Temperature fluctuations in a heat bath
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The model of two boxes in thermal contact each filled with an ideal quasiclassical gas is used to
treat, in a unified way, temperature fluctuations in both finite and infinite heat baths. One box
is regarded as the heat bath and the other serves as the thermometer.

L. INTRODUCTION

Several years ago Phillies' posed the following question:
Given the measured value of a mechanical variable (for
example, the total energy) of a thermometer in thermal
equilibrium with a system, what is the temperature of that
system and how well does the thermometer determine that
temperature?

Phillies presented a critique of the standard treatment of
temperature fluctuations which can be paraphrased as fol-
lows: Equilibrium statistical mechanics deals with systems
in a canonical state in which, by definition, the temperature
is constant; therefore, one cannot use the canonical ensem-
ble to calculate temperature fluctuations. This motivated
the introduction by him of a new ensemble called the
“polythermal” ensemble, conceived as a collection of ca-
nonical ensembles with differing temperatures. Phillies
used this ensemble to answer the question he posed. In this
paper, the same question is asked and answered from a
somewhat different perspective using the model of two
boxes in thermal contact, each filled with an ideal quas-
iclassical gas of identical structureless particles.

A description of the ideal gas model can be found in any
textbook on statistical mechanics.? Usually, however, these
descriptions pertain to a subsystem connected to an infinite
heat bath. Here, the model is developed so that one can
treat the case of a thermometer connected to a finite heat
bath. This is done in Sec. II, where the energy distribution
function for the thermometer is derived. In Sec. III, the
temperature fluctuations in a finite heat bath are calcu-
lated. Then, in Sec. IV, I consider what happens to the
parameters of the system as the heat bath becomes very
large, while the thermometer remains relatively small. This
is followed, in Sec. V, by a discussion of the sense in which
the temperature in an infinite heat bath may be said to
fluctuate and a calculation of the magnitude of these fluc-
tuations. The last section contains some general remarks.

II. THE ENERGY DISTRIBUTION FUNCTION
FOR AN IDEAL GAS THERMOMETER

Consider two systems 4, and A4 in thermal equilibrium;
A, is the heat bath whose temperature is to be measured by
system A, that is, the thermometer. Let the heat bath have
a total energy E, distributed amongst N, structureless par-
ticles in a cubical box with volume V; the thermometer
contains N partlcles with total energy E in a cubical box
with volume V.3 The combined system 4, ® A is assumed
to be thermally isolated and therefore its total energy E,
=F,+E is a constant. In order to compute the statistical
properties of the thermometer one needs its energy distri-
bution function.

According to quantum mechanics the single-particle en-
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ergy levels E(ny,n,n,) of the heat bath and the thermom-
eter are quantized:

E(n,n,n,)=€(ni+n,+nl),
with
e=h/8MV¥3, (1)

therefore, the microstates of each system can be counted.
Here, h is Planck’s constant, M is the mass of a gas particle
and n,, n, n, are positive integers. A macrostate of the gas
is specified by the set of numbers (E,V,N,AE) where

E=e E

particles

(ni+no+n)

is the total energy of the gas and AE is a microscopically
small interval about the total energy. In general, a given
macrostate can be realized in a huge number of ways, each
corresponding to a different microscopic arrangement of
the gas particles. Let that number be Q(E) for the ther-
mometer and let Q,(E,) be the corresponding number for
the heat bath. In principle, the calculation of the statistical
weight () would entail an enumeration of all the possible
ways of making a constant sum out of the square of 3N
integers. However, one can sidestep this combinatorial
problem by observing that for the gas model the spacing
between the energy levels w111 be extremely small for sys-
tems of macroscopic size.* The energy may therefore be
treated as a continuous variable and Q may be calculated
accordingly. This calculation is outlined in the appendix
where it is shown that

7AE(TE (W”—‘ 3N
o Zf ) e () o

In general, one would not expect the microstates of the
combined system 4, ® A4 to occur with equal probability;
however, it is a basic working hypothesis of statistical me-
chanics that when systems are in thermal equilibrium all
microstates constrained to have the same energy E and
which satisfy an additional set of macroscopic constraints
(for example, fixed values of ¥ and N) occur with equal
probablllty A system for which this hypothesis holds true
is called microcanonical. If, in fact, this hypothesis is true
then the probability, P(E)dE, to find the thermometer
with total energy lying in the interval (E,E+dE) will be
proportional to the total number of microstates of the com-
bined system consistent with the energy of the thermome-
ter lying in that interval, that is,
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P(E)dE=const X Q(E) xXQ,(E,)dE,
=const ECYD-YE,—E)C¥WD-14dE.  (3)

When normalized the energy distribution for the thermom-
eter can be written as

E)dE ———1 B\ 1 E\"dE 4)
PEYAE= g ) (EO) ( _Eo) Ey’

where B(m,n) is the beta function® and where, for simplic-
ity, I have introduced the notation n=3N/2 and m=3N,/
2.

It should be emphasized that this distribution is valid for
all sizes of the heat bath and of the thermometer. From it,
all statistical mechanical properties of the model can be
deduced.

IT11. TEMPERATURE FLUCTUATIONS IN A
FINITE HEAT BATH

A basic assumption of this paper is that the temperature
T is given by the formula

1 JnQ(E)
Other definitions of temperature, of course, exist; however,
a survey of the standard textbooks on statistical mechanics
reveals that the definition adopted here is the one most
commonly used. One of the purposes of this paper is to
examine some of the consequences of this definition for
finite systems. The temperature, defined in this way, is
measured in energy units. To obtain expressions in which
the temperature is measured in degrees Kelvin one should
substitute K pT for T, where K 5 is Boltzmann’s constant.’
It should be noted that according to this definition of
temperature the latter can only be defined if In{) may be
regarded as a continuous function of the energy, but the
definition does not require a system to contain, necessarily,
a large number of particles. Using the result for () given in
Eq. (2) and the definition, Eq. (5), leads to the expression

T=E/(n-1), (6)

for the temperature of the thermometer. For the heat bath
one obtains,

T'=E/(m—1)=Ey/(m—1)—E/(m—1). (7

Equation (7) suggests the introduction of the new param-
eter, T, defined by

T, =Ey/(m—1), (8)

which I shall refer to as the canonical temperature. In the
following our attention shall be focused on the temperature
of the heat bath. Some comments about the temperature of
the thermometer will be made in the last section. In gen-
eral, the temperature of the heat bath will fluctuate. Its
moments, with respect to the density Eq. (4), are easy to
calculate and are given by

((TY*)=(T )*B(m+a,n)/B(m,n). (9

In particular, the average temperature and variance are,
respectively,
(TY=T_ m/(m+n) (10)
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and
o=(T)’n/[m(m+n+1)]. (11)

At this stage the canonical temperature, T, appears
merely as the parameter which sets the scale for the aver-
age temperature. In fact, that quantity does have a broader
significance; but to see this one must take the model to the
thermodynamic limit.

IV. THE THERMODYNAMIC LIMIT

It is instructive to see what happens as the size of the
heat bath grows to infinity, while the average temperature
remains bounded. In the thermodynamic limit, m — oo, the
average temperature and the variance become

(TY=T,, o>=0. (12)

One observes two important points: (1) 7' is seen to be
the temperature of an infinite heat bath; and (2) that tem-
perature, T, is constant. One may regard this quantity as
an intrinsic property of a heat bath in that it defines, and
characterizes, an infinite sequence of (progressively larger,
and hotter) heat baths. Presumably, it is the canonical
temperature T, rather than the average temperature (7T,
which is the important physical quantity. Actually, it turns
out that it is the inverse canonical temperature, =1/
T ., which appears most naturally in the various expres-
sions which follow; accordingly, the subsequent discussion
will be in terms of .

Now the question arises as to how S is related to a
canonical ensemble? One way to answer this question is to
take the thermodynamic limit of the energy distribution
function of the thermometer, that is, Eq. (4). To do so, one
begins by rewriting Eq. (4) as

I'(m+n) L
F(m)F(n)(m_l)n)Bw(BwE)

P(E)dE=(

X [1—-B E/(m—1)]""'dE.

By using Stirling’s formula® one can show that when
m- o the expression in the first set of brackets goes to
1/T"(n); the limit of the expression in the second set of
brackets is an exponential. Hence, in the limit of an infinite
heat bath one obtains

P(E|B)dE=B (B, E)" ! exp(—BE)dE/T (n),
(13)

as the energy distribution of the thermometer. This is iden-
tical to Eq. (3.9) of Phillies’ paper if one identifies 8 with
the parameter B in that equation; that is, the parameter B
is identified as the parameter which appears in the canon-
ical distribution, from which Eq. (3.9) is ultimately de-
rived. Equation (13) illustrates a general result, namely,
that in the thermodynamic limit all details pertaining to a
system are subsumed into a few physical quantities; here
the inverse canonical temperature 8. The further away
one is from the thermodynamic limit the greater is the
amount of detail required to describe the statistical behav-
ior of a system. The moments given by Eq. (9) afford an
example of this: They show that to fully specify the state of
a finite heat bath one must give both the number of parti-
cles in the heat bath and in the thermometer as well as the
value of the quantity B, whereas, as indicated by Eq.
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(12), in the thermodynamic limit the heat bath is fully
specified by the single quantity 3.

V. FLUCTUATIONS IN THE INFERRED VALUE
OF THE PARAMETER S

The title of this section may appear somewhat contra-
dictory. After all, it has just been argued that the param-
eter B, is a constant. So in what sense can it be said to
fluctuate? To answer this question one notes that the value
of B, (or T' ) must be inferred from the measurement of
some mechanical quantity. Since the latter will fluctuate,
so too will the inferred values of 3. The pertinent ques-
tion to ask then is: To what accuracy can one assert that
the temperature of the heat bath has such and such a
value? Such a question clearly belongs to the realm of sta-
tistical inference, and I shall assume that the task here is to
infer a value for B given that one knows the total energy
of the thermometer.

The most general way to make statistical inferences is to
treat all uncertainty probabilistically and to do so using
Bayes’ theorem.® Bayes’ theorem, applied to the problem at
hand, can be stated as follows: If P(E|f,) is the likelihood
for the thermometer to have a total energy E given S _;
P(B, |E)dB,, is the probability that the temperature pa-
rameter could have the value B given E (this is the prob-
ability of interest here, called the posterior probability),
and II(B_,)df, is the prior probability over the parameter
space of 3, then

b
P(B|E)dB=P(E| B)IL(B)B | f P(E|B)TL(B)dB,
(14)

in which, for simplicity, the subscript on S has been
dropped. It will be understood, for the rest of the paper,
that /3 really means B and likewise for 7. It is assumed
that B is defined in some interval [a,b] determined by the
form of the conditional probability P(E|B)dE, that is,
Eq. (4)

This elegant formula provides a direct method of making
inferences about the value of the. parameter 8. To use it,
however, one must specify the prior probability distribu-
tion for that parameter; and herein lies the rub: By what set
of principles is the form of the prior probability distribu-
tion to be derived? One could simply make the intuitive
choice

I(B)dB=dB. (15)

In fact, one can interpret Phillies’ use of the polythermal
ensemble as a Bayesian inference procedure with the uni-
form prior distribution

II(T)dT =dT.

While this is the obvious choice I shall argue that its use in
this case is questionable. This is not to say that the use of
a uniform prior distribution is incorrect but merely that the
prior distribution may not be uniform in the parameter T.

It is surely reasonable to demand that one’s conclusions,
about the heat bath and the thermometer, not depend upon
how the probabilities are parametrized: It ought not to
matter whether one uses T, B, or any other quantity as the
parameter. Therefore, if one were to use a uniform prior
distribution for the temperature then, to be consistent, one
would be obliged to use the prior
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ap
Ez’!
for the parameter 8. One could not choose the prior for 8
to be uniform because the prior cannot be uniform in both
T and B simultaneously. The difficulty is that given that
one is ignorant of the value of T and 3, one has no reason
to choose the prior to be uniform in T rather than in 8 or,
for that matter, vice versa. Something is amiss and one
needs a guiding principle to resolve the issue.

Jaynes'® has proposed a principle by which prior prob-
abilities can be derived. Briefly stated it is this: In the
absence of any prior knowledge about the value of a pa-
rameter, other than a knowledge of the set of transforma-
tions with respect to which the problem is invariant, the
prior probability distribution should exhibit the invari-
ances of the problem. It is clear that the problem is invari-
ant with respect to a change in the energy scale E—gE,
B- B/q. Therefore, according to Jaynes IT1(B)dp should be
invariant under the aforementioned transformation. This
will be the case if

I(B)dp= (16)

ap
(BYdB=—, (17)
B
which, if one transforms to the parameter T, implies
daT
H(T)dT=7. (18)

It should be noted that this prior distribution for 7T is
consistent because it is precisely what one would have ob-
tained by an application of Jaynes’ principle to the problem
had it been parametrized in terms of the temperature
rather than in terms of 8. Incidentally, the parameter for
which the prior distribution will be uniform is A ~InT'
In terms of the parameter B the posterior probability is

BE n—1 BE m—1
P(B|E)d3=E(m) (1_m)

aB

*Gn=1) Bmn )

from which all questions about the value of 8, or T', can be
answered. Note the interesting duality between P(B|E)df
and P(E|B)dE: One can go from one to the other by the
interchange B«>E. The moments of § are readily calculated
to be

(B =[(m—1)/E1*B(m,n+a)/B(m,n). (20)
From this, one obtains
By=[(m=1)/E][n/(m+n}], (21)

as an estimate of the value of the temperature parameter B,
while

ap={(B)’m/[n(m+n+1)), (22)

quantifies the degree of uncertainty in the estimate (f).
One sees again that these quantities depend upon the de-
tails of both the heat bath and the thermometer. However,
for an infinite heat bath these quantities are determined by
the size of the thermometer only:
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(B)=n/E,
op={(B)*/n. (23)

It is noteworthy that the behavior of the ratio op/(B) ac-
cords with one’s expection:

op/{B)=1/n. (24)

The corresponding ratio for the temperature 7 (really,
T ) does not, however, behave quite so tidily:

or/{T)=1/Jn—2. (25)

Recalling that n=3N/2, one sees that the ratio is unde-
fined for a thermometer containing one particle! However,
one should be wary about drawing strong conclusions from
this because the small n behavior of the above equations is
influenced by the form of the prior distribution for B and
T .. Phillies used a uniform prior distribution for T and,
consequently, obtained a different small » behavior.

V1. CONCLUDING REMARKS

When two systems are in thermal equilibrium their tem-
peratures are equal. Well, not quite; this depends upon the
size of the systems. Consider averaging over the expression
for the temperature of the thermometer, given in Eq. (6).
This leads to the expression,

(T)=T  n(m—1)/[(n—1)(m+n)], (26)

for the average temperature of the thermometer. This dif-
fers from that for the heat bath, Eq. (10), by an amount

AT=T _ (m—n)/[(m+n)(n—1)]. 27N

So while it is true that for thermometers and heat baths
containing a large number of particles the difference in
temperature between the two is negligible it is not neces-
sarily so for small systems. This is yet another indication
that thermodynamic reasoning applies strictly to systems
containing a large number of degrees of freedom. It may be
possible to apply the methods of thermodynamics to small
systems; however, one needs to be extremely cautious.

Of course, the above results are a direct consequence of
the particular definition of temperature used in this paper.
Gibbs!! who, at the turn of the century, treated the same
topic addressed in this section argued that the definition,
Eq. (5), is “imperfect.”12 It is imperfect, in his view, pre-
cisely because that definition leads to the above results.
Gibbs observes that a perfect statistical mechanical ana-
logue of the temperature, as understood in thermodynam-
ics, is the quantity he calls the modulus (T in our nota-
tion) which appears in the canonical distribution.
However, not all systems under study are canonical; there-
fore, Gibbs’ observation leaves open the question of
whether a temperature can be defined for systems which
are far from the thermodynamic limit and, if so, how. One
can argue that it is useful to have a general definition of
temperature valid for all systems in statistical equilibrium.
Moreover, one can differ with Gibbs and argue further that
the only obligation of any such definition is that it agrees
with the usual notion of temperature in the domain in
which that notion arose, namely, thermodynamics.

If indeed the temperatures, as defined by Eq. (5), of two
finite systems in thermal equilibrium are not quite equal
then one must look for some other quantity to characterize
the notion of equilibrium. This quantity will be more fun-
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damental than the temperature, so defined, in that it will be
equal for the two systems irrespective of their size. One
such quantity is

=T ,(m—1)/(m+n), (28)

which is equal to 2/3 times the average energy per particle.
(The quantity 7 could be interpreted as yet another kind of
temperature.) One can use it to write some expressions in
a more symmetric manner; in particular, the average tem-
perature of the heat bath and of the thermometer can be
written as

(TY=1tm/(m—1)
and
(T)=1n/(n—1), (30)

respectively. It should be stressed that the quantities
(T),T, and 7 are distinct physical quantities. However, in
the thermodynamic limit they lose their separate identities
and become numerically identical.

(29)
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APPENDIX

Consider a gas consisting of N structureless, identical,
particles. If G(E) is the number of microstates of the gas
with total energy < then, by definition,

Q(E)=G(E+AE)—G(E). (31)

Let dG; be the number of states available to a single par-
ticle / with momentum in the interval (p,p;+dp,); dG, is
given by the phase space volume divided by #°, that is,

dG,=Vampidp/h, (32)

where V is the volume of the enclosure containing the
particle. For a gas of N particles G(E) is given by

N . N
I1 dG,-](S(E’— 2 e,-)
i=1 JO j=1

(33)

where €,=p?/2m are the single-particle energies. The delta
function is most easily treated by using the identity

1 rE
G(E)=ﬁ 0a’E'

1 ® )
6(x)=—2-; J-_w dwe'*,

whereupon the expression for G(E) becomes

1 VN N 3N/2 E ’ 1
G(E) =5 7mw(2m) ¥ (2) fo dE's—

N

X f idweE ] deg/2e™"), (34)
— j=1 0

Each integral within the product sign contributes an

amount I'(3/2)/(iw)*? to the integral over w. The inte-

gral over o, which has a pole of order 3N/2 on the real

axis, can be performed by contour integration after displac-
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ing the pole a small positive amount 6 off the real axis. At
the end one takes the limit §-0. A final integration over E
leads to

G(E)=(wE/4€)*?/[N\T (3N/2+1)], (35)

where € is defined in Eq. (1). From the definition of Q,
given in Eq. (31), one obtains Eq. (2), in which terms
O[(AE/E)"] have been dropped.
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In the case of singular forces, for which some of the higher derivatives do not exist at a given
point, it is not generally true that Newton’s equations of motion will give unique solutions for
given initial conditions. In this paper, the motion of a particle in a one-dimensional conservative
force field is considered. The necessary and sufficient conditions that ensure unique solutions are

determined.

I. INTRODUCTION

It is generally believed that Newtonian mechanics is de-
terministic. Given sufficient initial conditions, it is expected
that the equations of motion will lead to unique trajecto-
ries. However, this is not always true. Let us discuss a
simple example. A single particle (of unit mass) moves in
a one-dimensional force field given by F(x)=x"? Its
equation of motion is x=x!/3. For the initial conditions
x=0, x=0 at =0 there exist three solutions; x=0 and
x==+(1/6)>? £. One might think that this peculiarity
essentially arises due to the singularity of the force (the
first derivative blows up at x=0). But consider another
case of a singular force F(x) =x*3, for which the second
derivative blows up at x=0. With the initial conditions
x=0, x=0 at =0, we are led to the unique solution x=0.
Here, the solution is unique in spite of the force being
singular.

These examples show that in the case of singular forces,
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for which some of the higher derivatives do not exist at a
given point, it is not generally true that Newton’s equation
of motion will give unique solutions for given initial con-
ditions. Here, we study the simple case of a single particle
moving in a one-dimensional force field and arrive at the
most general condition that is both necessary and sufficient
for the existence of unique solutions.
For the case considered, the equation of motion is

dv
X:F(x):——a. (1)

From the mathematical point of view, Eq. (1), in general,
constitutes a second-order nonlinear differential equation
and the usually stated condition for the existence of unique
solutions is that F(x) satisfy the Lipschitz condition in the
domain of interest.!"? As these conditions and the proof are
not well known, we give a brief discussion in the Appendix.
However, the Lipschitz condition is a sufficient but not a

© 1993 American Association of Physics Teachers 58



