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Abstract

Probability theory, from a Bayesian perspective, is a powerful framework to think about, and

to address, difficult problems of inference. One such problem is the training of neural networks.

In this note, we give a brief overview of Bayesian neural networks (BNN) and a “how to” for the

BNN part of Radford Neal’s Flexible Bayesian Modeling (FBM) package, which is available at

http://www.cs.toronto.edu/∼radford/fbm.software.html. To illustrate the utility of the method

we apply it to discriminate between two sets of Monte-Carlo generated events representative of a

signal and background model.
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I. INTRODUCTION

Neural networks [1] are non-linear functions that can model any (smooth) map of one or

more real variables to the same [2]. In most applications in high energy physics, however,

networks with a single output are sufficient. Accordingly, we consider only single-output

networks. We begin, by considering neural networks for binary classification, which are

used, typically, to separate signal from background. We also mention about networks for

regression; that is, for fitting functions.

A. Classification

If a network is trained with events, described by the vector of variables x, such that signal

events are labeled by t = 1 and background events by t = 0, then the network output y

approximates the posterior probability [3]

y ≈ Prob(t = 1|x) =
p(x|1)p(1)

p(x|1)p(1) + p(x|0)p(0)
, (1.1)

that is, the probability that an event defined by the variables x belongs to the signal class.

p(x|1) and p(x|0) are the probability density functions for class 1 (the signal) and class 0 (the

background), respectively, and p(1) and p(0) are the corresponding class prior probabilities.

Usually, one trains with equal numbers of signal and background events, in which case

p(1) = p(0) = 0.5 and the priors cancel out. The label t is referred to as the target.

The basic idea behind Bayesian neural networks (BNN) is to cast the task of training a

network as a problem of inference, which is solved using Bayes’ theorem. The latter is used

to assign a probability density to each point w in the parameter space of the neural network.

Each point w corresponds to a network with a specific set of parameters. In the standard

methods for training neural networks, one finds a single point w0 in the parameter space,

that is, a single network. In the Bayesian approach, one performs a weighted average over

all points, that is, all networks.

Consider a neural network with the explicit functional form

y(x,w) =
1

1 + exp[−f(x,w)]
, (1.2)

where (1.3)

f(x,w) = b+
H∑

j=1

vj tanh(aj +
P∑

i=1

uij xi) , (1.4)
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having P inputs, H hidden units and a single output. The parameters of the network are

w = (uij, aj, vj, b); uij and vj are called weights and aj and b are called biases. Both are

usually referred to collectively as weights.

For a correctly trained network the probability that the target is t = 1 is y(x,w), while for

t = 0 it is (1− y). Therefore, given the training data {(t1, x1), · · · , (tN , xN)} the probability

of the set of targets t = (t1, t2, · · · , tN), given the data xi, is

p(t|x,w) =
N∏

i=1

y(xi, w)ti [1− y(xi, w)]1−ti , (1.5)

in which it is assumed that the events are independent. The posterior probability density

for a given vector of weights w is given by Bayes’ Theorem

p(w|t, x) =
p(t|x,w)π(x,w)

p(t, x)
,

=
p(t|x,w)π(w)

p(t, x)
, (1.6)

where π(x,w) = π(w) is the prior over weights, which is assumed not to depend upon the

data x = (x1, x2, · · · , xN). A reasonable estimate of the neural network output for an event

with data x′ is the weighted average

y(x′) ≡ ȳ(x′|t, x) =
∫
y(x′, w) p(w|t, x) dw, (1.7)

≈ 1

Nnet

Nnet∑

i=1

y(x′, wi) , (1.8)

where Nnet is the number of points (or weight vectors) w drawn from the posterior density.

We note again, that each point corresponds to a different network function in the class of

networks with P inputs and M hidden nodes. The average is therefore an average over

networks.

It may happen that some of the weight vectors correspond to networks that are tightly

fit to the training data. Such networks will typically perform poorly on an independent

set of events. However, if one averages, with appropriate Bayesian weighting, over many

networks one expects to produce a network that is less likely to be overtrained. Moreover,

there is less need to severely limit the number of hidden nodes because the posterior den-

sity will automatically prune away weight vectors that correspond to unnecessarily large

networks. Indeed, networks have been trained [4] successfully that contain more weights
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than the number of training data! The lesson to be drawn is this: We should be wary of

our usual intuition about the relationship between the amount of data required to train

a network and the number of parameters. In highly non-linear functions, such as that in

Eq. (1.2), our intuition borne of experience with linear systems does not apply. From a

Bayesian perspective, the network should be as large as is computationally feasible so that

the space of functions defined by the network parameter space includes some that are good

approximations to the true mapping.

In order to compute the average in Eq. (1.7), it is necessary to generate a sample of

points w from the posterior density, Eq. (1.6). Unfortunately, sampling from the posterior

density, Eq. (1.6), is not feasible using simple methods. Instead, a sample is created using

Markov Chain Monte Carlo methods [4]. The idea is to step through the network parameter

space in such a way that points are visited with a probability given by the posterior density

p(w|t, x). Points where p(w|t, x) is large will be visited more often that points where p(w|t, x)

is small. The methods of choice for sampling complex densities originate from the field of

computational statistical physics. Briefly, this is what is done. The problem of moving

through the network parameter space is regarded as the problem of following a system

consisting of a single particle moving through a potential. The posterior density is written

as

p(w|t, x) = exp[−V (q)], (1.9)

where V (q) = − ln p(w|t, x), with q ≡ w, is intepreted as a spatially varying “potential”

through which the “particle” moves. One adds a “kinetic energy” term T (p) = 1
2
p2, where

p is a vector with one component for each dimension of the network parameter space. The

“mass” of the “particle” can be taken to be unity by appropriate re-scaling. The motion

of the particle is governed by its “Hamiltonian” H = T + V . It can be shown that the

particle will eventually visit every point q (that is, w) arbitrarily closely in such a way

that the density of points is proportional to exp(−H). By randomly (and appropriately)

injecting or removing “energy” from the system different constant energy regions of the

phase space (p, q) can be explored. A Markov chain q1, q2, . . . qN is thereby created, which

converges (eventually) to a sequence of points that constitute a sample from the density

p(w|t, x). Since the correlation between adjacent points is very high, typically 0.9 or higher,

one usually saves a point, that is, a network, after every K steps, where K ≈ 20 is chosen

so that the correlation between the saved points is low.

4



Every Bayesian inference requires the specification of a prior. For such a highly non-

linear problem, however, the choice of prior is not obvious. A reasonable first guess is to

use Gaussians, centered at zero, and designed to favor smaller rather than larger weights.

Smaller weights yield smoother fits to data. In Radford Neal’s package (described in the next

section), independent Gaussian priors are specified for each weight. However, the variance

for weights belonging to a given group (either input-to-hidden weights (uij), hidden-biases

(aj), hidden-to-output weights (vj) and output-bias (b)) is chosen to be the same: σ2
u, σ

2
a, σ

2
v ,

or σ2
b , respectively. However, since we do not know, a priori, what these variances should

be, their values are allowed to vary over a large range, while favoring small variances. This

is done by assigning each variance a gamma prior

π(p = 1/σ2) =

(
α/2

µ

)α/2
p(α/2)−1 exp

(
−pα/2

µ

)
/Γ(α/2) , (1.10)

with the mean µ and shape parameter α set to some fixed plausible values. Here p, the

inverse of the variance, is sometimes referred to as the precision. The gamma prior is

referred to as a hyperprior and the parameter (here the precision) for which it is a prior is

called a hyperparameter.

B. Regression

If we wish to fit a function to data, the form given in Eq. (1.5) for the probability of the

given targets is inappropriate. Assuming that the noise in the targets is Gaussian, we may

use instead

p(t|x,w) =
N∏

i=1

exp[−(ti − f(xi, w))2/2σ2],

= exp[−
N∑

i=1

(ti − f(xi, w))2/2σ2], (1.11)

in which f(xi, w) is given in Eq. (1.2). Even if the noise in the target is not Gaussian, Eq.

(1.11) may still yield reasonable results, provided that the value of σ is chosen to match the

noise level in the targets.

5



II. GETTING STARTED

The example is taken from Neal’s documentation. In the following [..] denotes something

optional and {..} denotes something of which one can have zero, one or more.

1. Specify a network with P inputs, H hidden units and 1 output, and its associated

priors. (The “-” are significant and denote options not used. The “/” is part of the

syntax. The backslash is a continuation mark.) This command creates a binary file

that logs all transactions pertaining to the network.

net-spec binary-log-file P-inputs H-hidden 1 / - ih bh - ho - bo

Priors:

• ih prior for input to hidden weights

• bh prior for biases for hidden layer

• ho prior for hidden to output weights

• bo prior for bias for output

Prior specification:

[x]Width[:Alpha]

where Width and Alpha are the parameters of the gamma prior for the given group.

• If x is omitted, µ = 1/Width2.

• If x is present and α < 2, µ = N 2/α/Width2.

Typically, one chooses Width = 0.05 — a small mean sigma, but α = 0.5, which

allows for much larger sigmas.

Example

ih bh ho bo

net-spec runtrain.bin 4 8 1 / - 0.05:0.5 0.05:0.5 - x0.05:0.5 - 100
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In this example, the width of the prior for the output bias bo is set to a large value (100)

so that the value of the bias is only minimally constrained. This seems reasonable for

binary classification. However, such a large value may not be appropriate for regression

problems. If the output bias is unconstrained, it may simply converge to the average

of the targets, while the other parameters converge to zero. In this case, the input to

the network will be ignored and the network will always return the average value of

the targets!

2. Specify the kind of model, either binary (for classification) or real (for regression).

Example

model-spec runtrain.bin binary

If regression is required, binary must be replaced by real Width[:Alpha], where

Width is the standard deviation σ appearing in Eq. (1.11).

3. Specify data for training and testing. (The “.” are significant and denote options not

used.) The “2” indicates that the targets are the integers 0 and 1. It is omitted for

regression problems.

data-spec binary-log-file N-inputs N-targets [2] /

trainingData-Filename@first-row[:last-row]{,index} . /

testingData-Filename@first-row[:last-row]{,index} .

Example

data-spec runtrain.bin 4 1 2 / runtrain.dat@2:2001 . runtrain.dat@2002:4001 .

In the example described in Section III, we consider the same set of events for both

training and tesing in the above step, since we repeat the testing externally through

a method described in Section III B. For this external testing we use an independent

set of events compared to those used for the training.

4. Store a network with index 0, in which the hyperparameters have values 0.5 and

the parameters are zero. Each network is identified by an index number, which is the
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iteration number. An iteration typically consists of many steps through the parameter

space. In the example, each iteration consists of 20 steps.

Example

net-gen runtrain.bin fix 0.5

5. Specify the Markov chain operations to be performed in the initial phase.

Steps per iteration: 20 repetitions of

(a) Gibbs sampling for noise level

(b) A heatbath replacement of the momentum variables

(c) Hybrid Monte Carlo update with a trajectory 100 leapfrog steps long, using a

window of 10 and a stepsize adjustment factor of 0.2. (See Ref. [4] for details.)

Example

mc-spec runtrain.bin repeat 20 sample-noise heatbath \

hybrid 100:10 0.2

6. Do one Markov chain iteration.

Example

net-mc runtrain.bin 1

7. Specify the Markov chain operations for simulation phase: Hybrid Monte Carlo with

“persistence”

Example

mc-spec runtrain.bin repeat 20 sample-sigmas heatbath 0.95 \

hybrid 100:10 0.3 negate

8. Run 200 Markov chain iterations, that is 200× 20 steps in this example.

Example

net-mc runtrain.bin 200
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9. Use net-plt t t binary-log-file to display the iteration numbers. This is a quick

way to check how many iterations have been performed.

10. Make some predictions.

net-pred options binary-log-file range

options:

i Display the input values for each case

t Display the target values for each case

r Use the raw form of the target values, before transformation

p Display the log probability of the true targets (to base e)

m Display the guess based on the mode, and whether it is in error

n Display the guess based on the mean, and its squared error

d Display the guess based on the median, and its absolute error

D Display the guess based on the mean of the median for each iteration.

This is mostly useful to get an accurate median for one network.

range:

Networks to use to form average.

Example Average over the last 50 networks.

net-pred itmp runtrain.bin 151:200

11. Display parameters of network specified by index nn-index.

Example

net-display -p runtrain.bin <nn-index> > runtrain.out
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12. Use netwrite.py to create a C++ network function that performs the averaging, but

also allows access to individual networks.

Example

netwrite.py -r101:200 runtrain.bin

In the example, the file runtrain.cpp is created using the last 100 networks stored in

the binary log file runtrain.bin.

III. AN EXAMPLE: DISCRIMINATE SIGNAL FROM BACKGROUND

To illustrate the utility of the method we apply it to discriminate between two sets of

Monte-Carlo generated events representative of a signal and background model. The signal

and background consist of events from pp̄→ tt̄→ ` + jets and pp̄→ W + jets respectively,

where ` = e or µ and the jets are mainly light-quark jets. The final state in these events

contains one high transverse momentum lepton (e or µ), at least two high transverse energy

jets, and significant missing transverse energy due to the neutrinos from the W -boson decays.

The measured energies and transverse momenta of the final state objects are smeared to

account for realistic detector effects.

A. Training

For the training of the BNN networks, we consider four input variables, eight hidden nodes

and a single output. The input variables involve the transverse energies, spatial distribution,

and invariant masses of the measured final state objects. The variables chosen provide some

level of discrimination already between the signal and background as shown in Fig. 1. The

goal is to enhance this discrimination through an application of the BNN networks. For this

we generate a Markov chain of networks with a training sample, runtrain.dat, consisting of

an admixture of 5000 signal events and 5000 background events. This is used to construct

the posterior density, p(w|t, x) over the network parameter space. A random sample of 50

networks (iterations) is drawn from the posterior density using the Markov Chain Monte

Carlo technique. An average of networks over the last 10 iterations (Nnet = 10) is used

to define the Bayesian neural network output defined by Eq. 1.7. This approximate the
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discriminant in Eq. 1.1. The BNN outputs for the signal and background normalized to

unity, as well as some representative figures of merit are shown in Fig. 2.
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FIG. 1: Input variables from signal and background for the BNN training. The distributions are

normalized to unit area for a comparison of their shapes.

B. Verification

Determining when a Markov chain has converged is difficult, in general, though many

useful convergence diagnostics exist [5]. However, for the BNN we know what form the
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FIG. 2: BNN output and representative figures of merit. In the top-right plot, εS and εB are the

efficiencies for the signal and background, respectively, for different values of cuts on the BNN

output. In the bottom two plots, S and B are the numbers of selected events from the signal and

background samples, respectively, after applying cuts on the BNN output.

answer should be. The Bayesian neural network y(x) should approximate Eq. 1.1. That is,

y(x) =
p(x|S)

p(x|S) + p(x|B)
, (3.1)

where p(x|S) and p(x|B) are the probability density functions for the signal (class 1) and

background (class 0), respectively, and we have assumed equal numbers of signal and back-

ground events used for the training. This then suggests the following diagnostic algorithm.

1. Weight N signal events by the BNN output.
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2. Weight N background events by the BNN output.

3. Add the 1-dimensional densities of the weighted datasets.

4. Verify, on an independent set of unweighted signal events, that the signal 1-dimensional

densities are recovered.

Mathematically, the above procedure amounts to multiplying the densities Np(x|S) and

Np(x|B) by the BNN function y(x)

py(x|S) = N p(x|S) y(x), (3.2)

py(x|B) = N p(x|B) y(x), (3.3)

and forming the sum

g(x) = py(x|S) + py(x|B), (3.4)

= N [p(x|S) + p(x|B)] y(x). (3.5)

If, as the Markov chain proceeds, y(x) approximates Eq. 3.1, which is the desired outcome,

then we should find that g(x)→ Np(x|S), that is, we recover the signal density. In partic-

ular, we should recover all possible marginal densities, that is, projections to 1-dimension,

m(x|S) = N
∫

x/∈z
g(z) dz. (3.6)

We illustrate in Fig. 3 the above diagnostic for each of the input variables. Note that

each of the input distributions has been transformed to be in the range [-1, 1] instead

of their original range for plotting convenience (in order to allow a convenient automatic

binning of all distributions when making such plots through a common macro). The BNN-

weighted signal distribution is shown by the blue histogram, the BNN-weighted background

distribution is shown by the green histogram, while their sum, g(x) = py(x|S) + py(x|B), is

shown by the red histogram. The signal distribution, m(x|S), is shown by the black dots.

If the black dots agree with the red histogram in all the input variables, then this provides

confidence that the Markov chain has converged and the output discriminant approximates

the functional form in Eq. 3.1.
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FIG. 3: Verification plots showing the convergence of the Markov chain, and hence, of the BNN

output discriminant.

C. Conclusions

Bayesian learning of neural networks could take us another step closer to realizing optimal

and robust results in classification problems. It also allows a fully probabilistic approach with

proper treatment of uncertainties. But, of course, the key question is: does the averaging

help? The answer, in principle, in yes. More to the point, we have found the answer to be

yes, in practice. Figure 4 is, in effect, comparing the normalized BNN outputs for each of

the last 10 networks to that obtained from averaging over these (shown by the thicker, red

curve). As one might have expected, the distributions of the 10 networks show some scatter.
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One expects, however, the Bayesian average to be a more robust estimate of the true signal

class probability. Figure 5 compares the signal efficiency versus the background efficiency

for each of the individual networks to that of the average. We see a slight improvement

in the preformance upon using the average over networks than using any one individually.

This is an indication, therefore, that the averaging helps.

The BNN method, however, could be computationally demanding. A large number of

points is needed so that one can abstract a subset of (several hundred) networks that are

approximately statistically independent. But this method has been successfully used in D0’s

search for single top quarks [6], and has shown a sensitivity comparable to that obtained

from other state-of-the-art multivariate analyses like the Decision Trees [7], and Matrix

Elements [8] approach.
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FIG. 4: BNN outputs normalized to unity for each of the last 10 networks, superposed by that

obtained from an average over them (thicker, red curve).
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