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Questions & AnswersQuestions & Answers

1. Is it ever sensible to map data from N variables 
to M > N variables?
h Yes! The mapping (of course) does not 

increase the number of degrees of freedom, 
however,  machine learning algorithms can
converge faster if variables are added that 
exploit known structure in data

2. gof tests with systematics: is what we are doing 
reasonable?
h Yes, it is reasonable! 
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More Questions & Answers!More Questions & Answers!

3. Are flat priors dangerous?
h They can be, especially in high dimensions.
h However, even in low dimensions they can be 

problematic: a flat prior in cross-section, 
π(σ) = 1 should not be used with an acceptance 
prior π(α) > 0 at α = 0! 

4. Is absolute coverage of upper limits necessary?
h Only if you are a statistical fundamentalist!
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Optimal ClassificationOptimal Classification

hPopular Methods:
hNaïve Bayes: fast but quadratic only 
hDecision Tree: fast but  inaccurate
hSupport Vector Machine: accurate but slow 
hBoosting: accurate but requires 

thousands of classifiers
hNeural Net: reasonable compromise 

but awkward/human-
intensive to train

Alexander Gray et al.
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Optimal Decision TheoryOptimal Decision Theory

Optimal decision boundary

Star density

Quasar density
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Alexander Gray
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Optimal Decision Theory Optimal Decision Theory –– IIII

C1 Signal class
f (x|C1) Signal (N-dim) density

C2 Background class
f (x|C2) Background (N-dim) density

P(C1) / P(C2) Signal/Background ratio

Bayes’ Rule
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Approximations to Approximations to BayesBayes’’ RuleRule
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h(xi|Ck) 1-dim marginal densities

Nonparametric Bayes

Kh is a kernel, such as
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Fast algorithm for
Kernel Density Estimation (KDE)
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hWorks in arbitrary dimensions
hThe fastest method to date [Gray & Moore 2003]

Alexander Gray
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Ball-trees
(computational geometry)

Alexander Gray
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Ensemble MethodsEnsemble Methods

hPopular Methods:
hBagging: average over trees, each 

trained using a random sub-
set drawn from training set 

hRandom Forest: bagging with randomized
trees

hAdaBoost: average over trees, each 
trained with a different re-
weighting of training set

Jeromme Friedman & Bogdan Popescu
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Ensemble LearningEnsemble Learning

Build, incrementally, an ensemble of base classifiers
f (x, pm), choosing each from some function class
{ f (x, p) } by minimizing some loss function L
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Jeromme Friedman & Bogdan Popescu
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Ensemble Learning Ensemble Learning –– IIII

Q0(x) = 0
for m = 1 to M
{

choose training sample Tm

pm = arg minp

}  

∑
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ensemble = { f (x, pm) },  m = 1…M
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y = −1 (background)
= +1 (signal)

L = loss function

]1,0[∈v
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A New Ensemble Method A New Ensemble Method –– RuleFitRuleFit

hBasic Idea (Friedman & Popescu)
hCreate an ensemble of trees (a forest!)
hCreate a rule r(x) from each leaf (terminal node) 

of each tree
hFinal classifier is

where am, m = 0…M are found by the best fit
of F(x) to the target y.
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RuleFitRuleFit –– IIII
0

1
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I(0,1)

I(4,5)

I(1,4)I(1,3)
I(2,7) I(2,8)

I(0,2)

I(4,6)

r1(x) = I(0,1) · I(1,3)
r2(x) = I(0,1) · I(1,4) · I(4,5)
r3(x) = I(0,1) · I(1,4) · I(4,6)
: :

I(j,k) are cuts, e.g.:

I(0,1) = HT < 200
I(0,2) = HT ≥ 200
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RuleFitRuleFit –– IIIIII

hRule Importance
hWrite

where  

hsm = (1/N) ∑i rm(xi) is the support of the rule

hIm = |am| σm is the rule importance
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RuleFitRuleFit –– IVIV

hInput Variable Importance

where Im is the importance of the mth rule 
containing variable xj and nm is the number of 
variables defining that rule.

hRuleFit Site 
hhttp://www-stat.stanford.edu/~jhf/R-RuleFit.html
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RR

hWhat is R?
hA free general purpose data analysis language 

that provides
han interpreter
hexcellent graphical tools
hhundreds of data analysis tools
hvector-based data manipulation 

e.g., if x is a vector, then y = sin(x) 
applies sin(·) to each element of x.

hmany standard data input formats, 
including, of course, text!
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R R –– Scatter Plot Matrix (Scatter Plot Matrix (splomsplom--plot)plot)
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R R –– IIII

hModules
hneural networks
hdecision trees
hfitting
hbootstrapping
hclustering 
hspatial models
hlinear models
hMarkov-chain
hgenetic algorithm

::

hModules
hOver 700 modules, 

each comprising many 
functions

hWhy R?
hIt is the standard 

language used by 
professional 
statisticians. 
Consequently, new 
statistical methods, 
such as RuleFit, are 
typically written in R
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R R –– ExampleExample

hData Set (μ, EqOneTag, Ipanema Summer2005)
hTRAIN sample tb vs QCD+ttbar+Wbb.

Use ~ 4000 signal + ~ 4000 background events.

hInputs 
h27 variables (Shabnam’s list)

hRuleFit
hUse default settings
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A Bit of RA Bit of R
#----------------- Initialize RuleFit
ROWS ← 1:8000; VARS ← 1:27 (1)
platform ← “linux” (2)
rfhome ← “.” (3)
sourcesource( pastepaste(rfhome, “rulefit.r”, sep = “/”) ) (4)
librarylibrary(akima, lib.loc = rfhome) (5)

#----------------- Run RuleFit
d ← read.tableread.table(“mu_tb.dat”); vars ← namesnames(d)[VARS] (6)
x ← d[ROWS, vars] (7)
y ← sapplysapply( d[ROWS, “Target”], functionfunction(x){ 2*x-1 } ) (8)
model ← rulefit(x, y, rfmode = “class”) (9)
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RuleFitRuleFit –– Variable ImportanceVariable Importance
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RuleFitRuleFit –– TestTest
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tqbtqb –– Variable ImportanceVariable Importance
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tqbtqb –– SplomSplom PlotPlot
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tqbtqb –– TestTest
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ConclusionsConclusions

hPHYSTAT05
hAcceptance priors should go to zero at zero 

acceptance!

hNonparametric Bayes using KDE may be useful.

hVariable importance algorithm may be useful.

hR could be useful for exploration of p17 data.

hExcellent conference, typical English weather!
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