T��

Fig. 1. Measurements of the distance modulus � and the redshift z for 307
type Ia supernovae �Ref. 11�.
are the components of the Einstein and energy-momentum
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tensors, respectively, and g is the metric tensor. To allow for
a possible variation of G, theories more general than Ein-
stein’s are needed, such as scalar-tensor theories9,19 in which
gravity is assumed to couple to a scalar field �. Such theories
yield for weak constant coupling the relation G�−1. This
relation yields a modified Friedmann equation with a time-

dependent G and additional terms of order Ġ /G. If the latter
terms are sufficiently small, we obtain a Friedmann equation
identical in form to the standard one, but with a time-
dependent G.

We let G�t�=G0f�a�, where G0 is the current value of G
and f�a� describes the assumed dependence of G on the scale
factor a�t� and therefore cosmic time t. We use the defini-
tions

�c,0 	 3H0
2/8�G0, �11a�

�� 	 �c2/8�G0, �11b�

�M�a� 	 ��a�/�c,0, �11c�

�� 	 ��/�c,0, �11d�

�0 	 �M�1� + ��, �11e�

where �c,0 is the critical density now, �M�a� is the matter
density parameter, and H0 is the value of the Hubble param-
eter H�t�	 ȧ /a today. We may write the modified Friedmann
equation as

� ȧ

a
�2

= H0
2�f�a��M�a� + �1 − �0�a−2 + ��� , �12�

noting that

− Kc2 = H0
2�1 − �0� . �13�

With these definitions, we can write the expressions for the
comoving distance ��z� and the universal time t�a� as

��z� =
c

H0



�1 + z�−1

1 da

a2�f�a��M�a� + �1 − �0�a−2 + ��

�14�

and

t�a� =
1

H0



0

a dx

x�f�x��M�x� + �1 − �0�x−2 + ��

. �15�

The lifetime of the universe is given by t0= t�1�.
Our third assumption is that the total mass-energy in the

universe, whatever its nature, scales in the same way as mat-
ter. This assumption implies that ��=0 and �M�a�
=�M,0 /a3, where �M,0=�M�1� denotes the value of the mat-
ter density parameter today. Because we also assume K=0,
Eqs. �11� and �13� show that �0=�M,0=1. Observations in-
terpreted in the context of the standard cosmology20 indicate
that the matter density parameter �M,0�0.3. The difference
between �0=1 and �M,0 is presumed to be due to the cos-
mological constant or dark energy. If we wished to be con-
sistent with this value of �M,0, while keeping �=0, we need
to use a model with K�0.

One of our goals is to ascertain whether the SNe data are
sufficient to conclude that the �	0 model is preferred. To

do so, we need to exhibit another model that works as well.
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Here we consider varying-G models with K=�=0 and there-
fore �M,0=1. Alternatively, we could �but do not� consider
�=0, K�0, models. Note that the curvature term �1
−�0�a−2 cannot accelerate the expansion. In a universe
dominated by curvature, the Friedmann equation is ȧ
=constant, which implies zero acceleration. To obtain accel-
eration, we need a term that decreases less rapidly than the
curvature term, which is the case for a cosmological constant
or for the varying-G models described in the following.

IV. VARYING-G MODELS AND RESULTS

In principle, a model for the variation of G should arise
from some deep theory.9 We proceed in a purely phenomeno-
logical manner. Our basic premise is that the supernovae are
further away than expected because gravity was weaker in
the past and, consequently, the universe decelerated less rap-
idly than would be the case if G were constant and equal to
its current value, G0.

A. Fits to supernovae data

We studied several forms for the function f�a� in G�a�
=G0f�a�, but we report here results for only two of them,
each with a single adjustable, dimensionless, parameter, b.
One varying-G model is defined by

f�a� = eb�a−1� �model 1� . �16�

In this model, there is no limit to how strong gravity can
become. Another model we studied is defined by

f�a� = 2/�1 + e−b�a−1�� �model 2� , �17�

in which G is limited to twice its current value in the distant
future. We normalized both models so that G�a� assumes its
current value, G0, when a=1. For K=0 models, the distance
modulus �Eq. �7�� may be written as

��z,b,Q� = 5 log10��1 + z�H0r�z�/c� + Q , �18�

where the offset Q determines the vertical location of the
modulus curve.21 Note that H0r�z� /c is dimensionless and is
independent of the Hubble constant.

We evaluate Eqs. �14� and �15� for model 1 with K=0
�that is, �0=1� and ��=0. We find

��z� = r�z� =
c

H0
eb/2�2�/b �erf��b/2�

− erf��b�1 + z�−1/2�� �19�

and

t�a� =
1

H0
�eb/2��2�/b erf��ab/2� − 2�ae−ab/2��/b . �20�

This model exhibits a striking feature: The scale factor be-
comes infinite in a finite amount of time. For model 2, the
integrals in Eqs. �14� and �15� are evaluated numerically us-
ing the midpoint rule.22

We fit Eq. �18� to the SNe data in Fig. 1 by minimizing the

function
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�2 = 
n=1

307

��n − ��zn,b,Q��2/�n
2, �21�

with respect to the parameters b and Q, where 1�n�307
labels the nth supernova at redshift zn and distance modulus
�n, measured with an uncertainty of ��n. The minimization
of Eq. �21� is done using the program TMINUIT.23

For model 1, we obtain the result shown in Fig. 2. The fit
gives the value b=2.09�0.08, from which we infer a life-
time of t0=15.1�0.3 �70 km s−1 Mpc−1 /H0� Gyr.24 The
fact that the �2 per number of degrees �ND� of
freedom ��2 /ND� is 1.03 suggests that the modulus uncer-
tainties are estimated correctly and that model 1 provides an
excellent description of the data.25 A similarly good fit is
found for model 2, which yields residuals almost identical to
those shown in Fig. 2 for model 1. This fit yields
b=3.27�0.11, with �2 /ND=316 /305=1.04. We find
t0=16.2�0.4 �70 km s−1 Mpc−1 /H0� Gyr. For the simplest
dark energy model, for which f�a�=1 and �M�a�
= �1−��� /a3 with ��	0, we find ��=0.71� .02 and t0

=14.0�0.3 �70 km s−1 Mpc−1 /H0� Gyr, consistent with
the accepted results.4 The �2 per number of degrees of free-
dom of the fit is 310 /305=1.02.

Because there is no compelling statistical basis to reject
any of these models, we conclude that the supernovae data
alone are insufficient to distinguish between them. However,
these data when analyzed along with other data4 are consis-
tent with a simple cosmology in which dark energy mimics a
cosmological constant with ���0.7. The varying-G models
should likewise be analyzed along with other data to deter-
mine if a consistent picture emerges. The fact that a K=�
=0 model requires �M,0=1, while the preferred value from
galaxy and galaxy cluster measurements is �M,0=0.3 is an
indication of a problem.

A systematic analysis of the relevant data is beyond the
scope of this paper. Instead, we illustrate the importance of
including other data by comparing the predicted fractional

variation of Ġ /G at the present epoch, with the available

Fig. 2. Residuals, �n−��zn�, for model 1. The residual is the difference
between the measured distance modulus �n and the fitted function ��zn�,
evaluated at the measured redshift zn. The fit has �2 /ND=313.0 /305=1.03
where ND, the number of degrees of freedom, is 307 data points minus 2
fitted parameters, b and Q.
bounds.
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B. Bounds on the variation of G

The possible variation of G is usually characterized by the

quantity Ġ /G, which, in terms of the logarithmic derivative
of the function f�a�, is given by

Ġ

G
=

1

G

dG

da
ȧ = H0

d ln f

da
, �22�

where we have used the fact that H0= ȧ /a= ȧ at the present

epoch. Figure 3 shows Ġ /G as a function of the scale factor

for models 1 and 2. We see that at a=1, Ġ /G is equal to
1.5�10−10 and 1.15�10−10 y−1, respectively. These values

for Ġ /G are one to three orders of magnitude larger than the
upper bounds, which range from about 10−10–10−13 y−1, de-
pending on the method used to extract the bound.26

V. DISCUSSION

We have presented an investigation of varying-G cosmo-
logical models that serve as examples of interesting research
problems that are well matched to the sophistication of an
undergraduate.

The two phenomenological models, in which the strength
of gravity increases with cosmic time, provide excellent fits
to the type Ia supernovae data. We therefore conclude that
the supernovae data alone cannot establish the dark energy
hypothesis unambiguously. However, both our varying-G

models fail to satisfy the bounds on Ġ /G. Consequently, the
particular variation of G described by these models is ruled
out. We can make an even stronger statement: All varying-G
models that give rise to accelerated expansion and that are
based on the FLRW metric and the Friedmann equation are
ruled out by these bounds.27 Consider, for example, matter-
dominated models, for which the Friedmann equation is H2

�G /a3→G�aȧ2. This equation yields Ġ /G�H+2ä / ȧ,

from which we conclude that Ġ /G�H. But a value of Ġ /G

of the order of H0 is inconsistent with the bounds on Ġ /G,
which are less than H0 by one to three orders of magnitude.

The inability to distinguish between models is inherent in

Fig. 3. Fractional change in G per year for model 1 �solid curve� and model
2 �dashed curve� as a function of the dimensionless scale factor a�t�.
the Friedmann equation because the latter is sensitive only to
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the total energy density of the universe and is agnostic with
respect to how the energy density arises. This independence
can be seen by writing Eq. �1� as

� ȧ

a
�2

=
8�G

3
��M + �K + ��� , �23�

where �M, �K, and �� are the density contributions from
matter, the curvature, and the cosmological constant, respec-
tively. The Hubble parameter ȧ /a is related to the sum of
�M +�K+��, not the individual components, or, equivalently,
to the sum

� 	 f�a��M�a� + �1 − �0�a−2 + ��. �24�

Therefore, it is possible to entertain different interpretations
of the total energy density. For example, any model based on
the Friedmann equation can be interpreted as one in which
matter, perhaps of several different sorts, is either created,
destroyed, or both as the universe evolves. Consider, for ex-
ample, the simple cosmological constant dark energy model,
for which f�a�=1, �0=1, and the total energy density is
given by �= �1−��� /a3+��. This relation can be rewritten
as �=�M� �a� /a3 with �M� �a�=1−��+��a3. Because a−3 is
the dilution factor for matter, the function �M� �a� describes
an increasing matter density in a comoving volume, which
can be interpreted as the creation of matter as the universe
expands. Alternatively, as done here, we can maintain the
mass continuity equation, in which case matter is neither
created nor destroyed and �=�M,0 /a3, but allow G to vary
like f�a��1+a3�1−�M,0� /�M,0. Because of the invariance
of the Friedmann equation with respect to such changes in
interpretation, it is necessary to impose constraints on the
cosmological parameters to remove the model degeneracy.
Such constraints can come from other data, other equations,
or both.

It might seem odd that the strengthening of gravity with
time leads not to the eventual gravitational collapse of the
universe, but rather to its accelerating expansion. The reason
is that every form of energy contributes to the geometry of
spacetime. A model in which the strength of gravity changes
with time is equivalent to another model in which the energy
density changes in a specific way. If the energy density di-
lutes more rapidly than a−2, then the expansion will slow
down. If the strength of gravity increases such that in the
equivalent constant-G model, the energy dilutes more slowly
than a−2, the expansion will accelerate. In our varying-G
models, the effective energy density increases with time.

For model 1, the increasing strength of gravity leads to a
startling prediction: A catastrophic end to such a universe.
This conclusion follows from the limit a→� of the lifetime
expression �Eq. �20��. We find that

t�a → �� =
1

H0
exp�b/2��2�/b/b . �25�

According to this model, the universe has a finite lifetime of
about 33 Gyr and will tear itself to pieces in its final mo-
ments. Such behavior is a feature of cosmological models
containing phantom energy.12 Within regions that are domi-
nated by nongravitational forces, the effect of a cosmological
constant does not change with time and, consequently, the
accelerating universal expansion will not disrupt already
bound systems. In contrast, as the universe ages, the effect of

phantom energy increases in any finite volume of space.
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Eventually, this increasing phantom energy precipitates an
escalating cascade of destruction at ever smaller scales until
everything is torn asunder. We can only hope that phantom
energy is just that.
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