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Monte Carlo theory and practice 

F JAMES 
Data Handling Division, CERN, Geneva, Switzerland 

Abstract 

The Monte Carlo method has long been recognised as a powerful technique 
for performing certain calculations, generally those too complicated for a more 
classical approach. Since the use of high-speed computers became widespread in 
the 1950s, a great deal of theoretical investigation has been undertaken and practical 
experience has been gained in the Monte Carlo approach. The aim of this review 
is, first, to lay a theoretical basis for both the ‘traditional’ Monte Carlo and quasi- 
Monte Carlo methods, and, secondly, to present some practical aspects of when 
and how to use them. An important theme of this review will be the comparison 
of Monte Carlo, quasi-Monte Carlo and numerical quadrature for the integration of 
functions, especially in many dimensions. 
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1. Introduction and definitions 
1.1. Dejnition 

A Monte Carlo technique is any technique making use of random numbers 
to solve a problem. (We assume for the moment that the reader understands what 
a random number is, although this is by no means a trivial point and will be treated 
later in some detail.) 

The above definition should be supplemented by a somewhat narrower but 
more enlightening definition as given by Halton (1970): the Monte Carlo method 
is defined as representing the solution of a problem as a parameter of a hypothetical 
population, and using a random sequence of numbers to construct a sample of the 
population, from which statistical estimates of the parameter can be obtained. 

Let us express the solution of the problem as a result F, which may be a real 
number, a set of numbers, a yes/no decision, etc. The Monte Carlo estimate of F 
will be a function of, among other things, the random numbers used in the calculation. 
The introduction of randomness into an otherwise well-defined problem produces 
solutions with rather special properties which, as we shall see, are sometimes sur- 
prisingly good. 

1.2. Simulation 

Historically, the first large-scale calculations to make use of the Monte Carlo 
method were studies of neutron scattering and absorption, random processes for 
which it is quite natural to employ random numbers. Such calculations, a subset 
of Monte Carlo calculations, are known as direct simulation, since the ‘hypothetical 
population’ of the narrower definition above corresponds directly to the real popula- 
tion being studied. However, as those involved were well aware, the numerical 
results obtained were perfectly ‘deterministic’ and, in principle, obtainable by 
classical computational techniques (in fact, integration). Whether or not the Monte 
Carlo method can be applied to a given problem does not depend on the stochastic 
nature of the system being studied, but only on our ability to formulate the problem 
in such a way that random numbers may be used to obtain the solution. This can 
be seen by inverting the neutron scattering problem and considering first the classical 
solution in terms of a complicated multidimensional integral. ’The value of this 
integral is quite non-random, but happens also to be the solution of a problem 
involving random processes. The Monte Carlo method may be applied wherever 
it is possible to establish equivalence between the desired result and the expected 
behaviour of a stochastic system. 

The problem to be solved may already be of a probabilistic or statistical nature, 
in which case its Monte Carlo formulation will usually be a straightforward simulation, 
or it may be of a deterministic or analytic nature, in which case an appropriate Monte 
Carlo formulation may require some imagination and may appear contrived or 
artificial. In  any case, the suitability of the method chosen will depend on its mathe- 
matical properties and not on its superficial resemblance to the problem to be solved. 
We shall see how Monte Carlo techniques may be compared with other methods 
of solution of the same physical problem. 
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1.3. Integration 

At least in a formal sense, all Monte Carlo calculations are equivalent to integra- 
tions. This follows from the definition of a Monte Carlo calculation as producing 
a result F which is a function of random numbers rg. Let us assume for simplicity 
the usual case that the ri are uniformly distributed between zero and one. Then 
the Monte Carlo result F = F(r1, r2, . . . , Y%) is an unbiased estimator of the multi- 
dimensional integral 

I = . . . F ( x ~ ,  XZ, . . . , x%) dxl dX:! . . . dx,a 

or, stated another way, the expectation of F is the integral I. (When the problem 
to be solved is explicitly the problem of integrating a functionf, the F above is not 
to be identified with f but rather the Monte Carlo estimate of its integral.) This 
formal equivalence will allow us to lay a firm theoretical justification for Monte 
Carlo techniques and will also lead us to many results of practical importance. 

2. Mathematical foundation for Monte Carlo integration 

In  this section we will define some basic statistical terms and invoke some of the 
important results of mathematical statistics to lay a formal foundation for the validity 
of Monte Carlo calculations. The results of this section will be important to the 
later sections, so we will try to make it complete, but since many readers will already 
be familiar with this material, no attempt is made to be mathematically rigorous. 
Those who wish a more detailed treatment are urged to consult an independent 
text, such as Eadie et a1 (1971). Those who still remember their elementary statistics 
are advised to skip directly to $2.6. 

2. I .  Random variables and distributions 

A random variable is a variable that can take on more than one value (generally 
a continuous range of values), and for which any particular value that will be taken 
cannot be predicted in advance. Even though the value of the variable is unpre- 
dictable, the distribution of the variable may well be known. The distribution of a 
random variable gives the probability of a given value (or infinitesimal range of 
values). Since we will usually be working with continuous variables, we define 

g(u)  du = P [U < U’ < U + du]. 

The  function g(u) is the probability density function of U and gives the probability 
of finding the random variable U’ within du of a given value U. This is the most 
usual way for physicists to express the way U’ is distributed, although it is sometimes 
more convenient mathematically to use the integrated distribution function defined as 
the definite integral of g from minus infinity to U :  

G(u) = f”- g(X) dx 

g ( U )  = dG(U)/du. 

Note that G(u) is a monotonically non-decreasing function taking on values from 
zero to one, and that g is always normalised so that its integral over all U is one. 

A function of a random variable is, of course, itself a random variable, although 
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it will in general be distributed differently from its argument. The  functions G(u) 
and g(u) defined above are, however, not to be considered as random variables since 
they are functions of the variable U rather than the random variable U’. 

2.2. Independence of random variables 

Let us consider two random variables U’ and U’. In  order to specify completely 
the distribution of U’ and v‘, we now require a function of two variables, say h(u, U), 
and the ensuing mathematics becomes considerably more complicated. However, 
an important special case is when the function h(u, v )  can be factored exactly into 
a product of two functions, each of which depends only on one variable, h(u, U)= 
p(u)q(v). In  this case we say that U’ and v’ are stochastically independent since the 
distribution of U‘ does not depend on the value of v’ and vice versa. 

When more than two variables are considered, the concept of independence 
becomes more complicated, and it is no longer sufficient to consider only the de- 
pendence of pairs of variables. Indeed, it is possible to have all pairs of variables 
independent and still have dependence among triplets or higher combinations of 
variables. For example, let I and s be two independent random variables, each 
uniformly distributed between zero and one, and consider the three new variables: 

X = T  

y=s 

z=(r+s) mod 1. 

Now each of the three random variables x, y ,  x is also uniformly distributed between 
zero and one, and all pairs ( x ,  y ) ,  ( y ,  x) and (x, z) are independent (knowledge about 
the value of one member of a pair gives no information about the value of the other 
member). However, the three are clearly dependent, since knowledge of any two 
determines the third completely. 

2.3. Expectation, variance, covariance 

value of the function 
The  mathematical expectation of a function f(u’) is defined as the average or mean 

E ( f )  = J” f ( U >  dG(ZL) = Sf(.> g(u) du 

where G(u) is a distribution function giving the distribution of the independent 
variable U’. Usually the U’ will be uniformly distributed between a and b:  dG = 
du/(b - a) ,  so that the expectation becomes 

1 b  
E(f) = F G  [$‘4 du. 

Similarly the expectation of a variable U’ is the average value of U : 

E ( d )  = J” U dG(u) = J” U g(u) du. 

The variance of a function or variable is the average of the squared deviation from 
its expectation and is most conveniently defined in terms of the expectation: 
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Note that calculating the expectation requires one integration and the variance 
involves one more integration. 

The square root of the variance is called the standard deviation. It is more 
physically meaningful than the variance since it has the same dimensions as its 
argument but the square root makes it more clumsy to manipulate mathematically. 
The standard deviation can most easily be interpreted as the root-mean-square 
deviation from the mean. 

Considering expectation and variance as operators, we may verify some simple 
rules for applying these operators to linear combinations of variables. Let x and 
y be random variables and c be a constant. Then 

Expectation is therefore a linear operator, whereas variance is not linear. The last 
term in the above expression for the variance is called the cozlaviance between x and y 
and is zero if x and y are independent. If this term is positive, x and y are said to 
be positively correlated, and if negative, x and y are negatively correlated. Note 
that x and y may be uncorrelated (i.e. their covariance may be zero) even if they are 
not independent, but if they are independent they must also be uncorrelated. Note 
also that even though the variance operator is not linear, the following relationship 
holds if x and y are independent variables: 

V ( x  + y )  = V ( x )  + V ( y )  x, y uncorrelated. 

2.4. The law of large numbers 

The law of large numbers concerns the behaviour of sums of large numbers 
of random variables. Let us choose n numbers randomly with probability density 
uniform on the interval from a to b, and for each ui evaluate the function f(ua). This 
law says that the sum of these function values, divided by n, will converge to the 
expectation of the function f .  That is, as n becomes very large, 

n 
l b  1 2 f(us) -> -- 1 j ( u )  du. n b -a  a 

i= I 

(2.3) 

In statistical language, the left-hand side of (2.3) is a consistent estimator of the 
integral on the right-hand side, since (under certain conditions) it converges to the 
exact value of the integral as n approaches infinity. The ‘certain conditions’ involve 
the behaviour of the function f, since it must of course be integrable, and we will 
generally require that it be everywhere finite and at least piecewise continuous 
(it may have a finite number of discontinuities in the interval under consideration). 

Since the left-hand side of (2.3) is just the Monte Carlo estimate of the integral 
on the right-hand side, the law of large numbers can be interpreted as a statement 
that the Monte Carlo estimate of an integral is, under ‘certain conditions’, a consistent 
estimate, i.e. it converges to the correct answer as the random sample size becomes 
very large. 
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2.5. Convergence 

It is worthwhile discussing at this point the meaning of convergence in the 
statistical context, since it is considerably more complex than the more familiar 
convergence of calculus. We recall that in calculus, the sequence {A} is said to 
converge to B if for any arbitrarily small positive quantity 8, an element of (A}  
can be found such that all the succeeding elements of (A} are guaranteed to be 
within 6 of B. 

In  the statistical context, the ‘guarantee’ must be replaced by a statement of 
probability, so that the corresponding definition becomes: A(n) is said to converge 
to B as n goes to infinity if for any probability PIO < P < 11, and any positive quantity 
6, a K can be found such that for all n>K the probability that A(n) will be within 
6 of B is greater than P. Note that this is quite weal;, in that no matter how big n is, 
A(n) can never be guaranteed to be within a given distance of B. 

This risk, that convergence is only given with a certain probability, is inherent 
in Monte Carlo calculations and is the reason why this technique was named after 
the world’s most famous gambling casino. Indeed, the name is doubly appropriate 
because the style of gambling in the Monte Carlo casino, not to be confused with 
the noisy and tasteless gambling houses of Eas Vegas and Reno, is serious and 
sophisticated. The apparent contradiction between the unpredictability of the 
gambling process and the seriousness of the results is one of the fascinating aspects 
of the Monte Carlo method which has been responsible for a great deal of the interest 
shown in the method but has also resulted in considerable confusion and misunder- 
standing. This point will come up again, especially in our discussion of random 
numbers. 

2.6. The central limit theorem 

Whereas the law of large numbers tells us that the Monte Carlo estimate of an 
integral is correct for ‘infinite’ n, the central limit theorem tells us approxi.nately 
how that estimate is distributed for large but finite n. This vcry important theorem 
says essentially that the sum of a large number of independent random variables 
is always normally distributed (i.e. a Gaussian distribution), no matter how the 
individual random variables are distributed, provided thcy have finite expectations 
and variances and provided n is ‘large enough’. How large n has to be depends, of 
course, on the individual distributions, but in practice the convergence to the Gaussian 
distribution is surprisingly fast, even when the underlying distribiitions are, for 
example, uniform, as we shall see in an example in the following section. 

The Gaussian distribution is completely specified by giving its expectation a 
and variance s2. We denote by N ( a ,  s2) the distribution whose density is Gaussian 
with mean a and variance s2: 

1 f ( x )  = -= exp [ - (x - 
s 4 2 n  a>2/2s2] 

we can complete the statement of the central limit theorem by giving the expectation 
and variance of the (Gaussian) distribution resulting from summing a (large) number 
of independent random variables. This expectation and variance will, of course, 
depend on the expectations and variances of the individual distributions and can 
be calculated immediately using (2.1) and (2.2). Let the n independent random 
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variables xi  have distributions with finite expectations ei and variances vi .  Then 
S = 2x6 will have expectation E ( S ) =  2ei  and variance V ( S ) =  Cui. This is an 
exact result even for finite n, which follows from (2.1) and (2.2). The fact that the 
distribution of S is asymptotically Gaussian is the important part of the theorem 
which enables us to turn our knowledge of E ( S )  and V ( S )  into statements of 
probability about the value of S for a given trial. 

2.6.1. Example: Gaussian random number generator. 'The central limit theorem allows 
us to construct a Gaussian random number generator, given any other kind of 
random number generator, simply by taking sums of random numbers. Let us 
see how this works in practice, using a uniform random number generator which 
we assume for the moment to be given. We will denote the sum of n uniform random 
numbers as R,, so that R1 will be a random number distributed uniformly (between 
zero and one). Then R2 will be distributed as in figure l(b), i.e. with a density 
function which is a triangle. This kind of distribution is familiar to gamblers using 
dice, where the outcome is the sum of two numbers uniformly distributed between 
one and six. The  extreme values of the sum (2 and 12) are the most unlikely, and 
the middle value (7) is the most probable. Ii3 is distributed as shown in figure l(c), 
i.e. a parabolic spline function with knots at 1 and 2 (i.e. three different parabolas 
joined at the points x = 1 and x= 2, with the first derivative continuous at these points), 
which is beginning to look like the well-known bell-shaped Gaussian curve. Rq 
is a cubic spline function, and higher sums are higher-order spline functions which 

Figure 1 
ic i (0') 

Distributions of sums of uniform random numbers, each compared with the 
normal distribution. (a)  RI, the uniform distribution. (b) R2, the sum of two 
uniformly distributed numbers. (c )  R3, the sum of three uniformly distributed 
numbers. ( d )  Rla, the sun1 of twelve uniformly distributed numbers. 



Alfonte Carlo theory and practice 1153 

approximate more and more closely the Gaussian distribution. After R5 or Re the 
distribution is almost indistinguishable from a true Gaussian by eye, except for the 
extreme tails which are of course of finite length whereas the true Gaussian tails 
go to infinity in both directions. The area under these tails is extremely small, so 
the discrepancy in probability content is negligible for many applications, but care 
must be taken since the tails may be the most important feature. 

Since the expectation and variance of the uniform distribution are, respectively, 
& and 25 (by straightforward calculation from the definitions of expectation and 
variance), we have 

E(Rn) = nj2 V(R,)=n/12. 

Usually we want a standard Gaussian distribution, i.e. with mean zero and variance 
one. We therefore take 

+N(O, 1). R, - 1212 
n/12 

A convenient choice for a practical Gaussian random number generator is n = 12, 
which reduces simply to Rlz-6. The properties of this generator will be discussed 
below in $7. 

2.7. Rksume‘: mathematical properties of the Monte Carlo method 

Let LIS consider again (2.3), where the left-hand side is the n-point Monte Carlo 
estimate of the integral on the right-hand side, the ui being truly random numbers 
uniformly distributed between the integration limits a and b. The mathematical 
properties of this estimate are rather general properties of numerical results of 
Monte Carlo calculations, which we outline here. 

(i) If the variance o f f  is finite, the Monte Carlo estimate is consistent, i.e. it 
converges to the true value of the integral for very large n. 

(ii) The Monte Carlo estimate is unbiased for all n, i.e. the expectation of the 
Monte Carlo estimate is the true value of the integral. This follows directly from 
the linearity of the expectation operator. 

(iii) The Monte Carlo estimate is asymptotically normally distributed (approaches 
a Gaussian density). 

(iv) The staizdard deviation of the Monte Carlo estimate is given by CI = d V ( f ) i l / n .  
This result is true for all n but is only useful insofar as the estimate is Gaussian- 
distributed (true only for ‘large’ n). 

3. From Buffon’s needle to variance-reducing techniques 

In  this section we present one of the earliest real Monte Carlo calculations, that 
of Buffon’s needle, and examine some of its properties. We will see that its most 
important and worst property is its slow convergence (low efficiency). We then 
present a series of techniques known collectively as ‘variance-reduction’, designed to 
improve this efficiency. 

3.1. BufSon’s needle: hit-or-miss Monte Carlo 

Although it is hard to imagine nowadays doing Monte Carlo calculations without 
a high-speed computer, the technique was first investigated and used long before 
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the existence of electronics. One such early calculation, known as Buffon’s needle 
(Buffon 1777), was used to calculate the value of T.  I t  is a good example of the 
use of the Monte Carlo method to solve a problem which has no immediate sta- 
tistical interpretation and which we are accustomed to attacking with more traditional 
mathematical tools. 

The ‘calculation’ proceeds as follows. Lay out on the floor a pattern of parallel 
lines separated by a distance d (the stripes of an American flag will do). Repeatedly 
throw ‘randomly’ a needle of length d onto this striped pattern. Each time the needle 
lands in such a way as to cross the boundary between two stripes, count a ‘hit’. 
When the needle does not cross a boundary, count a ‘miss’. After a given (large) 
number of tries, estimate T by twice the number of tries (hits+misses) divided by 
the number of hits. 

The above recipe is based on the fact that the probability of a hit is 2/v. This 
can be calculated very easily as follows. Let the angle between the needle and the 
perpendicular to the stripes be equal to a, then the projection of the needle onto this 
perpendicular is of length d I cos (a) I and the distance between stripes is d. For a 
given angle a, the probability of a hit is clearly the ratio of these two lengths, 
d lcos (a)l/d = [cos ( a ) / .  Since all angles are equally likely, the average value of 

I cos (a) I can be calculated by integrating 1 cos (G) I over its range and dividing by 
the range. By symmetry it is sufficient to integrate over one quadrant, say from 
0 to ~ / 2 ,  where the integral is just one, and the probability is therefore 2 1 ~ .  

Estimating this probability by the actual ratio of hits to random tries is called 
hit-or-miss Monte Carlo and is in general the least efficient MoEte Carlo method. 
Let us calculate the expected accuracy after n tries. The number of hits follows a 
binomial distribution with expectation ?zp (where p is the probability of a hit, 2 1 ~ )  
and variance np(1-p) (Eadie et a2 1971, p44). The variance of 2/n is therefore 
p(1 -p)/n and the standard deviation is the square root of this. Converting this 
to the standard deviation on n gives 2*37/1/n. (We have to know n to calculate 
this result, but it could also be estimated from the data.) This means that the un- 
certainty on the value of T is 

after 100 tries: 0.2374 
after 10 000 tries: 0.0237 
after 1 000 000 tries: 0.0024. 

These uncertainties are intolerably high compared with those of almost any other 
method of calculating T.  I n  addition, physical biases are difficult to eliminate, as 
will be discussed below in connection with the generation of truly random numbers. 
We can therefore conclude that Buffon’s needle represents an amusing exercise 
and a good example of the application of the Monte Carlo method in an unexpected 
domain unrelated to stochastic phenomena, but that it should not be used in practice 
to calculate T.  Now let us see how to improve upon it, still within the general frame- 
work of the Monte Carlo method. 

3.2. Integration: crude Pdonte Carlo 

Consider doing the Buffon needle calculation on a computer. We would choose 
a random angle a and a random distance x .from the edge of the stripe pattern along 
the direction perpendicular to the stripes (the outcome is clearly independent of 
translations along the direction of the stripes). 011 these (a, x) axes, figure 2 shows 
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_____ 
Figure 2. Buffon’s needle as an integration problem. 

the region corresponding to a hit, namely the area between the a axis and the curve 
cos (a).  The calculation is equivalent to the integration of cos (a).  

Let us therefore perform this integration using crude Monte Carlo instead of 
the hit-or-miss variety, by straightforward application of the method of $2, choosing 
randomly values of a and averaging the values of [cos ( a ) \ .  It is easily verified that 
this results in a standard deviation smaller by a factor of 0.82. This is a general 
result: crude Monte Carlo is always more efficient than hit-or-miss Monte Carlo, 
since hit-or-miss can be considered as crude Monte Carlo on a step function taking 
on only values zero or onc, and of all functions bounded between zero and one with 
a given expectation, the step function has the largest variance. 

Another way of looking at the comparison between crude and hit-or-miss is the 
following. For a givcn angle a, the probability of a hit is I cos ( a )  [ . Instead of finding 
the expectation of this value by direct averaging (crude Monte Carlo), we take it 
as the probability of actually generating a hit. I n  order to make a hit with probability 
I cos ( a )  I ,  generate another random number x, 0 < x < 1, and call it a hit whenever 
x < I cos ( a )  I. This is less efficient, but it does mean that all the values entering into 
the average are equal to one (or zero), which may be advantageous in some situations. 
In  many practical calculations it may correspond to using ‘unweighted’ rather than 
‘weighted’ events, by taking the weight as the probability of accepting the event. 
I n  terms of pure Monte Carlo efficiency, this unweighting procedure is always 
disadvantageous, but it may improve the efficiency of other parts of the calculation, 
as we shall see later. 

3.3. Classical variance-reducing techniques 

From the results of $2, the square of the uncertainty on a Monte Carlo integral is 

s2 = V(f)/.. 
This uncertainty can be decreased by increasing n, but this improves (converges) 
very slowly. Another way is to try to decrease the effective variance V ( f ) .  We 
have already seen one example of changing the variance in comparing crude with 
hit-or-miss Monte Carlo. In  this subsection we introduce the most important 
techniques for variance-reduction. 

3.3.1. Strat$ied sampling. We may feel intuitively that the reason why Monte Carlo 
integration has such a large uncertainty is that the points are chosen unevenly, and 
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that if the points were more uniformly distributed the fluctuations would be smaller. 
Intuition is not always right as we shall see in $4, but there is at least one way to 
make the point distribution more uniform which we can show will produce in general 
an improvement in the variance. Since it is a special case of a more general technique 
of controlling the distribution of points, let us first present the general technique. 

Mathematically, stratified sampling is based on the fundamental property of the 
Riemann integral : 

I = j; f ( u )  du 

= Jt f ( ~ )  du + JA f ( u )  dzl O < a < l .  

The splitting up of the integral into pieces is a common technique in adaptive 
numerical quadrature, but the properties of this technique in the framework of 
Monte Carlo integration are somewhat different. The technique consists, in the 
general case, of dividing the full integration interval (or space) into sub-intervals 
(sub-spaces), and choosing n j  points in the j t h  sub-interval, whose length (volume) 
we will denote by { j ) .  Then, instead of adding the contributions from all points 
directly, partial sums are formed over each interval, and the partial sums are added, 
weighted proportionally to { j )  and inversely to nj. This yields a result with the 
variance 

which is of course just the sum of the variances of the individual pieces. If the 
intervals ( j )  and the numbers of points nj are chosen carefully, this can lead to 
a dramatic reduction in the variance compared with crude Monte Carlo, but it 
can also lead to a Zarger variance, so something must be known about the function 
in order to use this technique most advantageously. 

Suppose we do not know anything about the function and simply divide the 
space into equal volumes { j ) ,  choosing in each volume equal numbers of points 
nj (uniform stratification). It is easily verified from the above formula, using the 
triangle inequality, that uniform stratification cannot increase the variance and will 
in general decrease it if the expectation of the function is different in the different sub- 
regions. In  particular, if the stratification is into just two equal regions {l)  and (2}, 
the improvement in variance is 

Since this cannot be negative, uniform stratification can be seen to be a safe method 
but the improvement in variance may be arbitrarily small. 

In  real calculations, additional complications may arise. In  many-dimensional 
integration, for example, it may not be at all straightforward to divide the integration 
region into sub-regions of known volume. Computational overheads in time and 
memory space may also be prohibitive. 

3.,?.2. Importance sampling. We have seen that a large variation in the value of the 
function f leads to a large uncertainty in the Monte Carlo estimate of its integral. 
Conversely, Monte Carlo calculations will be most efficient when each point (event) 
has nearly the same function value (weight). This can be arranged by choosing a 
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large number of points in regions of the sampling space where the function value 
is largest and compensating for this overpopulation by reducing the function values 
in these regions. In  this way the reweighted function values become more nearly 
constant and the effective variance is reduced. 

Mathematically, importance sampling corresponds to a change of integration 
variable : 

f(.> dx+f(x) dG(x)/g(x). 
Points are chosen according to G(x) instead of uniformly, and f is weighted inversely 
by g(x)=dG(x)/dx. The  relevant variance is now V(f/g), which will be small if g 
has been chosen to be close to f in shape. 

T o  apply importance sampling to a functionf, a function g must be found such 
that: 

(i) g(x) is a probability density function, i.e. it is everywhere non-negative and 
is normalised so that its integral over the sampling space is unity. 

(ii) G(x), the integral ofg, is known analytically. This is an integrated distribution 
function, which increases monotonically as a function of x, from zero to one. 

(iii) Either the function G(x) can be inverted (solved for x) analytically or, 
alternatively, a g-distributed random number generator is available. 

(iv) The  ratio f(x)/g(x) is as nearly constant as possible, so that the variance 
V(f/g) is small compared with V ( f ) .  
Importance sampling then proceeds as follows. Choose values of G randomly and 
uniformly between zero and one: for each G, solve for x, and evaluate f(x)/g(x), 
taking the sum of these ratios as the result. 

Although importance sampling is undoubtedly one of the most basic and useful 
Monte Carlo techniques, it suffers in practice from a number of drawbacks: 

(i) The  class of functions g which are integrable and of which the integral can 
be inverted analytically, is small : essentially the trigonometric functions, exponentials, 
and polynomials of very low degree, and some combinations of these. Of course 
the inversion can be done numerically, but this is usually slow and somewhat clumsy 
or else inaccurate. 

(ii) True multidimensional importance sampling is extremely clumsy for all 
but the simplest functions, so that it is usually used one-dimension-at-a-time in 
multidimensional problems. 

(iii) It is unstable in the sense that if the functiong becomes very small,f/g becomes 
very large and in general its variance also. In  particular, if g goes to zero somewhere 
where f is not zero, V(f/g) may be infinite and the usual technique of estimating 
the variance from the sample points may not detect this fact if the region where 
g=O is small. It is therefore dangerous to choose functions g which go through 
zero, or which approach zero quickly (such as Gaussian functions). 

On the positive side, importance sampling is the only general method for removing 
infinite singularities in the integrand f, by using a sampling function g with a similar 
singularity in the same place. 

3.3.3. Control variates. The control variate method is similar to importance sampling 
in that one again seeks an integrable function g which approximates the function 
to be integrated f, but this time the two functions are subtracted rather than divided. 
Mathematically, this technique is based on the linearity of the integral operator: 
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Now, if the definite integral of g over the entire interval is known, the only uncertainty 
comes from the integral of (f - g ) ,  which will have a smaller variance than f if g has 
been chosen carefully. 

The  method of control variates is more stable than importance sampling, since 
zeros in g cannot induce singularities in (f - g).  Another advantage over importance 
sampling is that the integral of the ‘approximating function’ g need not be inverted 
analytically. 

3.3.4. Antithetic variates. Usually Monte Carlo calculations make use of random 
numbers (points) which are independent of each other, at least in principle. The 
method of antithetic variates deliberately makes use of correlated points, taking 
advantage of the fact that such correlation may be negative as well as positive. We 
recall from (2.2) that the variance of the sum of two function values f’ and f” is 
just the sum of the individual variances when the random points where the function 
is evaluated are chosen independently, but that in the general case an additional 
term is present : 

V ( f ’  +f”) = V ( 7 )  + V ( f ” )  + 2 cov (f’,f”). 

If we can arrange to choose points such that f’ and f” are negatively correlated, a 
substantial reduction in variance may be realised. This requires knowledge of the 
function f, and it is not easy to give general methods for accomplishing this negative 
correlation. Hammersley and Handscomb (1964, pp60-5) discuss this in some 
detail and give further references. For our purposes it will suffice to give a simple 
example to see how the technique works in general. 

Suppose that it is known that f(x) is a monotonically increasing function of x. 
Then choose xt randomly and independently as usual, uniformly distributed between 
the integration limits (say, 0 to l ) ,  but instead of forming the sum of f ( x . ~ )  we take 
one-half of the sum of {f(xt)+f(l -xt)). Then each time xt is small, resulting in 
a small value of f ( x i ) ,  1 - xg and thus f(1 -xt) will be large, and vice versa. The 
partial sums (f(xa) + f( 1 - xg)) will therefore be more constant than the individual 
function values and have a lower variance. Looked at in another way, we are taking 
the average of the estimate of the integral of f ( x )  and the estimate of the integral 
off( 1 - x) using the same points x, and since these two functions are highly (negatively) 
correlated, the variance of the sum is less than the sum of the variances. 

3.4. Adaptive variance-reducing techniques 

With the possible exception of uniform stratification, all the variance-reduction 
methods described above require some advance knowledge of the behaviour of 
the function, and if misapplied may easily iead to a degradation of the Monte Carlo 
efficiency rather than an improvement, not to mention the additional labour factor 
involved in the application of the variance-reduction. A natural extension is toward 
adaptive techniques which learn about the function as they proceed, preferably 
requiring no a priori knowledge about the function. Similarly inspired techniques 
abound in numerical quadrature where it is probably safe to say that most automatic 
function integration is done using adaptive methods. Truly adaptive methods for 
Monte Carlo integration are less common, perhaps because they are rather difficult 
to realise (and easy to misinterpret). We shall consider three examples which should 
serve to illustrate the problems involved and ideas that have proved to be useful. 



iwonte Carlo theory and practice 1159 

The programs I shall describe here are all designed for multidimensional integration 
of general functions, especially badly behaved functions with spikes and large 
variances. 

3.4.1. Sheppey and Lautrup’s RIWIAD. The program RIWIAD of Sheppey and Lautrup 
is one of the earliest to be used with success on difficult multivariate functions on 
the hypercube. It first divides the full hypercube evenly into a number of sub- 
hypercubes and estimates the integral and its variance in each hypercube by crude 
Monte Carlo (uniform stratification). Based on the values found in each sub-volume, 
it then adjusts the boundaries to form new hyper-rectangles such that sub-volumes 
are smaller where the function is larger, and the process is continued. At each 
step, an estimate of the integral and its uncertainty is made in each sub-volume, and 
the interval boundaries are modified to improve the next stratification. A running 
weighted average of the integral estimates and uncertainty estimates is maintained, 
and the procedure stops when the desired uncertainty is achieved. 

RIWIAD has several drawbacks. The stratification boundaries are always parallel 
to the original parameter axes and always run along the whole length of the hyper- 
cube, dividing all the volumes through which they go, even if the previous results 
indicated that some of these sub-volumes did not have to be divided. Worst of all, 
the weighted average of partial results produces a bias due to the correlation between 
the estimate of the expectation and the estimate of the variance. Suppose, for example, 
that the function has a narrow spike, and that on the first step no point falls in the 
spike. Both the integral and its variance will be estimated too low. Then on the 
next step, a point hits the spike; this time the estimates are both about right, but 
since the variance is large the value gets a low weight and the overall estimate remains 
too low. The program never recovers from such an incident since it never forgets 
an early value even if later experience shows it to be a bad estimate. 

3.4.2. Friedman’s adaptive importance sampling. A more recent program of J Friedman 
(unpublished, superseded by his more recent effort described immediately below) 
uses a quite different approach. The program is divided into an exploratory phase 
and an evaluation phase, and none of the function values found in the exploratory 
phase are used explicitly in the evaluation. This avoids the bias due to the way the 
exploratory points are chosen, at a modest cost in efficiency. The exploratory phase 
is used to establish a control function which will be used for the importance sampling 
of the evaluation phase. The control function is a sum of Cauchy (Breit-TVigner) 
peaks, whose positions and shapes correspond to those of the function to be integrated, 
as determined respectively by a peak search using a function-minimising routine, 
and an eigenvector analysis of the covariance of the function around each peak. 
Cauchy-shaped peaks are used because they tend to zero more slowly than Gaussian 
peaks, helping to avoid the instability problem mentioned above. 

Although this program is an improvement over RIWIAD for most functions, it 
also has several drawbacks in practice and is unsuitable for functions which cannot be 
approximated by a small number of peaks. 

3.4.3. Friedman’s D I V O N N E ~  with recursive partitioning. A more recent offering of 
Friedman, called D I V O N N E ~  (Friedman 1977a, b), represents a synthesis of the ideas 
seen to be most valuable in the above programs, together with some more modern 
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ideas in multidimensional data structures. It consists of two separate programs, 
the first of which performs a recursive multidimensional partitioning (stratification) 
of the function parameter space, and the second does a stratified-sampling Monte 
Carlo integration based on this partitioning. 

The  goal of the partitioning is to produce sub-volumes in which the range of 
function values, as determined by function-minimisation techniques, is as small 
as possible. The partitioning program retains the drawback of RIWIAD that partition 
boundaries must be parallel to the parameter axes, but since the partitioning is 
recursive (only one sub-volume is split in two at each step, not a whole row), the 
algorithm eventually tends to liberate itself from the orientation of the axes. 

The  partitioning algorithm has other applications than integration and can 
be used, for example, in conjunction with a specially designed random number 
generator to generate points in thc parameter space distributed according to the 
function f (see the subsection below on generating random numbers according to 
empirical distributions). 

The actual integration need not be performed using Monte Carlo. Other methods 
are offered as options in the program, but in practice this choice does not seem 
to make much difference in the accuracy obtained, and Monte Carlo is usually used 
because it gives a reasonably accurate uncertainty estimate. 

4. Comparison with numerical quadrature 

In  order to decide whether a Monte Carlo method should be applied to a given 
problem, it is reasonable to see how it compares with other available methods. 
In  the case of integration, alternative numerical techniques have been the subject 
of extensive studies for centuries, and the widespread use of computers has led to 
considerable practical experience in this field. The current section is a brief review 
of the properties of numerical quadrature as it is commonly practised today, for 
the purposes of comparison with Monte Carlo. This is not intended to be a complete 
or detailed account of any quadrature techniques but is intended only to give the 
properties of most use in deciding whether to use quadrature a t  all. 

4.1, One-dimensional quadrature 

Unless otherwise stated, numerical quadrature is always done in one dimension. 
Some of the reasons for this will appear later, but certainly a prime motive for sticking 
with one dimension is the beauty and elegance of the methods that have been 
developed for one dimension. 

All quadrature formulae approximate the value of the integral by a linear com- 
bination of function values : 

n 
Iq= C wif(xi). 

Different formulae correspond to different choices of the points x and the weights w. 
Crude Monte Carlo could be considered a quadrature formula with unit weights and 
points chosen uniformlv but randomly. 

i=l 

4.1.1. Trapezoidal rule. This simplest of all rules consists of dividing the total 
interval into n sub-intervals and approximating the integral over each sub-interval 
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by the area of the trapezoid inscribed under (or over) the curve to be integrated, 
The  sum of these approximations reduces to the average of the n + 1 function values 
multiplied by the length of the interval (in fact, the end points must be added with 
a factor one-half, but this important detail can be considered as a boundary correction 
and is not relevant to our arguments here). For large n, we can think of the function 
expressed as a Taylor series expansion about each of the n points: then the constant 
terms and the first derivative (linear) terms will be integrated exactly by the trapezoidal 
rule, and to the extent that higher-order terms are of decreasing importance, the 
largest contribution to the error will come from the second derivative (constant 
curvature) terms. This error is proportional to the sagittas of the curve segments 
over each band, and these sagittas will each be proportional to the square of the 
distance between successive points. Therefore if the function is evaluated at n 
equally spaced points, the uncertainty on the integral should be proportional to 
l/n2 for large n. 

Recall that for Monte Carlo integration, the convergence was only like the square 
root of n, so that where increasing n by a factor of 100 only buys you one more decimal 
digit with Monte Carlo, you getfour digits with the trapezoidal rule. This is especially 
interesting because the two methods are so similar. Indeed, the methods are identical 
except that points are chosen equally spaced in one case and randomly in the other, 
and the randomness apparently causes us to lose a factor of four in convergence rate 
(decimal digits per factor of 100 increase in n). Before seeing what randomness 
gives us in return for this disastrous convergence rate, let us consider still more 
impressive convergence rates of other quadrature methods. 

4.1 -2. Higher-order quadrature. By choosing the points and weights appropriately, 
it is possible to integrate exactly polynomials of higher degree and therefore achieve 
higher convergence rates. The  next step after the trapezoidal rule is Simpson’s 
rule which requires three points on a given interval and integrates exactly all poly- 
nomials of degree three. The  highest possible degree for a given number of points 
is achieved with Gauss quadrature formulae which integrate exactly all polynomials 
of degree 2n- 1 (or less) with n carefully chosen points and n corresponding weights. 
The  numerical values of these points and weights, as well as the basic properties of 
Gaussian quadrature, are given by Stroud and Secrest (1966). 

The theoretical convergence rate for Gauss quadrature is enormously higher 
than for Monte Carlo, but some of its other properties are not so nice. The  un- 
certainty is not easy to estimate, error-bound formulae being given in terms of the 
values of higher derivatives of the function over the interval, which are much harder 
to calculate than the integral itself, so are essentially useless in practice. In  addition, 
the validity of the error-bound formulae depends on continuity properties of the 
function and its derivatives, which may not be known. In  practice, one is forced to 
use ‘overkill’, aiming at a precision much higher than that required, and uncertainties, 
if estimated at all, are usually estimated by comparing the results of more than 
one different Gauss rule on the same interval. Unfortunately, the nature of these 
rules is such that the best way to combine the results of two different Gauss rules 
over the same interval is to throw away the lower-order result and keep only the 
higher. Practical experience indicates also that there is no advantage in going to 
extremely high orders, and that beyond about 12 or 15 points it is usually better 
to split the interval and apply a lower-order rule several times. This indication of 
the breakdown of the polynomial philosophy is discussed below. 

74 
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4.1.3. Adaptive quadrature. The quadrature rules described above are all fixed-point 
rules, i.e. the points and weights are fixed in advance. Adaptive quadrature, on 
the other hand, is an attempt to attain a prescribed accuracy by adapting the quadra- 
ture method to the function. The most common class of adaptive methods consists 
in using a fixed-point rule and an error-bound estimate, then dividing the interval 
into two or more pieces, usually of equal length, if the error-bound estimate exceeds 
the required value. The same procedure is then applied recursively to each sub- 
interval until all sub-intervals satisfy the error bounds, or until the sum of all esti- 
mated uncertainties reaches an acceptable level. The most common strategies are 
compared by Malcolm and Simpson (1975). 

Most computer centres offer one or more ‘automatic integration’ programs 
based on adaptive quadrature of the above type. These programs differ mainly 
in the fixed-point rule used and in the method of obtaining an estimate of uncertainty 
which, as we have seen, is not always straightforward. Because of problems in 
obtaining reliable estimates of uncertainty, the better programs aim for a certain 
amount of overkill, but may be unreliable nonetheless. For example, a spline function 
which appears smooth to the eye has discontinuous higher-order derivatives which 
tend to produce poor results with high-order Gauss rules and consequently adaptive 
quadrature based on them. Other problems with adaptive quadrature are discussed 
by Lyness and Kaganove (1976). 

4.2. Multidimensional quadrature 

Numerical quadrature formulae are based on the study of orthogonal poly- 
nomials, which are well understood in one dimension. For higher dimensionalities 
the mathematical basis is not as well understood, and practical studies are much 
more recent and less extensive. We outline here briefly the current situation. 

4.2.1. Multidimensional region boundaries. In  one dimension, only three ‘different’ 
regions of integration need to be considered : finite, semi-infinite and infinite. Choos- 
ing one particular interval in each class, all other intervals can be mapped onto one 
of the three by a linear mapping, which conserves all the convergence properties 
of any integration method. In  general in this review, we consider only the finite 
interval, Simple non-linear transformations are available to transform semi-infinite 
and infinite intervals into the unit interval, and this is a standard way to perform 
integration over infinite intervals, but these transformations do modify the pro- 
perties of quadrature rules. For Monte Carlo integration, these transformations do 
not affect the n dependence of the convergence, but the hnction whose variance 
determines the uncertainty of the estimate is, of course, the transformed function. 

In  more than one dimension, the situation is quite different. Already in two 
dimensions, and restricting ourselves to finite regions, there are an infinite number 
of ‘different’ regions which cannot be transformed into each other by linear trans- 
formations. For example, a circle is fundamentally different from a square, in the 
sense that a quadrature formula for a square will not have the same properties when 
applied to a circle. 

The  standard Monte Carlo technique for dealing with odd-shaped regions is to 
embed the region in the smallest hyper-rectangle that will surround it and integrate 
over the hyper-rectangle, throwing away the points that fall outside the inner region. 
This leads to some inefficiency of course, due to the rejected points, but is capable 
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of dealing in a straightforward way with essentially any finite region. Such a general 
technique does not work for numerical quadrature methods, since it introduces 
discontinuities on the boundary of the inner region, thus destroying some of the 
nice convergence properties. 

The  ability of Monte Carlo to integrate over complicated multidimensional regions 
(albeit not always very efficiently) is one of its most valuable properties, since it 
is often the only known technique capable of handling such problems. Purists 
may be right in saying that this only expresses our ignorance of better methods, 
but for people with real problems to be solved, it does represent a way out. 

4.2.2. Extension of one-dimensional rules. For rectangular regions, which are after 
all the most common, multidimensional quadrature rules can be formed by straight- 
forward extension of one-dimensional rules. Such rules, known as product rules, 
generally preserve the properties of the one-dimensional rules of which they are 
extensions, but only at the cost of increasing the number of points exponentially 
with the dimensionality. Thus a product rule requiring n function evaluations in 
one dimension will require n2 evaluations in two dimensions, n3 in three dimensions, 
and so on. This slows down the effective convergence rate in d dimensions by a 
factor l i d  in the exponent as shown in the table below. 

Uncertainty as a function In one In d 
of number of points n dimension dimensions 

Monte Carlo n-112 ~ - 1 1 2  
Trapezoidal rule n-2 n-2/d 
Simpson’s rule n-4 n-4/d 

Gauss rule n-2m+l .-(2n-1)/ct 

Since the convergence of Monte Carlo is independent of dimensionality, there 
is always some d above which Monte Carlo converges faster than any fixed quadrature 
rule. Thus Simpson’s rule in more than eight dimensions converges more slowly 
than Monte Carlo and a ten-point Gauss rule converges more slowly than Monte 
Carlo in more than 38 dimensions, even assuming that the function has the nice 
continuity properties required by these higher-order rules. 

But suppose we actually try to apply a ten-point Gauss rule in 38 dimensions. 
This requires at least 1038 function evaluations, which is clearly unfeasible. This 
brings up two new points. 

(i) The feasibility limit is the largest number of function evaluations we can afford 
to make. Depending on the computer resources available, the feasibility limit will 
usually be between l o 5  and 1010 points for functions which can be evaluated reasonably 
fast. This limits the usc of a ten-point Gauss rule to five dimensions for someone 
with moderate computer resources, or ten dimensions for someone with ‘unlimited’ 
computer resources. Figure 3 shows that, except for very-low-order rules, the 
feasibility limit is reached long before the crossover point where Monte Carlo con- 
verges faster than quadrature, so that the theoretical convergence rates for high-order 
rules in high dimensionalities will remain purely theoretical. 

(ii) The growth rate is the smallest number of additional function evaluations 
needed to improve the current estimate. Monte Carlo estimates can be improved 
by adding a single point, but at the other extreme Gauss rule estimates can only 
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Figure 3. Comparison of Monte Carlo integration and numerical quadrature in many 
dimensions. 

be improved by going to a higher-order rule, requiring (m+ 1)d additional points 
or by sub-dividing the space, which requires at least 2md additional points even 
for the simplest partitioning, In  both cases all the previous Gauss points must be 
thrown away. 

One way to get around the problems of feasibility limit and growth rate has been 
suggested by Tsuda (1973). He  uses a rule with far too many points actually to 
evaluate, and then applies the standard Monte Carlo technique of sampling the 
resulting terms randomly. He reports good results for this combination of quadrature 
and Monte Carlo, but the reasons behind this success are not clear to me. It could 
be that the use of points of a quadrature rule guards against any two points being 
too close, and therefore ensures a certain uniformity of distribution even if only 
a random subset of these points is actually used (this explanation was suggested to 
me by J Friedman). 

4.2.3. Multidimensional rules. The situation is greatly improved if truly multi- 
dimensional quadrature rules are used instead of product rules. Unfortunately, 
good quadrature rules are not known for many regions, dimensionalities and orders. 
The  situation is well described in the article of Haber (1970) and in the book of 
Stroud (1971), of which we summarise some of the more important results here. 

As in one dimension, multidimensional formulae can be found which will integrate 
exactly any polynomial of degree less than or equal to some degree r .  In  addition 
we may require the formulae to satisfy two important criteria. 
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(i) That all the weights be positive. This is important in order to avoid numerical 
instabilities arising from cancellation of large terms of opposite sign, and seems 
also to make the formulae more robust with respect to the validity of the polynomial 
assumption. 

(ii) That all the points used lie within the region of integration. This seems 
such an elementary requirement that one is surprised to discover that many formulae 
in d dimensions do not possess it, even for convex regions. 

If we restrict ourselves to formulae satisfying the above requirements, very few 
generally applicable formulae have been found, Even for the simplest region, the 
hypercube, the only known formulae valid for all dimensionalities and even reasonably 
close to the theoretical efficiency limit are of degree 2 and 3, as summarised in the 
table below. We see that there exist low-order multidimensional formulae con- 

Degree r Best known n n (Gauss) 

2 4  

5 O(d5), not found 3d 
> 5  ? rGJ)', I odd 

siderably better than the Gauss rule, and in fact some higher-order formulae of 
comparable theoretical efficiency are known, but they do not have all positive weights 
for all r. Stroud has shown that a formula of degree r = 5 exists, with n of the order 
of d5 and positive weights, but to my knowledge no one has as yet found it. 

4.2.4. Adaptive multidimensional quadrature. Like non-adaptive quadrature, adaptive 
quadrature is much better developed in one dimension than in many dimensions, 
since the problems mentioned above for multidimensional quadrature, in general, 
clearly make adaptivity difficult too. Nevertheless, several attempts have been 
made, of which we will mention a few that have been published. They appear to 
be reasonably successful, at least for small dimensionalities (up to 6). 

(i) Van Dooren and de Ridder (1976) have published an algorithm not too dif- 
ferent from Friedman's D I V O N N E ~  (1977a, b), except that the former use multi- 
dimensional extensions of one-dimensional Gauss rules instead of Monte Carlo 
for the basic integration technique and their sub-division of regions is always into 
two equal parts. 

(ii) Genz (1972) presents an algorithm especially interesting for its use of extra- 
polation methods, but the multidimensional adaptivity does not seem to result in a 
great improvement in efficiency. 

(iii) Kahaner and Wells (1979) use an interesting technique based on simplices 
rather than hypercubes. Their basic thesis is that the lack of good adaptive quadrature 
procedures in many dimensions is mainly due to problems in organisation of multi- 
dimensional data structures. Their work is as much an exercise in programming 
as numerical analysis and it presents many interesting ideas in both areas. It probably 
points in the direction where we can expect the most significant advances. From 
a practical point of view, their program is not of much interest since it is written in 
a language (MADCAP) not generally available. 
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4.3. The Monte Carlo paradox 

Some of the conclusions to be drawn from the comparison of Monte Carlo 
integration with numerical quadrature are somewhat surprising and call for deeper 
consideration. 

(i) In  one dimension, the perfectly ‘regular’ trapezoidal rule converges much 
faster than the identical rule with randomly distributed points, but in many dimen- 
sions a random distribution leads to faster convergence than the perfectly regular 
grid. 

(ii) Just to confuse matters further, the random distribution which is superior 
to the regular distribution in many dimensions can nevertheless be improved by 
making it more uniform, either by stratified sampling as we have already seen, or 
through quasi-Monte Carlo which is discussed below. 
The explanation of this paradox is that our intuitive feeling for what constitutes 
‘uniformity’ in distribution, based on one-dimensional knowledge, is not quite 
right for higher dimensions. For example, consider the projection of the point 
distribution onto one axis, for the hyper-rectangular grid of points. Great spikes 
appear in this projection whenever we come to a ‘hyper-row’ of points, which no 
longer looks very uniform; the projections of a random distribution are more uniform 
in this sense. (See Sobol (1979) for a simple and convincing example of this.) In  
the section on quasi-Monte Carlo, we will define and discuss a more precise measure 
of uniformity (or non-uniformity) called discrepancy, which will explain this paradox. 

Furthermore, the volume of multidimensional space is always very big, so that 
points are always far apart, which negates the very basis of quadrature rules. 

4.3.1. The ‘polynomial hangup’. Let us look more carefully at the theoretically 
fast convergence rate of high-order quadrature rules. ’rhis is related to the ‘poly- 
nomial hypothesis’ dear to the hearts of quadrature experts. For low orders, it is 
hard to find fault with the polynoniial hypothesis; the zero-degree polynomial is 
certainly the simplest function and it is reasonable to cxpect a good integration 
method to be able to integrate it exactly. (Even Monte Carlo does that, by the 
way!) Similarly, a first-degree (straight-line) polynomial naturally comes next in 
the scale of complicatedness as perceived by the human eye, but who is to say that 
a parabola is simpler or smoother than, for example, a sine function or an exponential? 
Is there a justification for seeking methods that integrate exactly polynomials of 
degree Y, when the function to be integrated is not a polynomial? 

We may seek such a justification in Taylor’s theorem. This theorem states that 
under certain conditions any function can be expressed as a polynomial of degree Y, 

plus a remainder term. The  conditions are that the function and all its derivatives 
should be continuous; the coefficients of the polynomial are given in terms of these 
derivatives evaluated at the point where the independent variable is equal to zero. 
The usefulness of the theorem comes from the cases where the remainder term 
becomes very small as Y increases, but the theorem says nothing about when this can 
be expected to be true. 

Indeed, there is nothing special about the polynomial in this respect. Other 
theorems give conditions under which general functions can be expressed as other 
infinite series (e.g. trigonometric series, Fourier series) and conditions under which 
the series can be truncated with a given remainder. The property that makes the 
Taylor series special is that under very general conditions the higher-order terms 
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can indeed be neglected in the neighbourhood of zero (the point about which the 
expansion is performed). Unfortunately, this has very little to do with the macro- 
scopic properties of the function which are important for integration over a large 
region, especially a multidimensional region which is always large. 

In  practice, polynomials are notoriously bad at approximating functions over 
large intervals, so we should not be surprised that related quadrature rules sometimes 
give unsatisfactory results. Experience shows spline functions to be good at ap- 
proximating a wider class of functions, and although spline functions are piecewise 
polynomials they are not polynomials, and indeed have discontinuous derivatives 
of some degree at the knots. Integrating spline functions is, of course, easy if you 
know where the knots are, although Gauss rules generally fail without this knowledge. 

5. Random and pseudo-random numbers 

In  principle, a random number is simply a particular value taken on by a random 
variable (which was defined above). However, in Monte Carlo studies, one often 
uses the word ‘random’ with various other, quite different, meanings. Here it is 
usually applied to sequences of numbers which, once they have been determined, 
are not at all random in the statistical sense but may have some properties which 
are similar to the properties of a truly random sequence. To be precise one must 
distinguish three different types of sequences : truly yandom, pseudo-random and 
quasi-random. (The first two of these are described in this section, and the third in 
the section on quasi-Monte Carlo.) 

Unfortunately, it is common to confuse the randomness properties of a sequence 
with its distribution. This is unnecessary, since the two are quite independent. 
A perfectly random sequence may have any distribution (uniform, Gaussian, etc), 
whereas a perfectly uniformly distributed sequence may be not at all random. 

5.1. Truly random numben 

A sequence of truly random numbers is unpredictable and therefore unrepro- 
ducible. Such a sequence can only be generated by a random physical process, 
for example radioactive decay, thermal noise in electronic devices, cosmic ray arrival 
times, etc. If such a physical process is used (properly) to generate the random 
numbers for a Monte Carlo calculation, there is no theoretical problem, since the 
theory outlined above is sufficient justification, provided there is no physical defect in 
the apparatus. 

I n  practice, however, it turns out to be very difficult to construct physical 
generators which are fast enough (one needs typically hundreds of floating-point 
numbers per second) and at the same time accurate and unbiased. Faced with 
these practical difficulties, very few large-scale calculations have been made using 
such generators. 

One important exception is the work of Frigerio and Clark (1975) and Frigerio 
et al (1978). They used a radioactive alpha-particle source and a high-resolution 
counter turned on for periods of 20 ms, during which time they counted, on average, 
24.315 decays. Whenever the count was odd, they recorded a zero-bit, and when 
even, a one-bit, all written to magnetic tape. A careful correction was made to eliminate 
the bias due to the fact that the probability of an odd count is not exactly one-half 
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(the bias could have been removed without even knowing this probability, using 
the method given in the next subsection). Their apparatus yielded about 6000 
3 1-bit truly random numbers per hour. These numbers have been stored on magnetic 
tape, subjected to a number of tests for ‘randomness’ and used in Monte Carlo 
calculations. (Copies of the tape, containing 2.5 million truly random numbers, 
are available from the Argonne National Laboratory Code Center, Argonne, Illinois 
60439, USA.) 

T o  illustrate the practical problems of physical bias in truly random generators, 
let us again consider the Buffon needle experiment. First of all, the width of the 
stripes must be constant and equal to the length of the needle to within the accuracy 
ultimately desired for the final result, which is not so hard if we only want one or two 
figure accuracy, but will clearly prevent us from going much further. Also, an un- 
biased decision procedure must be found for the cases when the needle almost 
crosses a boundary. Thirdly, we must ensure that the actual distribution of angle 
and position of the needle is uniform. The angular distribution may be made uniform 
by spinning the needle very fast as it is thrown, provided the surface is very flat 
and of homogeneous friction properties. The distribution of needle position will 
not be uniform but niay be expected to follow some Gaussian distribution about 
the point where the thrower aims. I n  practice, one would determine the width 
of this distribution experimentally and carry out a rather complicated correction 
of the type performed by Frigerio et a1 as described above. 

5.1.1. Bias yemoval technique. It often happens when generating truly random 
numbers, as in the example just above, that the major problem is in determining the 
exact distribution (i.e. the bias of the apparatus), whereas the ‘truly random’ property 
is guaranteed by the nature of the physical process used. I n  these circumstances, 
a very useful trick to eliminate the bias is the following. 

Suppose we are given a truly random sequence of zeros and ones, but where 
the probabilities P(0) and P(1) may not be exactly one-half. Using this original 
sequence, we produce a second sequence in the following way. Consider pairs 
of bits in the sequence, and if the two bits in the pair are the same, reject both bits; 
if the two bits are different, accept the second bit (always rejecting the first of each 
pair). The new sequence thus formed is guaranteed to have zeros and ones with 
equal probability as long as there was no correlation between the bits of the original 
sequence. This can be seen easily by calculating P’(0) and P’(l), the probabilities 
of zero and one in the new sequence, in terms of P(0) and P(1), the original proba- 
bilities. Since a zero can only come from a one followed by a zero, P’(O)=P(l)P(O) 
and similarly P’( 1) = P(O)P( 1). These probabilities must therefore be equal no 
matter what P(0) and P ( l )  are. Unfortunately P‘(0) and P’(1) do not add up to 
one because the probability of rejecting a pair entirely is P2(O)+P2(1), which must 
be greater than or equal to one-half. I n  addition, half the bits are lost because a pair 
yields at most one bit, so the efficiency of the procedure is at most 25% but it allows 
the use of a basic generator which is of unknown bias, as long as this bias is nearly 
constant in time. (Any method using an explicit correction for bias must also know 
the exact time dependence of this bias.) 

The efficiency of this method is easily seen to be P(O)P(l), which is equal to 
P ( l  -P), where P is either P(0) or P(1). This means that, for heavily biased original 
sequences, the efficiency is approximately equal to the probability of the less probable 
bit. 
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5.2. Pseudo-random numbers 

The random numbers most often used in real calculations are those known 
as pesudo-random, which are generated according to a strict mathematical formula 
and therefore reproducible and not at all random in the mathematical sense but are 
supposed to be indistinguishable from a sequence generated truly randomly. That 
is, someone who does not know the formula is not supposed to be able to tell that a 
formula was used rather than a physical process. The theory outlined in $2 is generally 
assumed to hold for Monte Carlo results calculated with pseudo-random numbers as 
well as with truly random numbers. 

Unfortunately, there is no way to generate such numbers, which are both truly 
random and not truly random. This has not prevented people from using pseudo- 
random sequences (often with considerable success), closing one eye to the theoretical 
impossibility of it all. In  this subsection we discuss how this is done in practice. 

5.2.1. From mid-squares to multiplicative generators. Perhaps the earliest pseudo- 
random number generator was that of Von Neumann known as ‘mid-squares’, 
Given a starting number of r digits, the first ‘random’ number is the middle r /2  
digits of this number. Then the first ‘random’ number is squared (forming another 
number of Y digits) and the middle rj2 digits of this square are the second ‘random’ 
number, etc. The digits may be decimal, octal, binary or in any other base. If the 
original number is chosen carefully, this method can yield a reasonably long string 
of numbers which appear random, but the properties of this generator, to the extent 
that they are known at all, are not very good, and it is not used any more. First 
of all, this generator is characterised by a period, since if any number reappears the 
entire sequence from the first appearance to the second will reappear. This is a 
rather general property of pseudo-random gencrators, including those commonly 
used today. Also, certain numbers reproduce themselves immediately (for example, 
zero), which means that those numbers can never appear unless the period is one. 

I t  may appear that the mid-squares method cannot possibly be very good because 
it is not complicated enough. The naive approach then consists in ‘improving’ the 
unacceptable method by making it more complicated. An excellent example of 
how one might do this is given by I h u t h  (1969, pp4-6). His ‘super-random’ genera- 
tor is so complicated that one could never hope to understand its properties, and 
turns out nevertheless to be very bad. The lesson to be learned is that a simple 
generator, whose properties (and weaknesses) are known, is always to be preferred 
to a complicated generator of unknown properties. A corollary of this lesson is that 
it is not easy to ‘improve’ a bad pseudo-random generator by making it more com- 
plicated. Such an exercise cannot add any true randomness and usually serves only 
to shorten the period by using up several numbers to produce one. Exceptions to 
this are the shuffling technique discussed below in connection with quasi-random 
numbers and the Dieter-Ahrens generator also discussed below. 

Indeed the pseudo-random generator most widely used is even somewhat simpler 
than mid-squares; it is the method attributed to D H Lehmer, known as multiplicative 
congruential or linear congruential. Given a modulus m, a multiplier a and a starting 
value YO, the method generates successive pseudo-random numbers by the formula 

Y.I = are-1 (mod m). 

A variation known as the mixed congruential generator requires, in addition, an additive 



1170 F James 

constant 6 : 
ri = art- l f  b (mod m). 

The two generators have very similar properties and will be considered together. 
For both generators, m is invariably chosen as 2t, where t is the number of bits in 
the representation of an integer on the computer being used, so that in practice 
the algorithm consists of multiplying two numbers of t bits each, yielding a number 
of 2t bits, of which the lower (least significant) t bits are retained as the next ‘random’ 
number. These integers are then converted to floating-point numbers in the range 
zero to one by dividing by m. 

5.2.2. The early approach: maximum period. It turns out to be a relatively easy 
problem in number theory to give the conditions for a congruential generator to 
attain the maximum period, which is generally of length ml4. Early theoretical results 
therefore concerned primarily this aspect with very little progress on other properties. 
This gave rise to a large number of generators with long periods, which were then 
subjected to ‘tests for randomness’ and the ones for which no ‘non-random’ behaviour 
could be discovered were used. Often these generators were later found to be un- 
acceptable but continued to be used by those who had not yet stumbled upon the 
unfortunate propertiest. 

The 1960s may be termed the ‘dark ages’ of pseudo-random generators, charac- 
terised by an enormous number of articles (mostly unpublished) purporting to 
show, on the basis of ‘tests’ as described below, that one pseudo-random generator 
was better or worse than another. 

5.2.3. Testing pseudo-random generators. Since there was in the early days no good 
theory about the behaviour of pseudo-random number generators, it was necessary 
to resort to ‘tests of randomness’ in order to certify a given generator as ‘good’. 
These tests usually consist of forming some function of a given string of pseudo- 
random numbers and comparing the value of this function with the expected value 
of the same function of truly random numbers. For example, the simplest test would 
be to take the average of the first n numbers from a pseudo-random generator, 
which should be close to 0.5, the expectation of the average of truly random numbers 
uniformly distributed between zero and one. The  variance of the average for truly 
random numbers being 412, the square root of this quantity is the expected standard 
deviation, so we expect that 95% of the strings of n numbers will have an average 
within two such standard deviations of 0.5. If our pseudo-random generator yields 
an average which falls outside this range, we say that it fails that test at the 5% 
level. Of course, even a truly random sequence would fail such a test 5% of the time, 
but that is just too bad. 

I n  practice, one uses somewhat more complicated tests, based on more com- 
plicated functions. These tests have names such as the runs test, poker test, etc. 
Some tests are felt to be more sensitive than others, but since one does not in principle 
know what kind of ‘non-randomness’ to look for, it is not possible to measure the 
power of a test in any precise way. The  most common tests are described abundantly 
in the literature (e.g. Ahrens et aZl970) and summarised in Mnuth (1969). 

-+ The best example of this is RANDU which was distributed by IBNl with their 360 series 
and was found almost immediately to be very poor. One can still find articles being published 
today by people just getting around to making this painful discovery. 
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Since there is an infinite number of possible functions that could be applied 
to each of the possible sequences coming from a pseudo-random generator, no 
generator can be ‘tested’ thoroughly. The  most interesting such function is just the 
calculation for which the pseudo-random numbers are needed, and the (unknown) 
correct answer to this problem provides yet another test of the generator-indeed, 
the only test we really care about. The  philosophy of pseudo-Monte Carlo could 
therefore be stated in these words: if a pseudo-random number generator has passed 
a certain number of tests, then it will pass the next one, where the next one is the 
answer to our problem. It is, of course, not known in general why it should pass 
this next test, except for the fact that it is not known why it should not. 

A somewhat different kind of test was used by J Lach (1962, unpublished) who 
was suspicious because results using the IBM 709 pseudo-random generator produced 
fluctuations greater than expected. He simply plotted the random number distribu- 
tion on a cathode ray display and observed the ‘non-randomness’ by eye. Taking 
pairs of numbers as (x, y )  coordinates of points, no obvious correlations were seen, 
but when triplets (x, y ,  x) were considered and (x, y )  were plotted only for x < 0.1, 
the resulting point distribution showed a structure of slanting bands, with all the 
space between the bands completely empty of points. The  pseudo-random generator 
was later corrected by changing the multiplier so that the particular effect observed 
by Lach disappeared, but what Lach had observed was later showed by Marsaglia 
to be a defect inherent in all generators of this type (see next subsection). 

My personal feeling about testing is that it is best to avoid it through a deeper 
theoretical understanding of the generator. (In the case of the multiplicative con- 
gruential generator, the important properties are now known exactly; see below.) 
If testing must be done, I prefer visual tests of the type used by Lach, since these 
tests are not only rather sensitive to the kinds of ‘non-randomness’ we are interested 
in, but may also give some insight into the properties of the generator. 

5.2.4. The Marsaglia effect. In  his classic paper Random numbersfall mainly in the 
planes Marsaglia (1968) finally brought some genuine understanding into the occult 
art of pseudo-random number generation. We showed that if successive d-tuples 
from a multiplicative congruential generator are taken as coordinates of points 
in d-dimensional space, all the points will lie on a certain finite number of parallel 
hyperplanes, this number always being not greater than a certain function of d 
and the bit length of integer arithmetic on the machine. We give some values of this 
function in the table below. 

Maximuin number of hyperplanes = (d! 2911d 

Number of bits(t) d = 3 d = 4  d = 6  d = 1 0  

16 73 35 19 13 
32 2953 566 120 41 
36 7442 1133 191 54 
48 119086 9065 766 126 
60 1905376 72520 3064 290 

Furthermore, it is usually the case that the points lie on more than one such 
set of hyperplanes, making an extremely regular pattern rather than the ‘random’ 
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distribution desired. (Of course, it is true that any points must lie on some set of 
hyperplanes, but truly random points would lie on a much larger number of such 
planes.) We can use the table above to decide the maximum dimensionality for 
which we care to use such random numbers to perform, for example, numerical 
integration, based on the word length of our machine. For machines with long 
words, the limit is probably beyond anything we would be likely to need, but with 
integers of 36 bits and less, care must be taken. 

Note that Marsaglia completely explained the effect observed earlier by Lach, 
and which was ‘corrected’ by changing the multiplier of the generator. Lach was 
observing the hyperplanes in three-dimensional space and taking a slice in one of 
the dimensions produced the bands when projected onto the other two dimensions. 
Changing the multiplier may have increased the number of planes, and certainly 
changed their orientation, so that the effect then appeared to go away. Lach was 
using a computer with 36-bit integers, so that it should have been possible to get a 
good distribution in only three dimensions. 

5.2.5. The Dieter-Ahrens solution. About the same time as Marsaglia was dicovering 
the hyperplanes, he and others were investigating multiplicative generators in more 
detail (Marsaglia 1972) and found ways to determine, for example, the exact distribu- 
tion of pairs of numbers (Dieter 1971), and the autocorrelation function (Dieter 
and Ahrens 1971). The result of all this work is a good understanding of both the 
good and bad properties of such generators, as well as how to find good multipliers. 
Dieter and Ahrens (1979)t show that the way around the Marsaglia hyperplane prob- 
lem is to use compound multiplicative congruential generators of the form 

rg = (ari-l+ bri-2) (mod m) 
which will increase the number of hyperplanes by a factor Z ( t l d )  provided the constants 
a and b are chosen carefully. The hyperplanes do not go away but their number 
may be increased arbitrarily by adding more terms as above. 

5.2.6. Good pseudo-raizdom generators. On a computer with integer length t bits, 
the best simple multiplicative generator is probably that proposed by Ahrens et al 
(1970), where the multiplier is 

(You may recognise the famous ‘golden section’ constant here.) I n  practice, the 
constant a is determined for a given value of the integer length t by multiplying 
2t-2 into a very precise value of the golden section constant 
(=On618 033 988 749 894 848 204 5868) and rounding to the nearest integer congruent 
to 5 (mod 8). This will yield a generator with period Z t - 2  and good distribution 
properties. 

On CDC 6000, 7000 and Cyber machines, it is unfortunately not easy to take 
advantage of the full 60-bit words, since integer multiplication is performed only 
on 48 bits (for compatibility with floating-point numbers which have 48-bit man- 
tissas). For such computers, the value t = 48 is therefore appropriate, and the constant 

a = (1 170 673 633 457 725)g = (43 490 275 647 445)10 a is 

which has a period of 246=70 368 744 177 664. 

first seven chapters. 

a = 2t-2 _I Ad5 - 1). 

-f We are grateful to the authors of this book for providing a pre-publication version of the 
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On IBM 370 and IBM-compatible computers, the 32-bit integer arithmetic 
makes simple generators somewhat risky for large calculations. With only 31 signi- 
ficant bits available, the maximum period is 2 2 9  or about 500 million. Since it is 
dangerous to come anywhere close to exhausting the period (exhausting the period 
would give a perfectly uniform distribution since all numbers would be generated) 
it is not too difficult to imagine calculations where a better generator is needed. 
In  this case I recommend using the McGill University package ‘Super-duper’ 
(available from Professor G Marsaglia, School of Computer Science, McGill Uni- 
versity, PO Box 6070, Montreal, Canada). The  basic generator of this package com- 
bines two methods to give a period as long as one would expect from a 64-bit 
machine. 

5.2.7. Machine-independent pseudo-generators. It is sometimes convenient to have 
a random number generator which produces exactly the same numbers on any 
computer. Assuming that we want floating-point numbers between zero and one, 
we therefore choose the precision of the lowest-precision machine we are likely 
to use and simulate that precision on other computers. (On computers with longer 
words, the lower bits will be zero.) Such a generator will, in general, not be optimal 
on any machine, either in terms of period or of speed, but we will show here that 
it can be implemented, in FORTRAN, on most larger computers. It can then be used 
to test programs and compare and continue calculations across changes of computer. 

If we choose IBM 32-bit words as our minimum precision, such a generator, 
called ~ ~ 3 2  (CERN Program Library?), has been implemented as follows. As default 
starting integer use the value 65 539. Multiply the previous (or starting) integer 
(‘seed’) by 69 069. Keep only the lower 31 bits of the result. This 31-bit integer 
becomes the seed for the next number. We get a floating-point pseudo-random 
number from the seed by masking off the lower 8 bits to assure exact floating-point 
representation of the integer, floating it, and multiplying the result by the exact 
floating representation of 2-31. 

Differences in FORTRAN and floating-point representations require slightly different 
implementation on different machines. We show on p1174 as examples the CDC and 
IBM versions. 

With the default seed shown, the first two numbers produced by these generators 
are approximately$ : 

K1=0*10791504. . .  
R2= 0.587 475 06 . . . . 

5.2.8. Practical computing considerations. The usage of random number generators 
from FORTRAN programs requires some special considerations of a practical, nature. 
Perhaps the most important of these stems from the fact that most pseudo-random 
generators, like the one above, are coded as FORTRAN functions rather than sub- 
routines. Strictly speaking, this is not in accordance with the rules of FORTRAN, 
since random number generators are not functions of their arguments only, they 

.f. Programs in this library are made generally available. Further information may be 
obtained from: Program Library, Division DD, CERN, 121 1 Geneva 23, Switzerland. 

$ The numbers produced by different computers are exactly the same if represented as 
binary fractions, but the exact decimal representation requires many more digits than we 
reproduce here and more than your computer is likely to give in a printout. 



1174 F James 

C 
c 

C 

C 

C 

C 

ENTRY I l N 3 2 I N  
IY = I!IUhl*,fY 
!LETURN 

CNTIIY TO 
ENTIIY liN3201' 
IDUi!l!Y = IY 

I N P U T  SEED 

OUTPUT SEED 

IY = IY x iinOll!i 

I F  ( I Y  .GT. O j  C O  TO [i 
IY = IY i ;!1474113817 t 1 

C Assci iT:  !,i?r"os'r n i r  Z E R O  (POSITIVE INTEGER) 

f j  CON'I'INIJS 
C SIX I.OISRH ri n i w  TO zmo TO ASSURE EXACT FLOAT 

J Y  = (lY/Z50,*Z50 
YFI. = J Y  
iIN32 = IFl .xCONS 
R C'I'U I l N  

C E N l i l Y  'TO INTI!T SEED 
CNTRY I I N 3 Z I N (  1 % )  
IY I: I X  
I! ET U l l N  

ENTRY R N 3 Z O T (  1X) 
IS = I Y  
RI:'PURX 
E N D  

C ENTRY 'TO O U T P U T  SEED 

have 'side effects', namely they set up the next number. Since they are functions, 
the FORTRAN compilers reserve the right to optimise them out of existence by replacing 
each function evaluation by the constant value of the function. For example 

X = RANDOM( 1) + RANDOM( 1) 

could be compiled as if it were 

X = 2.0 * RANDOM( 1) 

which is of course not the same thing at all. The well-known way around this is to 
do something like 

X=RANDOM(I)+RANDOM(I+ 1) 

in order to fool the compiler into thinking the two calls have different arguments 
and must therefore be called twice. Similar problems may arise when calls to random 
number generators appear in DO loops. Of course, the proper way around this is to 
use random number generators coded as subroutines rather than as functions. This 
may be somewhat clumsier to use, but is much safer. 

In  many applications, the actual time taken to generate the random numbers 
may be important. In  earlier days this was usually the case, and it is still a point 
of great pride among programmers to chop half a microsecond off the generation 
time, even though it may be quite negligible compared with the rest of the calculation, 
In  cases where generation time is important, several tricks may be used. 
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One is, of course, to code the generator in assembler, which is often done anyway 
since the operations needed may be easier to code in assembler. Even better is to 
code the generator ‘in-line’ in the calling program to avoid the overhead of a sub- 
routine call, which is usually the greater part of the time spent in getting a random 
number. The  standard CDC FORTRAN function RANF causes the compiler to produce 
fast in-line code. Although the multiplier used by RANF is not the best, the generous 
effective word-length of 48 bits still produces random numbers good enough for 
most applications, so I would advise CDC users to call RANF whenever speed of 
generation is an important consideration. 

Often a calculation requires n-tuples of random numbers, in which case it is 
much more efficient to use a subroutine that returns n random numbers at a time 
rather than calling a single generator n times, because of the overhead in the call. 
As an example, the CERN Program Library subroutine NRAN (V105) generates n 
random numbers in one call on the CDC 7600 about seven times as fast as n calls 
to RNDM (V104), for large n, even though the two routines use exactly the same 
method of generation (with different multipliers for ‘independence’). 

Sometimes it is desirable to have exactly the same sequence of random numbers 
in one calculation as you had in the previous calculation, and sometimes it is equally 
important that the sequence be different. Many generators therefore offer different 
ways of initiating the sequence. Most generators use a default starting value (like 
m32 above) and therefore always produce the same sequence unless requested 
otherwise. Such generators often allow inputting and outputting the seed value, 
so that at the end of a run the current seed value can be output and read back in at 
the beginning of the next run to continue the sequence (this is the case with ~ ~ 3 2 ) .  
In  this way, different sequences can be forced by inputting different starting seeds. 
Still other generators use ‘random’ starting seeds obtained by using the time of 
day and date from the system clock and transforming that into an appropriate integer. 
This removes all control from the user and even adds some element of truly random 
unpredictability. 

6. Quasi-Monte Carlo 

The theoretical difficulties and practical success of pseudo-random numbers 
have given rise to another type of sequence known as quasi-random. (In English 
usage, ‘pseudo-’ means false, and ‘quasi-’ means almost, but in the technical context 
of random numbers their meanings are somewhat different and much more precise.) 
Quasi-random sequences are not even intended to appear random but only to give 
the right answer to the problem at hand. Thus they are more satisfactory since 
they are not based on an illusion, but on the other hand they must in principle be 
tailored to the problem at hand. Since this problem can often be reduced to multiple 
integration, the tailoring becomes ready-to-wear in practice and the theory applicable 
to most cases. 

6.1. The quasi-random philosophy 

The  concept of quasi-random numbers arises from the realisation that the mathe- 
matical randomness of pseudo-random numbers is neither attainable in theory 
nor necessary in practice, and it is more meaningful to assure that the ‘random’ 
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sequence has the necessary properties to produce the desired result. For example, 
in multiple integration and in most simulation studies, each multidimensional point 
or simulated event is considered independently of the others and the order in which 
they appear is immaterial. That is, correlations between successive points (events) 
is usually of no importance-this aspect of randomness can safely be abandoned 
for most calculations. Another aspect which can be abandoned is the degree of 
fluctuation about uniformity for certain distributions-in many cases a super-uniform 
distribution is, in fact, more desirable than a truly random distribution with uniform 
probability density. 

Since we have now dropped all pretense of randomness, the reader may object 
at this point to retaining the name Monte Carlo. Strictly speaking he is right, but it is 
probably more justified to enlarge the concept of Monte Carlo to include the use 
of quasi-random sequences. Quasi-Monte Carlo is indeed rather a downward (in 
dimensionality) extension of Monte Carlo than an upward extension of one-dimen- 
sional quadrature, since it retains some fundamental properties of Monte Carlo 
such as applicability to spaces of very high dimensionality, performance nearly 
independent of dimensionality, very small growth rate, even for high dimensionalities, 
and robustness with respect to the continuity properties of the function. In  addition, 
the theory of quasi-Monte Carlo outlined below is much closer to that of true Monte 
Carlo than to that of quadrature. 

6.2. The theoretical basis of quasi-Monte Carlg 

6.2.1. The discrepancy of a point set. Let us here introduce a measure of non- 
uniformity valid for any dimensionality, called discrepancy (see Weyl(1916), or second- 
ary references Zaremba (1968, 1972) or Stroud (1971)). Consider the unit hypercube 
in d dimensions, with each coordinate of x varying from zero to one, and we are 
given a set of n points, the ith point having coordinates xg. The function v(x) gives 
the integrated number of points, from the origin to the point x (the empirical dis- 
tribution function). The corresponding volume from the origin to the point x is 
just given by the product of the coordinates of the point x, and the local discrepancy 
g at x is defined as the difference between the number of points in this volume and 
the expected number based on the volume: 

One can then define various measures of global discrepancy by taking different 
norms of the function g. The most common are the extreme discrepancy given by 
the maximum of the absolute value of g for all x, and the mean square discrepancy 
given by the integral of the square of g over all x. The general term ‘discrepancy’ 
is sometimes loosely applied also to the global measures. 

Since we  ill use discrepancy to test the hypothesis of uniformity of a point 
distribution, it is not surprising that this measure is already well-known to statistic- 
ians, who will recognise extreme discrepancy as the Kolmogorov statistic and mean- 
square discrepancy as the Smirnov-Cranier-Von Mises statistic for testing com- 
patibility of distributions (see Eadie et al 1971, pp268-70). 

If the extreme discrepancy of a point set approaches zero as the number of points 
approaches infinity, the (infinite) set of points is said to be uniform. We refer to this as 
uniformity in the sense of Weyl, to distinguish it from more common meanings 
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of the word. A truly random point set in a finite-dimensional space can be shown 
to be uniform in this sense. I n  quasi-Monte Carlo we will use non-random points 
which are also uniform (for infinite sets) or which have low discrepancy (for finite 
sets). 

6.2.2. The convergence of quasi-Monte Carlo integration. The theorems given in 
this subsection concern the approximation of a multidimensional definite integral 
by an unweighted sum of function values over a set of points. The function to be 
integrated will be assumed to be of finite variation. A precise definition of varia- 
tion is not very enlightening and is beyond the scope of this article (see Zaremba 
1968, Stroud 1971); we give here only a rough idea sufficient for an understanding 
of the results presented below. The variation in quasi-Monte Carlo theory plays 
the role of variance in true Monte Carlo, being also a measure of the non-constancy 
of the function. For a differentiable function of d variables, the variation can be 
thought of as an average of the absolute values of the dth mixed partial derivatives. 
Integrable functions of interest to physicists (with at most a finite number of 
discontinuities) have a finite variation. 

The following theorems form the mathematical basis for integration by quasi- 
Monte Carlo. 

(i) (Weyl 1916). If a definite integral is estimated by an unweighted sum of 
function values over a set of points, the estimate will converge to the true value of 
the integral as the number of points approaches infinity if and only if the point 
set is uniform in the sense of Weyl. This theorem is the equivalent of the law of 
large numbers for true Monte Carlo, and gives the conditions under which the 
quasi-Monte Carlo estimate is consistent. 

(ii) (Hlawka, see Zaremba 1968). If a definite integral is approximated by an 
unweighted sum of function values over a finite set of points, the resulting error 
will be bounded by the product of the discrepancy of the point set and the variation 
of the function. 

(iii) (Roth and others, see Kuipers and Niederreiter 1974, Zaremba 1968). The 
discrepancy of a point set cannot be made smaller than a certain value, which depends 
on the number of points n and the dimensionality d. Attempts to find point sets 
which achieve this fundamental lower limit have been successful only in a small 
number of cases. 

(iv) (Korobov, see Stroud 1971). The discrepancy of the first n points of an 
infinite point set cannot decrease as a function of n any faster than l / n  for large n. 
The second theorem above implies that the estimate of the integral will converge 
to the correct answer as fast as the discrepancy of the point set converges to zero, 
and the fourth theorem gives us hope that this could be as fast as l / n ,  compared with 
the much slower square root of n for true Monte Carlo. Unfortunately, it is not 
generally known how to generate points which attain the lower discrepancy bound, 
but one can at least generate points with considerably lower discrepancy than the 
expectation of a truly random set. 

After reading the above theorems, we should not be surprised to learn that the 
expected value of the extreme discrepancy of a set of n truly random points decreases 
with n like l / Z / n  for large n in any number of dimensions. 

6.3. Quasi-random number generators 
Because theorem (iv) of the last subsection applies only to infinite sequences, 

75 
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we must distinguish here between finite quasi-random sequences of n numbers 
where n is fixed in advance, and the first n numbers of an infinite sequence. The  
latter will clearly be more convenient to use since it can be extended if necessary, 
but the above theorems indicate that we might be able to get a better discrepancy 
if we fix n. 

6.3.1. Good lattice points. Optimal points for function integration are generated 
by fixing n (and the dimensionality d )  and actually minimising the extreme discre- 
pancy of the n points with respect to their positions. The computational complexity 
of such a calculation being overwhelming, only an approximate minimum-discrepancy 
solution can be found for anything but a very small point set. A considerable amount 
of theoretical work has been done on d-dimensional lattices (Kuipers and Niederreiter 
1974, Zaremba 1972) but this approach has not yet produced techniques of great 
interest for large calculations, except for the Korobov sequences described below. 

6.3.2. Finite Korobov sequences. Korobov considered sets of points restricted to 
belong to certain families characterised by different expressions for the coordinates, 
with each expression containing some free parameters. The values of these para- 
meters were then optimised by requiring a minimum extreme discrepancy. Probably 
the most successful Korobov family is the parallelepiped lattice, where successive 
points x are given by: 

where a,  b, . . . , d are coefficients to be determined in order to optimise the dis- 
crepancy for the given value of the number of points N and the dimensionality. 
Discussion of Korobov sequences and references to the original Russian articles 
can be found in Stroud (1971) and Zakrzewska et al (1978). The latter article describes 
a program for multiple integration using Korobov sequences. These sequences 
can also be used as an option in D I V O N N E ~  (Friedman 1977a), and extensive tables 
of optimal coefficients for generating Korobov sequences are given in Keast (1972). 

6.3.3. The Richtmyer generator. This generator is the equivalent of the Korobov 
parallelepiped family described just above, but for infinite N and ‘any’ d. Since 
one can no longer optimise the coefficients, it is apparently sufficient to use ‘irrational’ 
numbers in order to avoid a short period. Since truly irrational numbers cannot 
be represented in computers, it has been suggested to use the square roots of the 
first few prime numbers. Thus one gets the simple formula for the j th  coordinate 
of the ith quasi-random point: 

xij = iSj, mod 1 

where Sj is the square root of the j th  prime number. 
I n  theory this generator is supposed to have very good properties for an infinite 

number of points, and its discrepancy should decrease like l / n  for very large n. 
The problem is then to make it behave well for small n (which may still be very large 
in practice) without destroying the asymptotic behaviour. This is done, first of all, 
by observing the two-dimensional distributions of the first few thousand numbers 
of two of the coordinates. When a pair is seen to be badly distributed, one of the 
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corresponding S values is dropped from the table and replaced by a higher root 
prime, Of course, this observed distribution would in principle improve with larger 
n, but one does not know how large, so it is better in practice to be careful. 

The second method for improvement of short-term behaviour of such quasi- 
random generators is the shufling technique, which assures that all the numbers 
from the generator will be used, but not quite in the order in which they are generated. 
Usually another (pseudo-)random generator is used for the shuffling, which is per- 
formed using a buffer (usually 10 or 20 words per dimension), and selecting the 
next quasi-random number pseudo-randomly from the buffer of the appropriate 
coordinate, filling the used location in the buffer with the next quasi-random number 
in the corresponding sequence. This yields points different from those of the un- 
shuffled generator but preserves the super-uniform distribution of each of the co- 
ordinate values. 

6.3.4. The van der Corput generator. The formula of van der Corput corresponds 
to expressing the integers in a system of base P, reversing the digits, putting a point 
in front, and interpreting the resulting sequence as fractions in the base P. P is 
any prime, so the ith coordinate is generated using this formula with P being the 
ith prime number. For example, for P = 2  this gives the results shown in the table 
below. 

Decimal integer Binary integer Binary fraction Decimal fraction 
~- 

j= l  1 0.1 0.5 
2 10 0.01 0.25 
3 11 0.11 0.75 
4 100 0.001 0.125 
5 101 0.101 0.625 
6 110 0.011 0-375 
7 111 0.111 0,875 
8 1000 0*0001 0.0625 

This generator has properties similar to those of the Richtmyer generator, except 
that it seems to behave much better for smaller n. In  spite of the apparent com- 
putational complexity, it can be made fast, thanks to a relatively simple algorithm 
for implementing it, due to Halton (1960). 

As with the Richtmyer generator, this method can be improved by shuffling. 
A particularly effective scrambling technique, based on explicit minimisation of the 
discrepancy for this generator, is given by Braaten and Weller (1979). 

7. Non-uniform random numbers 

Up to now we have been almost exclusively concerned with uniformly distributed 
random numbers, either with uniformly distributed probability of occurrence or 
for quasi-random sets, a distribution as uniform as possible (sometimes called ‘super- 
uniform’, since it is more uniform than a truly random set with uniform probability 
density). In  this section we discuss the problem of generating random numbers 
such that the probability of obtaining a number in a given range is not uniform but 
follows some other distribution. 
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Generating non-uniform distributions is very important in many applications, 
where the physical phenomena being simulated are known to follow certain other 
distributions. The  most important of these are the Gaussian (or normal) and ex- 
ponential distributions for continuous variables, and the Poisson and binomial dis- 
tributions for discrete variables. Many other distributions may be required for 
special applications, and many different techniques are known for generating them. 
We present here only a brief review of the most important methods with some 
indication of where to look for more. It is assumed throughout this section that an 
appropriate generator of uniformly distributed random numbers is available for 
use in generating the non-uniform distributions. 

7.1, Gaussian generators 

The Gaussian distribution is one of the most important in statistical and physical 
calculations and also one of the richest in terms of different methods proposed for 
generating random numbers. 

7.1.1. Using the central limit theorem. This method has already been described 
above in $2.6.1. It is not exact, although it may be good enough for many purposes, 
and the absence of points in the extreme tails may even be desirable in some cases. 
It is also not especially fast, but may be faster than some other methods when a 
good generator of arrays of uniform numbers is available. (Note that this method, 
like most of those given in this section, must not make use of a quasi-random uniform 
number generator, since serial correlations in the uniform generator lead to dis- 
tortions in the distribution of the output random numbers.) 

As a word of warning, I should point out an interesting mistake sometimes 
made in connection with this generator. It arises from the realisation that the central 
limit theorem of course works for differences as well as sums, so that taking the 
sum of six uniform numbers minus the sum of six other uniform numbers would 
be as good as taking the sum of twelve uniform numbers and subtracting six. Some 
clever people decide therefore to use twelve uniform numbers to generate two random 
Gaussian deviates, once using a sum and once with differences. It is certainly true 
that this gives two (approximately) Gaussian numbers, but they are unfortunately 
highly correlated. Correlation has also been the source of some concern about 
the simple generator of $2.6.1, since any correlations in the uniform generator would 
produce deviations from the Gaussian distribution of the sum. 

7.1.2. The transformation method. Since the Gaussian probability function cannot 
be integrated in terms of the usually available functions, it is not straightforward 
to apply a transforrnation from uniform to Gaussian-distributed variables. There 
is, however, a clever method of transforming two independent uniform variables 
U and w into two independent Gaussian variables x and y :  

x = ( - 2 In u)l/2 cos (am) 
y = ( - 2 In u)1/2 sin ( 2 5 ~ ) .  

This method is exact and easy to program but is not quite as fast as it may appear, 
since it requires calculation of a logarithm, square root, sine and cosine, all of which 
are reasonably time-consuming operations. 
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An improvement on the above method is the polar method of Marsaglia: 
(i) Generate uniform random numbers U and TI. 

(ii) Calculate w=(2u- 1)2+(2v- 1)2. 
(iii) If w >  1,  go back to (i). 
(iv) Return x = ux and y = ox, where x = ( - 2 In w/w)1/2. 

This variation eliminates the sine and cosine at the slight expense of N 21% rejection 
in step (iii) and a few more arithmetic operations. 

7.1.3. The Forsythe-Von Neumann method. This is an ingenious method for generating 
random numbers in any distribution of the form: 

f ( x >  = c exp [ - W l  O<G(x)<l, a < x < b  

based on the fact that if you: 
(i) choose uo uniformly between a and b ;  
(ii) calculate t = G(u0); 

(iii) generate uniformly u1, u2, . . . , uk, 0 < ut< 1 where k is determined by the 
condition : 

t>ul>uz> , . . h!k-l<uk 

then the probability that k is odd is P(t)  = e+. 
Therefore, whenever k is even, reject that value of uo and go back to (i). When k 
is odd, accept that uo as a member of a sample from f. Unfortunately, the fact that 
the range of G must be from zero to one requires some fiddling to use this technique 
for generating from the Gaussian distribution, but some good methods are based 
on it (see Ahrens and Dieter 1973). 

7.1.4. Compound methods. Many other techniques have been proposed for generating 
Gaussian random numbers, and the best (fastest exact) methods are composed by 
combining several of these techniques. The general idea is to use a fast approximate 
method most of the time, and then with a carefully calculated (small) probability, 
one draws from a ‘corrective’ distribution which just makes up for the approximation 
in the first technique. I n  addition, different regions under the Gaussian curve are 
attacked using different techniques, with the region first being chosen using an 
auxiliary random number. Such methods are often somewhat complicated to program 
and require a table of constants used to choose regions, methods, corrections, etc. 
A detailed account of a good compound method is given in Dieter and Ahrens (1973), 
and a summary of many good methods, both simple and compound for the Gaussian 
distribution, is given in Ahrens and Dieter (1972). 

7.1 -5. Generating correlated Gaussians. The above subsections deal only with the 
generation of one-dimensional Gaussians, which can be used directly for multi- 
dimensional Gaussian distributions only when the different variables (dimensions) 
are uncorrelated (i.e. when the covariance matrix is diagonal). For the general case 
of multidimensional Gaussian variables with a general covariance matrix V,  uncor- 
related standard Gaussian variables may be used when transformed as indicated 
here. Let z be a standard normal random vector (i.e. independent Gaussian-distri- 
buted components with zero mean and unit variance), then a unique lower-triangular 
matrix C exists such that 

x=C%+m 
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and (x - m) has the covariance matrix 

where C' is the transpose of C. 

(the 'square root' method) : 

v = CC' 

Given V,  the matrix C can be calculated by using the following recursive formulae 

ct1= Vt11dV11 l < i < m  

In  practice, one usually wants a large set of random vectors all generated with the 
same covariance matrix V, so the matrix C is computed once at the beginning of 
the program and then used each time a random Gaussian vector is wanted. 

7.2. All other known distributions 

A vast number of transformations, tricks and formulae are known for generating 
random numbers according to different distributions. For example, given two 
uniform numbers, their sum is distributed according to a triangular distribution, 
and the largest of the two is distributed like 2/u. An extraordinarily complete and 
very dense collection of such techniques is given in Everett and Cashwell (1972). 

7.3. Empirical distributions 

It often happens that one wants to generate random numbers distributed according 
to some probability density f which is not any of the usual distributions but may, 
for example, have been determined empirically from measurements on a particular 
complex system. 

7.3.1. The rejection (hit-or-miss) method. One can, of course, always use the hit-or-miss 
method if the probability density f is bounded and its upper bound is known. In  
this method, one simply chooses points randomly and uniformly in the space, using 
the function value at each point (divided by the maximum function value) as the 
probability of accepting the point. A point is then accepted if and only if flfmax 
is greater than a uniform random number chosen between zero and one. This 
well-known technique becomes very inefficient when the variance of f  is large, in 
which case nearly all the points are rejected. For this reason it is usually better to 
use one of the methods described below. 

7.3.2. Distribution given as histogram. A distribution in the form of a histogram 
is usually represented as a vector of frequencies, where the first value is the relative 
frequency of points desired in the first bin, etc. These frequencies must first be 
normalised so that their sum is unity, then it is usually convenient to form the cumula- 
tive distribution, where the ith number in the cumulative distribution vector is the 
sum from one to i of the numbers in the corresponding density vector. (The last 
number in the cumulative vector is therefore always equal to one.) To generate a 
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random number according to the histogram, one first generates a uniform number 
uo and then looks for the first position in the cumulative distribution vector where 
the value is greater than UO. This is the bin in which that random number should 
be generated. It may of course be very inefficient to do this search sequentially (at 
least for long vectors), and a better method would be to do it by a binary search 
technique. (The CERN library program HISRAN uses this method.) 

A still faster method, although much more complicated, is that of the Marsaglia 
tables, described in Ahrens and Dieter (1972). 

7.3.3. Distribution given as function. To randomly sample according to a one-dimen- 
sional distribution given as a smooth function, the usual technique is first to determine 
the percentiles of this distribution, i.e. the points on the independent variable axis 
where the integral of the function takes on given values (called percentiles because 
they are chosen so that the integral over each interval is a given percentage, often 
1%, of the total). This is the inversion of the cumulative distribution function. 
The result of this relatively time-consuming operation is a set of x values which can 
then be used to generate random numbers very rapidly by direct interpolation in 
the table of x now considered as a function of F. The CERN library program FUNRAN 
uses this method with four-point polynomial interpolation in a table of 100 values. 

7.3.4. Multidimensional distributions. Multidimensional distributions given as histo- 
grams may, of course, be treated exactly as for one dimension. However, when the 
desired distribution is given as a smooth function, the method outlined above cannot 
be extended in a straightforward manner, and would anyway require multidimensional 
tables and multidimensional interpolation, which either consume considerable time 
and space or are quite inaccurate, especially when the function involved has a large 
variance. 

The problem of randomly sampling a space of high-dimensionality is closely 
related to that of multidimensional integration, so it is reasonable to look at integration 
methods for indications on how to proceed. Indeed the recursive partitioning method 
of Friedman (1977b) is directly applicable and D I V O N N E ~  (Friedman 1977a) has as 
an option the generation of points according to the function. This is because the 
aim of the partitioning algorithm is to delimit regions in which the function variance 
is small, after which one can efficiently apply hit-or-miss generation or simply 
produce weighted points. 

8. Applications 

In  Monte Carlo calculation, the step from theoretical understanding to correct 
results is often far from trivial. Unlike analytical calculations where gross errors 
usually produce results which are obviously absurd, subtle bugs in Monte Carlo 
‘reasoning’ easily give rise to answers which are completely wrong but still appear 
sufficiently reasonable to go unnoticed. If only for this reason, it is indispensable 
to consider a few examples, particularly those which illustrate the most notorious 
traps for the unwary. 

8.1. The uncertainty of a weighted average 

The results given here can be derived easily from the definitions of mean and 
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variance but are included here because they are of such central importance in real 
calculations. We suppose that (as is the usual case) the result of our calculation 
is an average over a set of terms which we will call weights w ~ .  We further assume 
that this average is Gaussian-distributed in accordance with the central limit theorem 
and wish to determine the standard deviation of this distribution. I n  order to 
estimate the average and its standard distribution it is necessary to accumulate : 

(i) the sum of the weights, W ;  
(ii) the sum of the squares of the weights, Q; 
(iii) the total number of entries, N. 

Then it follows from 92 that the best estimate of the average is just W/N and that 
the standard deviation of this is D = (l/N)(Q - W2/N)1/2. 

For the important case when most of the weights are zero (for example, for 
one bin of a histogram when most of the events go into other bins), the second term 
under the square root in the expression for D is negligible compared with the first 
term and the result is simplified considerably. 

I n  the other limit, when all weights are equal (and non-zero), the two terms 
under the square root cancel and the standard deviation is of course zero. I n  practice 
it may not appear to be zero because of rounding error in the computer, which 
is especially serious for this particular calculation. For this reason, the sums Q 
and W should be accumulated in double precision, and it is necessary to test that 
rounding has not caused the argument of the square root to become negative. 

8.2. Integration over a triangle 

One of the fundamental advantages of the Monte Carlo method is the ability 
to easily handle problems with awkward integration regions (inter-dependent integra- 
tion limits). However, as this example shows, there are a variety of different ways 
to handle these problems and not all of them are correct. 

Consider the integration of the function g over the two-dimensional region 
specified as 

I = J L , o  Jz=og(x,y) dy dx. 

We give four ways of estimating this integral by Monte Carlo. 

8.2.1. The obvious way. 
(a) Choose a random number xz between zero and one. 
(b)  Choose another random number yi between zero and xi. 
(c )  Take the sum of g(xz, yz) repeating steps (a) and (b). 

A simple graphical representation of this method shows that it gives the wrong 
answer. While it is true that this procedure would yield points only in the allowed 
region (the lower triangle in figure 4), it would give the same expected number 
of points along each vertical line in the figure, producing a much higher density 
of points on the left-hand side than on the right. 

8.2.2. The rejection method. 
(a) Choose a random number xi between zero and one. 
( 6 )  Choose another random number yi also between zero and one. 
(c) If y~ > xi, reject the point and return to (a). 
( d )  Accumulate the sum of g(x6, yz) for the remaining points. 
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Figure 4. A triangular integration region. 

This method, although correct, has the disadvantage of using only half the points 
generated, i.e. it is equivalent to integrating over the whole square, but considering 
the function to be zero on the upper triangle. 

8.2.3. The folding method ( a  trick). 
( a )  Choose two independent random numbers r1 and Y Z ,  each between zero and 

(b)  Set xz=larger of (r1, Y Z ) .  
(e)  Set yz = smaller of ( ~ 1 ,  rz). 
( d )  Sum up g(xd, yz) as before. 

one. 

This method is equivalent to choosing points Y over the whole square, then folding 
the square about the diagonal so that all points x, y fall in the lower triangle. I t  is 
clear that this gives a constant point density without any rejection, and is therefore 
correct and more efficient than the rejection method. 

8.2.4. The weighting method. 
( a )  Choose a random number xi between zero and one. 
(6)  Choose another random number y~ between zero and xi. 
(c) Take the sum of 2xig (xz, yi), repeating the steps above. 

In  this method, the points are chosen ‘incorrectly’ as in the obvious method, but 
the bias is corrected by applying the weighting function which happens to be just 
2 x  in this case. This method may or may not be more efficient than folding, de- 
pending on the function g. In particular it will be more efficient whenever the 
variance of xg is smaller than the variance of g. If nothing is known a priori about 
g ,  it is usual to avoid weighting if possible. 

8.3. Progipam for real-life calculations 

At this point the reader should already be convinced that the possibilities for 
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undetected gross errors in Monte Carlo calculations are numerous. Of course, 
there is nothing special about Monte Carlo in this respect; complex systems lead 
to complex calculations and errors can be made on many levels, from the logical 
understanding of the problem and method all the way down to typing errors in the 
programs and data. I n  fact, the Monte Carlo method offers unique opportunities 
to verify the results of complicated calculations, especially in the case of simulations. 

The basic principle is to output not only the number you are interested in but 
also as many other intermediate and accessory results as possible, especially those 
for which you know in advance what answer to expect. Even if you are only interested 
in the global average of some quantity, print out a histogram of the quantity as a 
function of some other interesting quantity. This generally costs little or nothing 
extra in a big calculation, and may give considerable insight into the system being 
studied (if the expected distribution is not known in advance) or allow a powerful 
check of the correctness of the computation (if the expected distribution is known). 
I find it convenient to use a general histogramming package such as the generally 
available HBOOK (CERN Program Library) which allows one to look at an entire 
one- or two-dimensional empirical distribution in very readable format with only 
two or three simple lines of FORTRAN. The quantities which you should look at will 
of course depend on the problem, but a general rule is to examine the quantity of 
interest in one more dimension than is required, if possible. 

8.4. Splitting and killing in sequential simulations 

In  this subsection we consider simulation calculations in which each ‘event’ 
(member of the hypothetical population) consists of a sequence of elementary 
interactions. Examples of such calculations would be : 

(i) Simulation of the traffic flow in a city, where elementary interactions would 
be car turning left, turning right, parking, breaking down, having an accident, etc. 

(ii) Simulation of neutrons or charged particles traversing matter, where element- 
ary interactions would be scattering, decay, absorption, etc. 
In these calculations it may be necessary to assign to each elementary interaction 
a weight proportional to the probability of that interaction. The weight of an entire 
event is then the product of the weights of its component interactions and the final 
results of the simulation will be averages over these total weights. As we have seen, 
the uncertainties of these averages are minimised when the weights are equal. The 
efficiency of the calculation can therefore be improved by using the following tech- 
niques for reducing the variance of the weight distribution. 

(i) Splitting. After each elementary interaction, compare the accumulated 
product of weights with the average product at that point for the other events. If 
it is significantly greater than the average, split the event into two (or more) events 
from that point on, each one having half (or less) of the above-mentioned accu- 
mulated product. In  practice, this may be complicated to implement using pro- 
gramming languages which do not explicitly support recursiveness. 

(ii) Killing. Compare the accumulated product as above, and if it is significantly 
less than the average, either kill (reject) the whole event before finishing it, or continue 
with the weight increased to the average. The probability of killing the event should 
be 1 -Y, where Y is the ratio of the accumulated product weight to the average 
accumulated product at that point. 
I t  should be clear that it is of no use to apply the killing technique after the entire 
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event has been generated, but only during intermediate steps to avoid the rest of 
the calculation. Splitting may be performed after the entire event has been generated 
if this is more convenient, but the decision to split should be made on the basis 
of the accumulated product weight at the point at which the event is to be split. 

8.5. Multiparticle phase space 

One of the richest areas of Monte Carlo calculations has been the integration 
of the relativistic phase space of multiparticle reactions in high energy and nuclear 
physics. For a reaction with k outgoing particles, the phase-space volume element 
is basically the 3k-dimensional momentum space element, but the true dimensionality 
is reduced to 3k - 4 by a four-dimensional delta function expressing the conservation 
of energy and momentum. Whenever K is greater than four or five, the complexity 
of these integrals becomes overwhelming and they can only be performed by numerical 
techniques, usually only by Monte Carlo. Unfortunately, this interesting problem 
is much too vast to be treated here and we will merely point to the most important 
references on the subject. 

(i) The classic work on the subject is the monograph of Hagedorn (1964). 
(ii) A more recent and extensive treatment, also much more oriented toward 

practical Monte Carlo calculations, is the book of Byckling and Kajantie (1973). 
(iii)The most recent techniques for enriching the region of low momentum 

transfer are summarised in the review article of Carey and Drijard (1978), which 
could be considered as an update to the book of Byckling and Kajantie. The  tech- 
niques reviewed in this paper are very important since one finds, in practice, that 
in high-energy collisions only a small part of phase space is actually populated, 
namely that corresponding to peripheral or low-momentum-transfer events. 

8.6. Sampling from a finite population 

In  many fields, particularly in astronomy, plasma physics, fluid dynamics, etc, 
it is a common problem to simulate the behaviour of a large but finite number of 
objects (stars, electrons, molecules, etc) which interact with one another. A typical 
step in such a simulation is the calculation of the force or potential at one object 
by summing the contributions due to all the other objects. Although the number 
of objects is finite it may be so large that it is not possible to perform the entire sum, 
and some approximation must then be made using a smaller sample of objects. 
Three possible approaches are: 

(i) A fixed-point rule. Based on some additional knowledge of the physics or 
the geometry of the problem, it may be possible to average over some fixed set of 
points. Such a formula would be highly problem-dependent, and the uncertainty 
of the result would depend on the distributions involved, perhaps in a very com- 
plicated way. 

(ii) Random sampling with replacement. In  this method, objects are chosen ran- 
domly and one does not ‘remember’ which objects were already chosen, so that some 
may be taken more than once. The population thus becomes infinite, and the theory 
developed earlier applies just as if it were any other Monte Carlo calculation: the 
uncertainty on the potential is the standard deviation of the individual contributions, 
divided by the square root of the sample size. 

(iii) Sampling without replacement. This method resembles (ii), except that 
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one explicitly avoids taking the contribution from any one object more than once. 
The  final convergence must be better than (ii), since one eventually reaches zero 
error when all contributions have been taken, but since by definition we cannot 
consider all contributions, it is the convergence rate in the early part of the sequence 
that matters. This convergence rate starts out equal to that of (ii), only improving 
slowly as the number of contributions taken becomes a significant fraction of the 
total. The  price paid for this small improvement is having to remember which 
contributions were already chosen. Also the improvement may not be usable if it is 
too hard to calculate. 
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