
DØNote 4834

Boosting:

Or How to Make a Silk Purse Out of a Sow’s Ear

Harrison B. Prosper

Florida State University, Tallahassee, Florida 32306

(Dated: June 24, 2005)

Abstract

Boosting is a relatively new technique, recently introduced into high energy physics, from the field

of machine learning. It is a general method of creating an ensemble of classifiers that collectively

achieve classification error rates arbitrarily lower than that of any one classifier, at least on the

training sample, provided that each classifier performs at least slightly better than random guessing.

In this note, we give a brief introduction to this technique.

1

2

I. INTRODUCTION

Event discrimination, or classification, is an important step in any realistic analysis. In

this note, we consider the canonical task of assigning events to one of two classes, signal (S)

or background (B), on the basis of a vector of discriminating variables x, for each event,

and a function F (x), called variously a classifier, discriminant, hypothesis, or learner. The

classifier F (x) can always be designed so that signal events tend to yield positive values, while

background events tend to yield negative values. Presumably, the goal of event classification

is to classify events with the smallest possible error rate. To that end, consider the function

F (x) = g(B(x)), (I.1)

where g(·) is any one-to-one function and

B(x) =
p(S|x)

p(B|x)
, (I.2)

=
p(x|S)p(S)

p(x|B)p(B)
, (I.3)

is the Bayes Discriminant, with p(x|S) and p(x|B) the signal and background probability

densities, respectively, and p(S)/p(B) the signal to background ratio. Equations (I.1) and

(I.2) is the complete solution to the problem of constructing an optimal classifier; that is,

one with the smallest possible error rate. Any classifier that does as well as the Bayes

discriminant is said to achieve the Bayes Limit. Two points deserve particular attention:

no classifier, however sophisticated, can do better than the Bayes limit and any that does

reach the Bayes limit must be isomorphic to the Bayes discriminant. Consequently, if one

has found a method that reaches the Bayes limit there is no point looking for something

better, except perhaps in the hope of finding a faster method that performs as well.

The standard approach to classification is to try, as it were, to cut a good classifier from a

single cloth [2]. However, in the field of machine learning (see for example, Ref. [3]) a different

strategy is under active investigation: instead of trying to construct a good classifier directly,

one makes do with an ensemble of classifiers, each of which need perform only slightly better

3

than a classifier based on the results of random coin tosses. The advantage of doing this,

of course, is that weak classifiers are easy to find. The key idea is the realization that an

ensemble of weak classifiers can be made to perform much better than any individual. This

is the basic idea behind boosting.

II. BOOSTING

Boosting is a general technique that can be applied to any classifier. See, for example,

Ref. [1], which describes the first application of boosting in high energy physics using decision

trees as the underlying classifiers. Consider a training sample T[y,x,w] in which the nth

event is characterized by a label yn with value +1 for signal and −1 for background, a vector

of discriminant variables xn and an event weight wn. The most general boosting algorithm

can be written as

T1 = initialize().

For k in 1, . . . , K

αk, fk = train(Tk),

Tk+1 = modify(Tk).

F ≡ h(f1, . . . , fK),

where fk are the individual (weak) classifiers, associated with weights αk, and h(·) is some

function thereof, usually, a weighted sum, so that

F (x) =
K∑

k=1

αk fk(x, Tk). (II.1)

The crucial thing to note is that each classifier fk depends, in general, on a different modi-

fication of the training data T. The clever part is to create modifications that yield reduced

classification error rates, on the training sample, when using the ensemble-based classifier

F . One of the most successful algorithms in this regard, AdaBoost, is due to Freund and

Schapire [4] and is the focus of the rest of this note.

4

III. ADABOOST

In AdaBoost, the steps initialize, train and modify proceed as follows:

1. initialize

Initialize the training sample T1 = T[y,x,w] with the event weights, w1,n, nor-

malized so that
∑N

n=1 w1,n = 1.

2. train

Train a classifier using the training sample Tk(y,x,wk) and a method that makes

use of event weights. Associate an (optimal) weight αk with classifier fk.

3. modify

Modify the training sample by updating the weights as follows:

wk+1,n = wk,n
e−αk fk,n yn/2

Zk

, [7] (III.1)

where the normalization factor

Zk =
N∑

n=1

wk,ne
−αk fk,n yn/2, (III.2)

ensures that the weights wk+1,n sum to unity.

Numerous studies indicate that the function F (x) (Eq. (II.1)), constructed in this way, works

remarkably well (see for example, Ref. [1]). Why this is so, is discussed next.

We first note that the sign of F (x) can be used as a classifier: if F (x) > 0, we classify

the event as a signal, otherwise as a background. Therefore, since ynF (xn) > 0 for a correct

classification and negative for a wrong one, the classification error rate ε, on the training

sample, can be expressed as

ε =
N∑

n=1

w1,n I[ynF (xn) ≤ 0], (III.3)

5

where the indicator function I[X] = 1 if the statement X if true, zero otherwise. Unfortu-

nately, the direct minimization of ε is generally not feasible in a reasonable amount of time.

Instead one tries to minimize a cost function C that is a suitable proxy for the error rate.

To that end, consider the function exp(−ynFn/2), where Fn ≡ F (xn). This function is ≥ 1

whenever ynFn ≤ 0 and < 1 otherwise. This property leads to the inequality

ε =
N∑

n=1

w1,n I[ynFn ≤ 0] ,

≤
N∑

n=1

w1,n e−ynFn/2 I[ynFn ≤ 0] ,

≤
N∑

n=1

w1,n e−ynFn/2 . (III.4)

In the limit of an infinite training sample, N →∞, we may write

ε ≤ E[e−yF (x)/2], (III.5)

where E[·] is the expectation operator with respect to the probability density function of

x. We conclude that the minimization of the training error ε can be done indirectly by

minimizing the expectation value of the function exp(−yF (x)/2). We shall return to this

point. But first, we must determine αk.

From the recursive definition, Eq. (III.1), of the event weights wk,n, we can write

wK+1,n = w1,n

K∏
k=1

e−αk fk,n yn/2

Zk

,

= w1,n
e−

∑K
k=1 αk fk,n yn/2∏K

k=1 Zk

,

= w1,n
e−ynFn/2∏K

k=1 Zk

. (III.6)

But, since by construction,
∑N

n=1 wK+1,n = 1, we conclude that

N∑
n=1

w1,n e−ynFn/2 =
K∏

k=1

Zk, (III.7)

6

and, therefore, from Eq. (III.4),

ε ≤
K∏

k=1

Zk. (III.8)

Thus, we can minimize the training error ε indirectly by minimizing the function Z =∏K
k=1 Zk. The quantity Z can be minimized approximately by taking its derivative

∂Z

∂αk

= −1

2

(∏
j 6=k

Zj

)
N∑

n=1

wk,n fk,n yn e−αk fk,n yn/2, (III.9)

with respect to each classifier weight αk and setting it to zero; that is, by solving

N∑
n=1

wk,n fk,n yn e−αk fk,n yn/2 = 0 . (III.10)

The procedure is approximate because we are ignoring the recursive dependence of the

weights wk,n on the αk (see Eq. (III.6)). In general, Eq. (III.10) must be solved numerically.

However, if the values of the classifiers fk are restricted to the binary set {+1,−1}, Eq.

(III.10) can be written as

e−αk/2

N∑
n=1

wk,n I[fk,n yn > 0]− e+αk/2

N∑
n=1

wk,n I[fk,n yn ≤ 0] = 0, (III.11)

which allows for an exact solution. If we define the weighted training error rate εk, associated

with the kth classifier fk, by

εk ≡
N∑

n=1

wk,n I[fk,n yn ≤ 0], (III.12)

we can write Eq. (III.11) as

e−αk/2(1− εk)− e+αk/2εk = 0, (III.13)

from which it follows that

αk = ln
(1− εk)

εk

. (III.14)

When inserted into Eq. (III.2) the above yields

Zk = 2
√

εk(1− εk), (III.15)

7

and from Eq. (III.8) the bound

ε ≤
K∏

k=1

2
√

εk(1− εk), (III.16)

on the error rate for the training sample T. Freund and Schapire [4] consider classifiers for

which εk = 1
2
− γk, with γk > 0. The latter quantity, called the weak edge, is a measure

of how much better a classifier is than one based on random guessing. Clearly, a useful

classifier is one whose weak edge is always positive. In terms of the weak edges, the training

error bound can be written as

ε ≤
K∏

k=1

√
1− 4γ2

k,

≤ (1− 4γ2)K/2,

→ e−2Kγ2

, K →∞. (III.17)

The last couple of steps follow if ∀k, γk > γ > 0 and if the ensemble of classifiers is large

enough.

Equation (III.17) implies the rather striking conclusion:

provided that the ensemble is large enough, and every classifier therein does

at least marginally better than random guessing, the error rate on the training

sample falls exponentially to zero as the sample size grows to infinity.

In principle, therefore, any large ensemble of, possibly disparate, classifiers would work

provided that each has a weak edge > γ. Another point is worth making and it is this: if,

in fact, the weak edges are bounded away from zero, the boosting algorithm of Freund and

Schapire will eventually fit the finite training data exactly [5], that is, over-fit. Consequently,

the error rate on test samples must necessarily reach a non-zero minimum for some ensemble

size and, perhaps, rise thereafter. So although, in practice, the AdaBoost algorithm seems

resistant to over-fitting, the result in Eq. (III.17) suggests that at some point AdaBoost must

over-fit. Therefore, the sensible strategy is to keep augmenting the ensemble of classifiers,

but at each step validate F (x) on a test sample and stop just before the test error starts to

rise or before one runs out of computer memory!

8

IV. ITERATING TO A SILK PURSE

The result stated at the end of the previous section suggests that a sequential construction

of F (x) may not be strictly necessary. Nor does it seem strictly necessary to re-weight events

explicitly. Given a set of classifiers fk, we could, it seems, consider the direct minimization

of the function

Y (α) =
N∑

n=1

wn e−yn
∑K

k=1 αk fk(xn)/2 , (IV.1)

with respect to the αk. Equation (IV.1) is just a re-statement of Eq. (III.4) with wn ≡ w1,n

denoting the original event weights. By following an identical derivation as in the previous

section we again arrive at Eq. (III.14), except that now εk is given by

εk =
N∑

n=1

wn e−yn
∑K

j 6=k αj fj,n/2 I[fk,n yn ≤ 0]. (IV.2)

As noted above, εk depends on the αj; therefore, the αj must be arrived at iteratively. It

would be interesting to determine if the following procedure converges:

εk =
∑N

n=1 wn I[fk,n yn ≤ 0] , k = 1, . . . , K

Repeat

αk = ln[(1− εk)/εk] , k = 1, . . . , K

εk =
∑N

n=1 wn e−yn
∑K

j 6=k αj fj,n/2 I[fk,n yn ≤ 0] , k = 1, . . . , K

V. PROBABILISTIC INTERPRETATION

The minimization of the cost function in Eq. (III.5) leads to an elegant probabilistic

interpretation [6], which is sketched here. The AdaBoost cost function can be written as

C =

∫
p(x, y)e−yF (x)/2dxdy, (V.1)

9

where the density p(x, y) = p(x, y = +1|S)p(S) + p(x, y = −1|B)p(B). The signal density

can be factorized further: p(x, y = +1|S)p(S) = p(y = +1|x)p(x|S)p(S) and likewise for the

background density. Note that the probability for y = +1 is 1 for x ∈ S and zero otherwise

and similarly for the background. Therefore, the integration over y is immediate and yields

C =

∫
p(x|S)p(S)e−F/2dx +

∫
p(x|B)p(B)e+F/2dx. (V.2)

To minimize C we must take its functional derivative

δC
δF

= −1

2

∫
p(x|S)p(S)e−F/2dx +

1

2

∫
p(x|B)p(B)e+F/2dx,

=
1

2

∫
[−p(S|x)e−F/2 + p(B|x)e+F/2]p(x)dx, (V.3)

with respect to F and set it to zero, if possible. In the last step we have availed ourselves

of Bayes’ theorem p(A|x) = p(x|A)p(A)/p(x). If it is possible for the functional derivative

to be zero, which requires the function F to be sufficiently malleable, then, since p(x) > 0,

∀x, the only way to get zero, in Eq. (V.3), is if the term in brackets is zero ∀x, that is, if

p(S|x) =
1

1 + exp(−F (x))
. (V.4)

We see, explicitly, that, provided we have enough training data and provided the function

F is flexible enough, F is just a Bayes discriminant in disguise, as it must be if it reaches

the Bayes limit. Moreover, Eq. (V.4) has the same logistic form as a feed-forward neural

network [2], with output bounded to the interval [0,1].

SUMMARY AND CONCLUSIONS

Boosting is a general technique for marshaling an ensemble of weak classifiers into a

single effective one. In principle, it can be applied to any classifier. However, if a classifier is

already at, or is close to, the Bayes limit, boosting, or any other classifier enhancer—however

sophisticated, is unlikely to be effective since the Bayes limit cannot be breached. If on the

other hand the classifiers have weak edges that skirt dangerously close to zero, boosting may

become impractical if the ensemble size grows prohibitively large.

10

The message, as always, is to try it and see!

REFERENCES

[1] B.P. Roe, Hai-Jun Yang, J. Zhu, Y. Liu, I. Stancu and G. McGregor, “Boosted Decision

Trees, An Alternative to Artificial Neural Networks,” e-Print physics/0408124 (2004).

[2] C. M. Bishop, Neural Networks for Pattern Recognition, (Clarendon Press, Oxford,

1998); R. Beale and T. Jackson, Neural Computing: An Introduction, (Adam Hilger,

New York, 1991).

[3] Wald Lecture by Professor Leo Breiman,

http://www.stat.berkeley.edu/users/breiman/wald2002-1.pdf.

[4] Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and

an application to boosting,” Journal of Computer and System Sciences 55 (1), 119-139

(1997).

[5] W. Jiang, “Boosting with Noisy Data: Some Views from Statistical Theory,” Neural

Computation 16, 789-810 (2004).

[6] J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical view

of boosting,” The Annals of Statistics, 28(2), 377-386, (2000).

[7] In the machine learning literature there is no factor of 2. We have introduced it to render

the subsequent mathematics a bit tidier.

