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Questions & Answers

Is 1t ever sensible to map data from N variables
to M > N variables?

Yes! The mapping (of course) does not
increase the number of degrees of freedom,
however, machine learning algorithms can
converge faster 1f variables are added that
exploit known structure 1n data

gof tests with systematics: 1s what we are doing

reasonable?
Yes, it is reasonable!
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More Questions & Answers!

Are flat priors dangerous?
They can be, especially in high dimensions.

However, even in low dimensions they can be
problematic: a flat prior in cross-section,

n(c) = 1 should not be used with an acceptance
prior m(a) > 0 at o = 0!

Is absolute coverage of upper limits necessary?
Only if you are a statistical fundamentalist!
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Optimal Classification

Popular Methods:
Naive Bayes: fast but quadratic only
Decision Tree: fast but 1naccurate
Support Vector Machine: accurate but slow
Boosting: accurate but requires
thousands of classifiers
Neural Net: reasonable compromise

but awkward/human-

Intensive to train
Alexander Gray et al.
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Optimal Decision Theory

Quasar density

A
2 Star density
= =
O
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| i
Alexander Gray Optimal decision boundary
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Optimal Decision Theory — |1

T(X]C)PEC)

P(C1 | X) =
F(x]C)P(C)+ T(x[C,)P(C,)
C, Signal class Bayes Rule
f(x|Cy) Signal (N-dim) density
C, Background class
f (x|C,) Background (N-dim) density
P(C,) /P(C,) Signal/Background ratio
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Approximations to Bayes’ Rule
M
Naive Bayes f(x|C,)~= H h(x, |C,)
=1
h(x{C,)  1-dim marginal densities

N
Nonparametric Bayes f(x|C) ~ ﬁZ K (% = X, [)

K, 1s a kernel, such as

Ko (%= %) = exp{—(x=x)" (x=X,)/2h*}/2zh*)"'?
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Fast algorithm for
Kernel Density Estimation (KDE)

Alexander Gray

0= > Ky(lx=x,)

Works 1n arbitrary dimensions
The fastest method to date [Gray & Moore 2003 ]
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Ball-trees

(computational geometry)

Alexander Gray BB HE NN
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Ensemble Methods

Popular Methods:

Bagging: average over trees, each
trained using a random sub-
set drawn from training set

Random Forest: bagging with randomized
trees

AdaBoost: average over trees, each
trained with a different re-
welghting of training set

Jeromme Friedman & Bogdan Popescu
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Ensemble Learning

F(x) = a, +Za n (X, P)
f(X pm)E{f(X p)}peP

Build, incrementally, an ensemble of base classifiers
f (X, pn), choosing each from some function class
{ (X, p) } by minimizing some loss function L

Jeromme Friedman & Bogdan Popescu
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Ensemble Learning — I

Qux)=0 y = —1 (background)
form=1to M = +1 (signal)
{ L = loss function

choose training sample T,

Py, = arg min,, Z L(Yi Quy (%) + T(Xi, P))

e,

Qu(X)=Qp (X)+v-T(X, ) vel0,1]

h
ensemble= {f(X,p,,) }, m=1...M
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A New Ensemble Method — RuleFit

Basic Idea (Friedman & Popescu)
Create an ensemble of trees (a forest!)

Create a rule r(X) from each leaf (terminal node)
of each tree

Final classifier 1s
\Y
F(X)=a,+ ) a,r,(X)
m=1

where a,,, m = 0...M are found by the best fit
of F(X) to the targety.
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RuleFit — 11

12,8)

1(J,K) are cuts, e.g.:

) =10,1) - 1(1.3) 1(0,1) = H; < 200
r,(x)=100,1) - 1(1,4) - 1(4,5) 1(0,2) = H. > 200
r;(x) =1(0,1) - 1(1,4) - 1(4,6)
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RuleFit — 11

Write F(X)=a, +Za o

On

Rule Importance

where o, =\/Sm(1—5m)

S = (1/N) > r(X) 1s the support of the rule

| = |a| 6, 1s the rule Importance
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RuleFit - 1V

Input Variable Importance
J(X;) =ij€rm | /n_

where |  is the importance of the m™ rule
containing variable X; and n, 1s the number of
variables defining that rule.

RuleFit Site
http://www-stat.stanford.edu/~jhf/R-RuleFit.html
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R

What 1s R?

A free general purpose data analysis language
that provides

an interpreter
excellent graphical tools
hundreds of data analysis tools

vector-based data manipulation
e.g., 1f X 1s a vector, then y = sin(X)
applies sin() to each element of X.

many standard data input formats,
including, of course, text!
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(splom-plot)

IX

R — Scatter Plot Matr
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R—1I

Modules Modules
neural networks Over 700 modules,
decision trees each comprising many
Fitts functions
1tting
b . Why R?
ootstrapping )
: It 1s the standard
clustering
, language used by
spatlal models professional
linear models statisticians.
Markov-chain Consequently, new

statistical methods,
such as RuleFit, are
typically written in R

genetic algorithm
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R — Example
Data Set (1, EQOneTag, Ipanema Summer2005)

TRAIN sample tb vs QCD+ttbar+Whbb.
Use ~ 4000 signal + ~ 4000 background events.

Inputs
2’7 variables (Shabnam’s list)

RuleFit
Use default settings

Harrison B. Prosper Single Top Meeting 5 October 2005 21



A Bit of R

Hfmmmmmmm o Initialize RuleFit

ROWS «— 1:8000;  VARS « 1:27 (1)
platform «— “linux” (2)
rfhome «— 7 €))
source( paste(rfhome, “rulefit.r”, sep = /) ) (4)
library(akima, lib.loc = rthome) ®))
Hmmmmmmmm e Run RuleFit

d < read.table(“mu tb.dat”); vars «— names(d)[VARS] (6)
x <« d[ROWS, vars] @)
y <« sapply( d[ROWS, “Target”], function(x){ 2*x-1 } ) (8)
model « rulefit(x, y, rfmode = *“class”) ©))

Harrison B. Prosper Single Top Meeting 5 October 2005 22



_

i

|

L]

||

[]

||

[

|

[ ]

||

[ ]

I

[ ]

_

[ ]

[ |

[

[
[ |
[ 1
I
[
[ |
I
I
|
r——1Tr 1T 1T T 1

0

O O O O
© 0 W = «

1
aouellodw| aAle|ay

RuleFit — Variable Importance
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RuleFit — Test

pp—th (n)

— background
— signa
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tqb — Variable Importance
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tgqb — Splom Plot
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tqb — Test

PR —tgh (n)

rackground
signal

Harrison B. Prosper Single Top Meeting 5 October 2005 27



Conclusions

PHYSTATOS
Acceptance priors should go to zero at zero

acceptance!
Nonparametric Bayes using KDE may be useful.
Variable importance algorithm may be useful.

R could be useful for exploration of pl17 data.

Excellent conference, typical English weather!
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