PHYSTAT05 Highlights

Harrison B. Prosper

Florida State University

Single Top Group
5 October 2005

Outline

${ }^{\circ}$ Q \& A
${ }^{\circ}$ Optimal Classification
${ }^{-}$Ensemble Methods

- R
${ }^{-}$Conclusions

Questions \& Answers

Is it ever sensible to map data from N variables to $\mathrm{M}>\mathrm{N}$ variables?

- Yes! The mapping (of course) does not increase the number of degrees of freedom, however, machine learning algorithms can converge faster if variables are added that exploit known structure in data

2. gof tests with systematics: is what we are doing reasonable?

- Yes, it is reasonable!

More Questions \& Answers!

3. Are flat priors dangerous?

- They can be, especially in high dimensions.
- However, even in low dimensions they can be problematic: a flat prior in cross-section, $\pi(\sigma)=1$ should not be used with an acceptance prior $\pi(\alpha)>0$ at $\alpha=0$!

4. Is absolute coverage of upper limits necessary?

- Only if you are a statistical fundamentalist!

Optimal Classification

- Popular Methods:
- Naïve Bayes:
- Decision Tree:
fast but quadratic only
fast but inaccurate
${ }^{-}$Support Vector Machine: accurate but slow
${ }^{\circ}$ Boosting:
accurate but requires
thousands of classifiers
- Neural Net:
reasonable compromise but awkward/humanintensive to train
Alexander Gray et al.

Optimal Decision Theory

Alexander Gray
Optimal decision boundary

Optimal Decision Theory - II

$$
P\left(C_{1} \mid x\right)=\frac{f\left(x \mid C_{1}\right) P\left(C_{1}\right)}{f\left(x \mid C_{1}\right) P\left(C_{1}\right)+f\left(x \mid C_{2}\right) P\left(C_{2}\right)}
$$

$\begin{array}{ll}C_{1} & \text { Signal class } \\ f\left(x \mid C_{1}\right) & \text { Signal (N-dim) density }\end{array}$

Bayes' Rule

$C_{2} \quad$ Background class
$f\left(x \mid C_{2}\right) \quad$ Background (N-dim) density
$P\left(C_{1}\right) / P\left(C_{2}\right) \quad$ Signal/Background ratio

Approximations to Bayes' Rule

Naïve Bayes $\quad f\left(x \mid C_{k}\right) \approx \prod_{i=1}^{M} h\left(x_{i} \mid C_{k}\right)$
$h\left(x_{i} \mid C_{k}\right) \quad$ 1-dim marginal densities
Nonparametric Bayes $f(x \mid C) \approx \frac{1}{N} \sum_{r}^{N} K_{h}\left(\left\|x-x_{r}\right\|\right)$
K_{h} is a kernel, such as

$$
K_{h}\left(\left\|x-x_{r}\right\|\right)=\exp \left\{-\left(x-x_{r}\right)^{T}\left(x-x_{r}\right) / 2 h^{2}\right\} /\left(2 \pi h^{2}\right)^{N / 2}
$$

Fast algorithm for Kernel Density Estimation (KDE)

$$
\begin{gathered}
\text { Alexander Gray } \\
f(x)=\frac{1}{N} \sum_{r}^{N} K_{h}\left(\left\|x-x_{r}\right\|\right)
\end{gathered}
$$

- Works in arbitrary dimensions
- The fastest method to date [Gray \& Moore 2003]

\square
\square

Ensemble Methods

- Popular Methods:
- Bagging:
average over trees, each trained using a random subset drawn from training set
${ }^{\circ}$ Random Forest: bagging with randomized trees
${ }^{\circ}$ AdaBoost:
average over trees, each trained with a different reweighting of training set
Jeromme Friedman \& Bogdan Popescu

Ensemble Learning

$$
\begin{aligned}
& F(x)=a_{0}+\sum_{m=1}^{M} a_{m} f_{m}\left(x, p_{m}\right) \\
& f\left(x, p_{m}\right) \in\{f(x, p)\}_{p \in \mathrm{P}}
\end{aligned}
$$

Build, incrementally, an ensemble of base classifiers $f\left(x, p_{m}\right)$, choosing each from some function class $\{f(x, p)\}$ by minimizing some loss function L

Jeromme Friedman \& Bogdan Popescu

Ensemble Learning - II

$$
\begin{aligned}
& Q_{0}(x)=0 \\
& \text { for } m=1 \text { to } M \\
& \{
\end{aligned}
$$

$$
\begin{array}{ll}
y & =-1 \text { (background) } \\
L & =+1 \text { (signal) } \\
L & =\text { loss function }
\end{array}
$$

choose training sample T_{m}

$$
\begin{array}{ll}
p_{m}=\arg \min _{\mathrm{p}} \sum_{i \in T_{m}} L\left(y_{i}, Q_{m-1}\left(x_{i}\right)+f\left(x_{i}, p\right)\right) \\
Q_{m}(x)=Q_{m-1}(x)+v \cdot f\left(x, p_{m}\right) & v \in[0,1]
\end{array}
$$

$$
\text { ensemble }=\left\{f\left(x, p_{m}\right)\right\}, m=1 \ldots M
$$

A New Ensemble Method - RuleFit

- Basic Idea (Friedman \& Popescu)
${ }^{\circ}$ Create an ensemble of trees (a forest!)
${ }^{\circ}$ Create a rule $r(x)$ from each leaf (terminal node) of each tree
- Final classifier is

$$
F(x)=a_{0}+\sum_{m=1}^{M} a_{m} r_{m}(x)
$$

where $a_{m}, m=0 \ldots M$ are found by the best fit of $F(x)$ to the target y.

RuleFit - II

RuleFit - III

Rule Importance
${ }^{-}$Write $F(x)=a_{0}+\sum_{m=1}^{M} a_{m} \sigma_{m}\left(\frac{r_{m}(x)}{\sigma_{m}}\right)$
where $\quad \sigma_{m}=\sqrt{s_{m}\left(1-s_{m}\right)}$
${ }^{\circ} s_{m} \quad=(1 / N) \sum_{i} r_{m}\left(X_{i}\right)$ is the support of the rule
${ }^{\bullet} I_{m} \quad=\left|a_{m}\right| \sigma_{m}$ is the rule importance

RuleFit - IV

${ }^{\circ}$ Input Variable Importance

$$
J\left(x_{j}\right)=\sum_{x_{j} \in r_{m}} I_{m} / n_{m}
$$

where I_{m} is the importance of the $\mathrm{m}^{\text {th }}$ rule containing variable x_{j} and n_{m} is the number of variables defining that rule.

- RuleFit Site
- http://www-stat.stanford.edu/~jhf/R-RuleFit.html

R

${ }^{\circ}$ What is R ?

- A free general purpose data analysis language that provides
an interpreter excellent graphical tools hundreds of data analysis tools vector-based data manipulation e.g., if x is a vector, then $y=\sin (x)$ applies $\sin (\cdot)$ to each element of x. many standard data input formats, including, of course, text!

R - Scatter Plot Matrix (splom-plot)

R - II

- Modules
${ }^{\circ}$ neural networks
- decision trees
- fitting
- bootstrapping
${ }^{\circ}$ clustering
- spatial models
- linear models
- Markov-chain
${ }^{\bullet}$ genetic algorithm
- Modules
- Over 700 modules, each comprising many functions
- Why R?
${ }^{-}$It is the standard language used by professional statisticians. Consequently, new statistical methods, such as RuleFit, are typically written in R

R - Example

${ }^{\circ}$ Data Set (μ, EqOneTag, Ipanema Summer2005)

- TRAIN sample tb vs QCD+ttbar+Wbb. Use ~ 4000 signal $+\sim 4000$ background events.
${ }^{\circ}$ Inputs
- 27 variables (Shabnam's list)
- RuleFit
- Use default settings

A Bit of R

RuleFit - Variable Importance

RuleFit - Test

tqb - Variable Importance

tqb - Splom Plot

Scattor Plot Matrix

tqb - Test

Conclusions

${ }^{\circ}$ PHYSTAT05

- Acceptance priors should go to zero at zero acceptance!
${ }^{\circ}$ Nonparametric Bayes using KDE may be useful.
- Variable importance algorithm may be useful.
${ }^{-} \mathrm{R}$ could be useful for exploration of p17 data.
${ }^{\circ}$ Excellent conference, typical English weather!

