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IntroductionIntroduction

hBoosting
hThis is a general method for improving the 

performance of any weak classifier.  
hA weak classifier performs only slightly better 

than random guessing!
hIn principle, boosting can be applied to 
hNN
hKNN
hTrees
hetc.
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Boosting Boosting –– General AlgorithmGeneral Algorithm

T1 = [(x1, y1,w1),…(xN, yN,wN)] = initialize()

for k in 1,…K
fk(x) = train(Tk) 
αk = minimize (ErrorFunctionk)
Tk+1 = modify(Tk)

∑
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Adaptive Boosting Adaptive Boosting –– AlgorithmAlgorithm

T1 = [(x1, y1,w1),…(xN, yN,wN)] = initialize()

for k in 1,…K
fk(x) = train(Tk) 
compute ek = ∑i: y f  < 0 wi

compute αt  = ln [(1-ek)/ek]
update wk+1, i = wk, i exp[-αk yk fk(xi)/2] / 

Zk
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Adaptive BoostingAdaptive Boosting

hTraining
hTraining data (x1, y1), (x2, y2), … 
hy is ––11 for background 
hy is +1+1 for signal. 

hTrain a classifier f(x) that assigns ––11 or +1+1 to x.  
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Adaptive Boosting Adaptive Boosting –– IIII

hChoosing αt
hConsider the product ui = yi f(xi) for some  

event xi with class label yi and weight wi
hIf f(x) = y then u = +1
hIf f(x) ≠ y then u = –1

h For a given classifier f(x), this suggests 
choosing α such that

is minimized
)2/exp(
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Adaptive Boosting Adaptive Boosting –– IIIIII

hRe-write Z in terms of error rate err:

hMinimize:

hAnd find:

errerr
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Adaptive Boosting Adaptive Boosting –– IVIV

hNormalization Z

hTraining error is bounded by

if 0.5 – ek > γ > 0
γ is referred to as the weak edge. So, if one runs 
the algorithm forever, the training error  → zero

)1(2 kkkZ εε −=
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SummarySummary

hBoosting
hThis is simply another method to combine 

many classifiers to make one that works better 
than any individual.

hIn principle, it can be applied to any method.

hBut, if a method is already very powerful, 
boosting won’t help much!
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