Statistical Inference, Occam's Razor and Statistical Mechanics on The Space of Probability Distributions

Vijay Balasubramanian*
Dept. of Physics, Princeton University, Princeton, NJ 08544

February 1, 2008

Abstract

The task of parametric model selection is cast in terms of a statistical mechanics on the space of probability distributions. Using the techniques of lowtemperature expansions, we arrive at a systematic series for the Bayesian posterior probability of a model family that significantly extends known results in the literature. In particular, we arrive at a precise understanding of how Occam's Razor, the principle that simpler models should be preferred until the data justifies more complex models, is automatically embodied by probability theory. These results require a measure on the space of model parameters and we derive and discuss an interpretation of Jeffreys' prior distribution as a uniform prior over the distributions indexed by a family. Finally, we derive a theoretical index of the complexity of a parametric family relative to some true distribution that we call the razor of the model. The form of the razor immediately suggests several interesting questions in the theory of learning that can be studied using the techniques of statistical mechanics.

1 Introduction

In recent years increasingly precise experiments have directed the interest of biophysicists towards learning in simple neural systems. The typical context of such learning involves estimation of some behaviourally relevant information from a statistically varying environment. For example, the experiments of de Ruyter and collaborators have provided detailed measurements of the adaptive encoding of wide field horizontal motion by the H1 neuron of the blowfly (10$]$). Under many circumstances the associated problems of statistical estimation can be fruitfully cast in the language of

[^0]statistical mechanics, and the powerful techniques developed in that discipline can be brought to bear on questions regarding learning ([17]).

In this paper we are concerned with a problem that arises frequently in the context of biophysical and computational learning - the estimation of parametric models of some true distribution t based on a collection of data drawn from t. If we are given a particular family of parametric models (Gaussians, for example) the task of modelling t is reduced to parameter estimation, which is a relatively well-understood, though difficult, problem. Much less is known about the task of model family selection for example, how do we choose between a family of Gaussians and a family of fifty exponentials as a model for t based on the available data? In this paper we will be concerned with the latter problem on which considerable ink has already been expended in the literature ([18, 19], [5, 8, [6], [20], [21], [15, [16]).

The first contribution of this paper is to cast Bayesian model family selection more clearly as a statistical mechanics on the space of probability distributions in the hope of making this important problem more accessible to physicists. In this language, a finite dimensional parametric model family is viewed as a manifold embedded in the space of probability distributions. The probability of the model family given the data can be identified with a partition function associated with a particular energy functional. The formalism bears a resemblance to the description of a disordered system in which the number of data points plays the role of the inverse temperature and in which the data plays the role of the disordering medium. Exploiting the techniques of low temperature expansions in statistical mechanics it is easy to extend existing results that use Gaussian approximations to the Bayesian posterior probability of a model family to find "Occam factors" penalizing complex models ([8, [15, [16]). We find a systematic expansion in powers of $1 / N$ where N is the number of data points and identify terms that encode accuracy, model dimensionality and robustness as well as higher order measures of simplicity. The subleading terms can be important when the number of data points is small and represent a limited attempt to move analysis of Bayesian statistics away from asymptotics towards the regime of small N that is often biologically relevant. The results presented here do not require the true distribution to be a member of the parametric family under consideration and the model degeneracies that can threaten analysis in such cases are dealt with by the method of collective coordinates from statistical mechanics. Some connections with the Minimum Description Length principle and stochastic complexity are discussed ([6, 8, 20, 18, 19]).

In order to perform Bayesian model selection it is necessary to have a prior distribution on the space of parameters of a model. Equivalently, we require the correct measure on the phase space defined by the parameter manifold in the analogue statistical mechanical problem considered in this paper. In the absence of well-founded reasons to pick a particular prior distribution, the usual prescription is to pick an unbiased prior density that weights all parameters equally. However, this prescription is not invariant under reparametrization and we will argue that the correct prior should give equal weight to all distributions indexed by the parameters. Requiring all distributions to be a priori equally likely yields Jeffreys' prior on the parameter manifold, giving a new interpretation of this choice of prior density ([12]).

Finally, consideration of the large N limit of the asymptotic expansion of the Bayesian posterior probability leads us to define the razor of a model, a theoretical index of the complexity of a parametric family relative to a true distribution. In statistical mechanical terms, the razor is the quenched approximation of the disordered system studied in Bayesian statistics. Analysis of the razor using the techniques of statistical mechanics can give insights into the types of phenomena that can be expected in systems that perform Bayesian statistical inference. These phenomena include "phase transitions" in learning and adaptation to changing environments. In view of the length of this paper, applications of the general framework developed here to specific models relevant to biophysics will be left to future publications.

2 Statistical Inference and Statistical Mechanics

Suppose we are given a collection of outcomes $E=\left\{e_{1} \ldots e_{N}\right\}, e_{i} \in X$ drawn independently from a density t. Suppose also that we are given two parametric families of distributions A and B and we wish to pick one of them as the model family that we will use. The Bayesian approach to this problem consists of computing the posterior conditional probabilities $\operatorname{Pr}(A \mid E)$ and $\operatorname{Pr}(B \mid E)$ and picking the family with the higher probability. Let A be parametrized by a set of real parameters $\Theta=\left\{\theta_{1}, \ldots \theta_{d}\right\}$. Then Bayes Rule tells us that:

$$
\begin{equation*}
\operatorname{Pr}(A \mid E)=\frac{\operatorname{Pr}(A)}{\operatorname{Pr}(E)} \int d^{d} \Theta w(\Theta) \operatorname{Pr}(E \mid \Theta) \tag{1}
\end{equation*}
$$

In this expression $\operatorname{Pr}(A)$ is the prior probability of the model family, $w(\Theta)$ is a prior density on the parameter space and $\operatorname{Pr}(E)$ is a prior density on the N outcome sample space. The measure induced by the parametrization of the d dimensional parameter manifold is denoted $d^{d} \Theta$. Since we are interested in comparing $\operatorname{Pr}(A \mid E)$ with $\operatorname{Pr}(B \mid E)$, the prior $\operatorname{Pr}(E)$ is a common factor that we may omit, and for lack of any better choice we take the prior probabilities of A and B to be equal and omit them. Finally, throughout this paper we will assume that the model families of interest to us have compact parameter spaces. This condition is easily relaxed by placing regulators on non-compact parameter spaces, but we will not concern ourselves with this detail here.

2.1 Natural Priors or Measures on Phase Space

In order to make further progress we must identify the prior density $w(\Theta)$. In the absence of a well-motivated prior, a common prescription is to use the uniform distribution on the parameter space since this is deemed to reflect complete ignorance ($15 \|$). In fact, this choice suffers from the serious deficiency that the uniform priors relative to different parametrizations can assign different probability masses to the same subset of parameters ($112,13 \|)$. Consequently, if $w(\Theta)$ was uniform in the parameters, the probability of a model family would depend on the arbitrary parametrization. The problem can be cured by making the much more reasonable requirement that
all distributions rather than all parameters are equally likely. \ In order to implement this requirement we should give equal weight to all distinguishable distributions on a model manifold. However, nearby parameters index very similar distributions. So let us ask the question, "How do we count the number of distinct distributions in the neighbourhood of a point on a parameter manifold?" Essentially, this is a question about the embedding of the parameter manifold in the space of distributions. Points that are distinguishable as elements of R^{n} may be mapped to indistinguishable points (in some suitable sense) of the embedding space.

To answer the question, let Θ_{p} and Θ_{q} index two distributions in a parametric family and let $E=\left\{e_{1} \cdots e_{N}\right\}$ be drawn independently from one of Θ_{p} or Θ_{q}. In the context of model estimation, a suitable measure of distinguishability can be derived by asking how well we can guess which of Θ_{p} or Θ_{q} produced E. Let α_{N} be the probability that Θ_{q} is mistaken for Θ_{p} and let β_{N} be the probability that Θ_{p} is mistaken for Θ_{q}. Let β_{N}^{ϵ} be the smallest possible β_{N} given that $\alpha_{N}<\epsilon$. Then Stein's Lemma tells us that $\lim _{N \rightarrow \infty}(-1 / N) \ln \beta_{N}^{\epsilon}=D\left(\Theta_{p} \| \Theta_{q}\right)$ where $D(p \| q)=\int d x p(x) \ln (p(x) / q(x))$ is the relative entropy between the densities p and q ([9]).

As shown in Appendix A, the proof of Stein's Lemma shows that the minimum error β_{N}^{ϵ} exceeds a fixed β^{*} in the region where $\kappa / N \geq D\left(\Theta_{p} \| \Theta_{q}\right)$ with $\kappa \equiv-\ln \beta^{*}+$ $\ln (1-\epsilon)$. $ل$ By taking β^{*} close to 1 we can identify the region around Θ_{p} where the distributions are not very distinguishable from the one indexed by Θ_{p}. As N grows large for fixed κ, any Θ_{q} in this region is necessarily close to Θ_{p} since $D\left(\Theta_{p} \| \Theta_{q}\right)$ attains a minimum of zero when $\Theta_{p}=\Theta_{q}$. Therefore, setting $\Delta \Theta=\Theta_{q}-\Theta_{p}$, Taylor expansion gives $D\left(\Theta_{p} \| \Theta_{q}\right) \approx(1 / 2) J_{i j}\left(\Theta_{p}\right) \Delta \Theta^{i} \Delta \Theta^{j}+O\left(\Delta \Theta^{3}\right)$ where $J_{i j}=$ $\left.\nabla_{\phi_{i}} \nabla_{\phi_{j}} D\left(\Theta_{p} \| \Theta_{p}+\Phi\right)\right|_{\Phi=0}$ is the Fisher Information. 1 (We use the convention that repeated indices are summed over.)

In a certain sense, the relative entropy, $D\left(\Theta_{p} \| \Theta_{q}\right)$, appearing in this problem is the natural distance between probability distributions in the context of model selection. Although it does not itself define a metric, the Taylor expansion locally yields a quadratic form with the Fisher Information acting as the metric. If we accept $J_{i j}$ as the natural metric, differential geometry immediately tells us that the reparametrization invariant measure on the parameter manifold is $\left.d^{d} \Theta \sqrt{\operatorname{det} J}([1], 2]\right)$. Normalizing this measure by dividing by $\int d^{d} \Theta \sqrt{\operatorname{det} J}$ gives the so-called Jeffreys' prior on the parameters.

A more satisfying explanation of the choice of prior proceeds by directly counting the number of distinguishable distributions in the neighbourhood of a point on a parameter manifold. Define the volume of indistinguishability at levels ϵ, β^{*}, and N to be the volume of the region around Θ_{p} where $\kappa / N \geq D\left(\Theta_{p} \| \Theta_{q}\right)$ so that the

[^1]probability of error in distinguishing Θ_{q} from Θ_{p} is high. We find to leading order:
\[

$$
\begin{equation*}
V_{\epsilon, \beta^{*}, N}=\left(\frac{2 \pi \kappa}{N}\right)^{d / 2} \frac{1}{\Gamma(d / 2+1)} \frac{1}{\sqrt{\operatorname{det} J_{i j}\left(\Theta_{p}\right)}} \tag{2}
\end{equation*}
$$

\]

If β^{*} is very close to one, the distributions inside $V_{\epsilon, \beta^{*}, N}$ are not very distinguishable and the Bayesian prior should not treat them as separate distributions. We wish to construct a measure on the parameter manifold that reflects this indistinguishability. We also assume a principle of "translation invariance" by supposing that volumes of indistinguishability at given values of N, β^{*} and ϵ should have the same measure regardless of where in the space of distributions they are centered. An integration measure reflecting these principles of indistinguishability and translation invariance can be defined at each level β^{*}, ϵ, and N by covering the parameter manifold economically with volumes of indistinguishability and placing a delta function in the center of each element of the cover. This definition reflects indistinguishability by ignoring variations on a scale smaller than the covering volumes and reflects translation invariance by giving each covering volume equal weight in integrals over the parameter manifold. The measure can be normalized by an integral over the entire parameter manifold to give a prior distribution. The continuum limit of this discretized measure is obtained by taking the limits $\beta^{*} \rightarrow 1, \epsilon \rightarrow 0$ and $N \rightarrow \infty$. In this limit the measure counts distributions that are completely indistinguishable ($\beta^{*}=1$) even in the presence of an infinite amount of data $(N=\infty)$. $\mathrm{H}^{\text {P }}$

To see the effect of the above procedure, imagine a parameter manifold which can be partitioned into k regions in each of which the Fisher Information is constant. Let J_{i}, U_{i} and V_{i} be the Fisher Information, parametric volume and volume of indistintuishability in the ith region. Then the prior assigned to the ith volume by the above procedure will be $P_{i}=\left(U_{i} / V_{i}\right) / \sum_{j=1}^{k}\left(U_{j} / V_{j}\right)=U_{i} \sqrt{\operatorname{det} J_{i}} / \sum_{j=1}^{k} U_{j} \sqrt{\operatorname{det} J_{j}}$. Since all the β^{*}, ϵ and N dependences cancel we are now free to take the continuum limit of P_{i}. This suggests that the prior density induced by the prescription described in the previous paragraph is:

$$
\begin{equation*}
w(\Theta)=\frac{\sqrt{\operatorname{det} J(\Theta)}}{\int d^{d} \Theta \sqrt{\operatorname{det} J(\Theta)}} \tag{3}
\end{equation*}
$$

By paying careful attention to technical difficulties involving sets of measure zero and certain sphere packing problems, it can be rigorously shown that the normalized continuum measure on a parameter manifold that reflects indistinguishability and translation invariance is $w(\Theta)$ or Jeffreys' prior (囲). In essence, the heuristic argument above and the derivation in [4] show how to "divide out" the volume of indistinguishable distributions on a parameter manifold and hence give equal weight to equally distinguishable volumes of distributions. In this sense, Jeffreys' prior is seen to be a uniform prior on the distributions indexed by a parametric family.

[^2]
2.2 Connection With Statistical Mechanics

Putting everything together we get the following expression for the Bayesian posterior probability of a parametric family in the absence of any prior knowledge about the relative likelihood of the distributions indexed by the family.

$$
\begin{equation*}
\operatorname{Pr}(A \mid E)=\frac{\int d^{d} \Theta \sqrt{\operatorname{det} J} \exp \left[-N\left(\frac{-\ln \operatorname{Pr}(E \mid \Theta)}{N}\right)\right]}{\int d^{d} \Theta \sqrt{\operatorname{det} J}} \tag{4}
\end{equation*}
$$

This equation resembles a partition function with a temperature $1 / N$ and an energy function $(-1 / N) \ln \operatorname{Pr}(E \mid \Theta)$. The dependence on the data E is similar to the dependence of a disordered partition function on the specific set of defects introduced into the system.

The analogy can be made stronger since the strong law of large numbers says that $(-1 / N) \ln \operatorname{Pr}(E \mid \Theta)=(-1 / N) \sum_{i=1}^{N} \ln \operatorname{Pr}\left(e_{i} \mid \Theta\right)$ converges in the almost sure sense to:

$$
\begin{equation*}
E_{t}\left[\frac{-\ln \operatorname{Pr}\left(e_{i} \mid \Theta\right)}{N}\right]=\int d x t(x) \ln \left(\frac{t(x)}{\operatorname{Pr}(x \mid \Theta)}\right)-\int d x t(x) \ln (t(x))=D(t \| \Theta)+h(t) \tag{5}
\end{equation*}
$$

Here $D(t \| \Theta)$ is the relative entropy between the true distribution and the distribution indexed by Θ, and $h(t)$ is the differential entropy of the true distribution that is presumed to be finite. With this large N limit in mind we rewrite the posterior probability in Equation as $^{\text {as }}$ the following partition function:

$$
\begin{equation*}
\operatorname{Pr}(A \mid E)=\frac{\int d^{d} \Theta \sqrt{J} e^{-N\left(H_{0}+H_{d}\right)}}{\int d^{d} \Theta \sqrt{J}} \tag{6}
\end{equation*}
$$

where $H_{0}(\Theta)=D(t \| \Theta)$ and $H_{d}(E, \Theta)=(-1 / N) \ln \operatorname{Pr}(E \mid \Theta)-D(t \| \Theta)-h(t)$. (Equation 6 differs from Equation $]^{2}$ by an irrelevant factor of $\left.\exp [-N h(t)]\right)$. H_{0} can be regarded as the "energy" of the "state" Θ while H_{d} is the additional contribution that arises via interaction with the "defects" represented by the data. It is instructive to examine the quenched approximation to this disordered partition function. (See [14] for a discussion of quenching in statistical mechanical systems.) Quenching is carried out by taking the expectation value of the energy of a state in the distribution generating the defects. In the above system $E_{t}\left[H_{d}\right]=0$ giving the quenched posterior probability:

$$
\begin{equation*}
\operatorname{Pr}(A \mid E)_{Q}=\frac{\int d^{d} \Theta \sqrt{J} e^{-N D(t \| \Theta)}}{\int d^{d} \Theta \sqrt{J}} \tag{7}
\end{equation*}
$$

In Section \square^{4} we will see that the logarithm of the posterior probability converges to the logarithm of the quenched probability in a certain sense. This will lead us to regard the quenched probability as a sort of theoretical index of the complexity of a parametric family relative to a given true distribution.

3 Asymptotic Analysis or Low-Temperature Expansion

 selection. However, in order to extract some insight it is necessary to examine special cases. Let $\ln \operatorname{Pr}(E \mid \Theta)$ be a smooth function of Θ that attains a global minimum at $\hat{\Theta}$ and assume that $J_{i j}(\Theta)$ is a smooth function of Θ that is positive definite at $\hat{\Theta}$. Finally, suppose that $\hat{\Theta}$ lies in the interior of the compact parameter space and that the values of local minima are bounded away from the global minimum by some b. For any given b, for sufficiently large N, the Bayesian posterior probabaility will then be dominated by the neighbourhood of $\hat{\Theta}$ and we can carry out a low temperature expansion around the saddlepoint at $\hat{\Theta}$.

We take the metric on the parameter manifold to be the Fisher Information since the Jeffreys' prior has the form of a measure derived from such a metric. This choice of metric also follows the work described in [1], 2]. We will use ∇_{μ} to indicate the covariant derivative with respect to Θ_{μ}, with a flat connection for the Fisher Information metric. ${ }^{[0]}$ Readers who are unfamiliar with covariant derivatives may read ∇_{μ} as the partial derivative with respect to Θ_{μ} since we will not be emphasizing the geometric content of the covariant derivative.

Let $\tilde{I}_{\mu_{1} \cdots \mu_{i}}=\left.(-1 / N) \nabla_{\mu_{1}} \cdots \nabla_{\mu_{i}} \ln \operatorname{Pr}(E \mid \Theta)\right|_{\hat{\Theta}}$ and $F_{\mu_{1} \cdots \mu_{i}}=\left.\nabla_{\mu_{1}} \cdots \nabla_{\mu_{i}} \operatorname{Tr} \ln J_{i j}\right|_{\hat{\Theta}}$ where Tr represents the Trace of a matrix. Writing $(\operatorname{det} J)^{1 / 2}$ as $\exp [(1 / 2) \operatorname{Tr} \ln J]$, we Taylor expand the exponent in the integrand of the Bayesian posterior around $\hat{\Theta}$, and rescale the integration variable to $\Phi=N^{1 / 2}(\Theta-\hat{\Theta})$ to arrive at:

$$
\begin{equation*}
\operatorname{Pr}(A \mid E)=\frac{e^{-\left[\ln \operatorname{Pr}(E \mid \hat{\Theta})-\frac{1}{2} \operatorname{Tr} \ln J(\hat{\Theta})\right]} N^{-d / 2} \int d^{d} \Phi e^{-\left((1 / 2) \tilde{I}_{\mu \nu} \phi^{\mu} \phi^{\nu}+G(\Phi)\right)}}{\int d^{d} \Theta \sqrt{\operatorname{det} J_{i j}}} \tag{8}
\end{equation*}
$$

Here $G(\Phi)$ collects the terms that are suppressed by powers of N :

$$
\begin{array}{rc}
G(\Phi)= & \sum_{i=1}^{\infty} \frac{1}{\sqrt{N^{i}}}\left[\frac{1}{(i+2)!} \tilde{I}_{\mu_{1} \cdots \mu_{i+2}} \phi^{\mu_{1}} \cdots \phi^{\mu_{(i+2)}}-\frac{1}{2!!} F_{\mu_{1} \cdots \mu_{i}} \phi^{\mu_{1}} \cdots \phi^{\mu_{i}}\right] \\
= & \frac{1}{\sqrt{N}}\left[\frac{1}{3!} \tilde{I}_{\mu_{1} \mu_{2} \mu_{3}} \phi^{\mu_{1}} \phi^{\mu_{2}} \phi^{\mu_{3}}-\frac{1}{2} F_{\mu_{1}} \phi^{\mu_{1}}\right]+ \\
& \frac{1}{N}\left[\frac{1}{4!} \tilde{I}_{\mu_{1} \cdots \mu_{4}} \phi^{\mu_{1}} \cdots \phi^{\mu_{4}}-\frac{1}{22!} F_{\mu_{1} \mu_{2}} \phi^{\mu_{1}} \phi^{\mu_{2}}\right]+O\left(\frac{1}{N^{3 / 2}}\right) \tag{9}
\end{array}
$$

As before, repeated indices are summed over. The integral in Equation 8 may now be evaluated in a series expansion using a standard trick from statistical mechanics ([11). Define a "source" $h=\left\{h_{1} \ldots h_{d}\right\}$ as an auxiliary variable. Then it is easy to verify that:

$$
\begin{equation*}
\int d^{d} \Phi e^{-\left((1 / 2) \tilde{I}_{\mu \nu} \phi^{\mu} \phi^{\nu}+G(\Phi)\right)}=e^{-G\left(\nabla_{h}\right)} \int d^{d} \Phi e^{-\left((1 / 2) \tilde{I}_{\mu \nu} \phi^{\mu} \phi^{\nu}+h_{\mu} \phi^{\mu}\right)} \tag{10}
\end{equation*}
$$

where the argument of $G, \Phi=\left(\phi^{1} \ldots \phi^{d}\right)$, has been replaced by $\nabla_{h}=\left\{\partial_{h_{1}} \ldots \partial_{h_{d}}\right\}$ and we assume that the derivatives commute with the integral. The remaining obstruction

[^3]is the compactness of the parameter space. We make the final assumption that the bounds of the integration can be extended to infinity with negligible error since $\hat{\Theta}$ is sufficiently in the interior or because N is sufficiently large.

Performing the Gaussian integral in Equation 10 and applying the differential operator $\exp G\left(\nabla_{h}\right)$ we find an asymptotic series in powers of $1 / N$. It turns out to be most useful to examine $\chi_{E}(A) \equiv-\ln \operatorname{Pr}(A \mid E)$. Defining $V=\int d^{d} \Theta \sqrt{\operatorname{det} J(\Theta)}$ we find to $O(1 / N)$:

$$
\begin{gather*}
\chi_{E}(A)=\quad N\left[\frac{-\ln \operatorname{Pr}(E \mid \hat{\Theta})}{N}\right]+\frac{d}{2} \ln N-\frac{1}{2} \ln \left(\frac{\operatorname{det} J_{i j}(\hat{\Theta})}{\operatorname{det} \tilde{I}_{\mu \nu}(\hat{\theta})}\right)-\ln \left[\frac{(2 \pi)^{d / 2}}{V}\right]+ \\
\frac{1}{N}\left\{\frac{\tilde{I}_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{2!}}{4!}\left[\left(\tilde{I}^{-1}\right)^{\mu_{1} \mu_{2}}\left(\tilde{I}^{-1}\right)^{\mu_{3} \mu_{4}}+\ldots\right]-\frac{F_{\mu_{1} \mu_{2}}}{22!}\left[\left(\tilde{I}^{-1}\right)^{\mu_{1} \mu_{2}}+\left(\tilde{I}^{-1}\right)^{\mu_{2} \mu_{1}}\right]-\right. \\
\frac{\tilde{I}_{\mu_{1} \mu_{2} \mu_{3}} \tilde{I}_{1 \nu_{1} \nu_{2} \nu_{3}}^{2!3!3!}}{2!}\left[\left(\tilde{I}^{-1}\right)^{\mu_{1} \mu_{2}}\left(\tilde{I}^{-1}\right)^{\mu_{3} \nu_{1}}\left(\tilde{I}^{-1}\right)^{\nu_{2} \nu_{3}}+\ldots\right]- \\
\left.\frac{F_{\mu_{1}} F_{\mu_{2}}}{2!4!2!}\left[\left(\tilde{I}^{-1}\right)^{\mu_{1} \mu_{2}}+\ldots\right]+\frac{F_{\mu_{1}} \tilde{I}_{2} \mu_{3} \mu_{4}}{2!2!3!}\left[\left(\tilde{I}^{-1}\right)^{\mu_{1} \mu_{2}}\left(\tilde{I}^{-1}\right)^{\mu_{3} \mu_{4}}+\ldots\right]\right\} \tag{11}
\end{gather*}
$$

Terms of higher orders in $1 / N$ are easily evaluated with a little labour, and systematic diagrammatic expansions can be developed ($[1])$. In the next section we will discuss the meaning of Equation 11

3.1 Meaning of the Asymptotic Expansion

We can see why the Bayesian posterior measures simplicity and accuracy of a parametric family by examining Equation 11 and noting that models with larger $\operatorname{Pr}(A \mid E)$ and hence smaller $\chi_{E}(A)$ are better. The $O(N)$ term, $N(-\ln \operatorname{Pr}(E \mid \hat{\Theta}) / N)$, which dominates asymptotically, is the log likelihood of the data evaluated at the maximum likelihood point. It measures the accuracy with which the parametric family can describe the available data. We will see in Section $\square_{\text {the }}$ that forficiently large N model families with the smallest relative entropy distance to the true distribution are favoured by this term. The term of $O(N)$ arises from the saddlepoint value of the integrand in Equation π^{2} and represents the Landau approximation to the partition function.

The term of $O(\ln N)$ penalizes models with many degrees of freedom and is a measure of simplicity. This term arises "physically" from the statistical fluctuations around the saddlepoint configuration. These fluctuations cause the partition function in Equation T^{7} to scale as $N^{-d / 2}$ leading to the logarithmic term in χ_{E}. Note that the term of $O(N)$ and $O(\ln N)$ have appeared together in the literature as the stochastic complexity of a parametric family relative to a collection of data ([18, 19]). This definition is justified by arguing that a family with the lowest stochastic complexity provides the shortest codes for the data in the limit that $N \rightarrow \infty$. Our results suggest that stochastic complexity is merely a truncation of the logarithm of the posterior probability of a model family and that adding the subleading terms in χ_{E} to the definition of stochastic complexity would yield shorter codes for finite N.

[^4]The $O(1)$ term, which arises from the determinant of quadratic fluctuations around the saddlepoint, is even more interesting. The determinant of \tilde{I}^{-1} is proportional to the volume of the ellipsoid in parameter space around $\hat{\Theta}$ where the value of the integrand of the Bayesian posterior is significant. ${ }^{\text {P }}$ The scale for determining whether $\operatorname{det} \tilde{I}^{-1}$ is large or small is set by the Fisher Information on the surface whose determinant defines the volume element. Consequently the term $\ln (\operatorname{det} J / \operatorname{det} \tilde{I})^{1 / 2}$ can be understood as measuring the robustness of the model in the sense that it measures the relative volume of the parameter space which provides good models of the data. More robust models in this sense will be less sensitive to the precise choice of parameters. We also observe from the discussion regarding Jeffreys' prior that the volume of indistinguishability around Θ^{*} is proportional to $(\operatorname{det} J)^{-1 / 2}$. So the quantity $(\operatorname{det} J / \operatorname{det} \tilde{I})^{(1 / 2)}$ is essentially proportional to the ratio $V_{\text {large }} / V_{\text {indist }}$, the ratio of the volume where the integrand of the Bayesian posterior is large to the volume of indistinguishability introduced earlier. Essentially, a model family is better (more natural or robust) if it contains many distinguishable distributions that are close to the true. Related observations have been made before in [15, [16] and in [8] but without the interpretation in terms of the robustness of a model family.

The term $\ln (2 \pi)^{d} / V$ can be understood as a preference for models that have a smaller invariant volume in the space of distributions and hence are more constrained. The terms proportional to $1 / N$ are less easy to interpret. They involve higher derivatives of the metric on the parameter manifold and of the relative entropy distances between points on the manifold and the true distribution. This suggests that these terms essentially penalize high curvatures of the model manifold, but it is hard to extract such an interpretation in terms of components of the curvature tensor on the manifold. It is worth noting that while terms of $O(1)$ and larger in $\chi_{E}(A)$ depend at most on the measure (prior distribution) assigned to the parameter manifold, the terms of $O(1 / N)$ depend on the geometry via the connection coefficients in the covariant derivatives. For this reason, the $O(1 / N)$ terms are the leading probes of the effect that the geometry of the space of distributions has on statistical inference in a Bayesian setting and so it would be very interesting to analyze them.

Bayesian model family inference embodies Occam's Razor because, for small N, the subleading terms that measure simplicity and robustness will be important, while for large N, the accuracy of the model family dominates.

3.2 Analysis of More General Situations

The asymptotic expansion in Equation 11 and the subsequent analysis were carried out for the special case of a posterior probability with a single global maximum in the integrand that lay in the interior of the parameter space. Nevertheless, the basic insights are applicable far more generally. First of all, if the global maximum lies on the boundary of the parameter space, we can account for the portion of the peak that is cut off by the boundary and reach essentially the same conclusions. Secondly, if

[^5]there are multiple discrete global maxima，each contributes separately to the asymp－ totic expansion and the contributions can be added to reach the same conclusions． The most important difficulty arises when the global maximum is degenerate so that matrix \tilde{I} in Equation 11 has zero eigenvalues．The eigenvectors corresponding to these zeroes are tangent to directions in parameter space in which the value of the maximum is unchanged up to second order in perturbations around the maximum． These sorts of degeneracies are particularly likely to arise when the true distribu－ tion is not a member of the family under consideration，and can be dealt with by the method of collective coordinates．Essentially，we would choose new parameters for the model，a subset of which parametrize the degenerate subspace．The integral over the degenerate subspace then factors out of the integral in Equation 10 and es－ sentially contributes a factor of the volume of the degenerate subspace times terms arising from the action of the differential operator $\exp \left[-G\left(\nabla_{h}\right)\right]$ ．The evaluation of specific examples of this method in the context of statistical inference will be left to future publications．

There are situations in which the perturbative expansion in powers of $1 / N$ is invalid．For example，the partition function in Equation 6 regarded as a function of N may have singularities．These singularities and the associated breakdown of the perturbative analysis of this section would be of the utmost interest since they would be signatures of＂phase transitions＂in the process of statistical inference．This point will be discussed further in Section 5 ．

4 The Razor of A Model Family

The large N limit of the partition function in Equation $⿴ 囗 十$ suggests the definition of an ideal theoretical index of the complexity of a parametric family relative to a given true distribution．

We know from Equation 5 that $(-1 / N) \ln [\operatorname{Pr}(E \mid \Theta)] \rightarrow D(t \| \Theta)+h(t)$ as N grows large．Now assume that the maximum likelihod estimator is consistent in the sense that $\hat{\Theta}=\arg \max _{\Theta} \ln \operatorname{Pr}(E \mid \Theta)$ converges in probability to $\Theta^{*}=\arg \min _{\Theta} D(t \| \Theta)$ as N grows large．［］Also suppose that the log likelihood of a single outcome $\ln \operatorname{Pr}\left(e_{i} \mid \Theta\right)$ considered as a family of functions of Θ indexed by e_{i} is equicontinuous at Θ^{*} ． 10 Finally，suppose that all derivatives of $\ln \operatorname{Pr}\left(e_{i} \mid \Theta\right)$ with respect to Θ are also equicon－ tinuous at Θ^{*} ．

Subject to the assumptions in the previous paragraph it is easily shown that $(-1 / N) \ln \operatorname{Pr}(E \mid \hat{\Theta}) \rightarrow D\left(t \| \Theta^{*}\right)+h(t)$ as N grows large．Next，using the covariant derivative with respect to Θ defined in Section 3，let $\tilde{J}_{\mu_{1} \cdots \mu_{i}}=\left.\nabla_{\mu_{1}} \cdots \nabla_{\mu_{i}} D(t \| \Theta)\right|_{\Theta^{*}}$ ． It also follows that $\tilde{I}_{\mu_{1} \cdots \mu_{i}} \rightarrow \tilde{J}_{\mu_{1} \cdots \mu_{i}}([[]])$ ．Since the terms in the asymptotic expansion of $(1 / N)\left(\chi_{E}-N h(t)\right)$（Equation 11）are continuous functions of $\ln \operatorname{Pr}(E \mid \Theta)$ and its

[^6]derivatives, they individually converge to limits obtained by replacing each \tilde{I} by \tilde{J} and $(-1 / N) \ln \operatorname{Pr}(E \mid \hat{\Theta})$ by $D\left(t \| \Theta^{*}\right)+h(t)$. Define $(-1 / N) \ln R_{N}(A)$ to be the sum of the series of limits of the individual terms in the asymptotic expansion of $(1 / N)\left(\chi_{E}-N h(t)\right):$
\[

$$
\begin{equation*}
\frac{-\ln R_{N}(A)}{N}=D\left(t \| \Theta^{*}\right)+\frac{d}{2 N} \ln N-\frac{1}{2 N} \ln \left[\frac{\operatorname{det} J_{i j}(\hat{\Theta})}{\operatorname{det} \tilde{J}_{\mu \nu}(\hat{\Theta})}\right]-\frac{1}{N} \ln \left[\frac{(2 \pi)^{d / 2}}{V}\right]+O\left(\frac{1}{N^{2}}\right) \tag{12}
\end{equation*}
$$

\]

This formal series of limits can be resummed to obtain:

$$
\begin{equation*}
R_{N}(A)=\frac{\int d^{d} \Theta \sqrt{J} e^{-N D(t \| \Theta)}}{\int d^{d} \Theta \sqrt{J}} \tag{13}
\end{equation*}
$$

We have encountered $R_{N}(A)$ before in Section 2.2 as the quenched approximation to the partition function in Equation 6. $R_{N}(A)$ will be called the razor of the model family A.

The razor, $R_{N}(A)$, is a theoretical index of the complexity of the model family A relative to the true distribution t given N data points. In a certain sense, the razor is the ideal quantity that Bayesian methods seek to estimate from the data avaliable in a given realization of the model inference problem. Indeed, the quenched approximation to the Bayesian partition function consists precisely of averaging over the data in different realizations. The terms in the expansion of the log razor in Equation 12 are the ideal analogues of the terms in χ_{E} since they arise from derivatives of the relative entropy distance between distributions indexed by the model family and the true distribution. The leading term tells us that for sufficiently large N, Bayesian inference picks the model family that comes closest to the true distribution in relative entropy. The subleading terms have the same interpretations as the terms in χ_{E} discussed in the previous section, except that they are the ideal quantities to which the corresponding terms in χ_{E} tend when enough data is available.

The razor is useful when we know the true distribution as well as the model families being used by a particular system and we wish to analyze the expected behaviour of Bayesian inference. It is also potentially useful as a tool for modelling and analysis of the general types of phenomena that can occur in Bayesian inference - different relative entropy distances $D(t \| \Theta)$ can yield radically different learning behaviours as discussed in the next section. The razor is considerably easier to analyze than the full Bayesian posterior probability since the quenched approximation to Equation 4 given in Equation 13 defines a statistical mechanics on the space of distributions in which the "disorder" has been averaged out. The tools of statistical mechanics can then be straightforwardly applied to a system with temperature $1 / N$ and energy function $D(t \| \Theta)$.

5 Biophysical Relevance and Some Open Questions

The general framework described in this paper is relevant to biophysics if we believe that neural systems optimize their accumulation of information from a statistically varying environment. This is likely to be true in at least some circumstances since an organism derives clear advantages from rapid and efficient detection and encoding of information. For example, see the discussions of Bialek and Atick of neural signal processing systems that approach physical and information theoretic limits ([7, [3]). A creature such as a fly is faced with the problem of estimating the statistical profile of its environment from the small amount of data available at its retina. The general formalism presented in this paper applies to such problems and an optimally designed fly would implement the formalism subject to the constraints of its biological hardware. In this section we will discuss several interesting questions in the theory of learning that can be discussed effectively in the statistical mechanical language introduced here.

First of all, consider the possibility of "phase transitions" in the disordered partition function that describes the Bayesian posterior probability or in the quenched approximation defining the razor. Phase transitions arise from a competition between entropy and energy which, in the present context, is a competition between simplicity and accuracy. We should expect the existence of systems in which inference at small N is dominated by "simpler" and more "robust" saddlepoints whereas at large N more "accurate" saddlepoints are favoured. As discussed in Section 3.1, the distributions in the neighbourhood of "simpler" and more "robust" saddlepoints are more concentrated near the true. \square The transitions between regimes dominated by these different saddlepoints would manifest themselves as singularities in the perturbative methods that led to the asymptotic expansions for χ_{E} and $\ln R_{N}(A)$.

The phase transitions discussed in the previous paragraph are interesting even when the task at hand is not the comparison of model families, but merely the selection of parameters for a given family. In Section 3.1 we have interpreted the terms of $O(1)$ in χ_{E} as measurements of the "robustness" or "naturalness" of a model. These robustness terms can be evaluated at different saddlepoints of a given model and a more robust point may be preferable at small N since the parameter estimation would then be less sensitive to fluctuations in the data.

So far we have concentrated on the behaviour of the Bayesian posterior and the razor as function of the number of data points. Instead, we could ask how they behave when the true distribution is changed. For example, this can happen in a biophysical context if the environment sensed by a fly changes when it suddenly finds itself indoors. In statistical mechanical terms, we wish to know what happens when the energy of a system is time-dependent. If the change is abrupt, the system will dynamically move between equilibria defined by the energy functions before and

[^7]after the change. If the change is very slow we would expect adaptation that proceeds gradually. In the language of statistical inference, these adaptive processes correspond to learning of changes in the true distribution.

A final question that has been touched on, but not analyzed, in this paper is the influence of the geometry of parameter manfiolds on statistical inference. As discussed in Section 3.1, terms of $O(1 / N)$ and smaller in the asymptotic expansions of the \log Bayesian posterior and the log razor depend on details of the geometry of the parameter manifold. It would be very interesting to understand the precise meaning of this dependence.

6 Conclusion

In this paper we have cast parametric model selection as a disordered statistical mechanics on the space of probability distributions. A low temperature expansion was used to develop the asymptotics of Bayesian methods beyond the analyses avaliable in the literature and it was shown that Bayesian methods for model family inference embody Occam's razor. While reaching these results, we derived and discussed a novel interpretation of Jeffreys' prior density as the uniform prior on the probability distributions indexed by a parametric family. By considering the large N limit and the quenched approximation of the disordered system implemented by Bayesian inference, we derived the razor, a theoretical index of the complexity of a parametric family relative to a true distribution. Finally, in view of the analogue statistical mechanical interpretation, we discussed various interesting phenomena that should be present in systems that perform Bayesian learning. It is easy to create models that display these phenomena simply by considering families of distributions for which $D(t \| \Theta)$ has the right structure. It would be interesting to examine models of known biophysical relevance to see if they exhibit such effects, so that experiments could be carried out to verify their presence or absence in the real world. In view of the length of the present paper, this project will be left to a future publication.

7 Acknowledgements

I would like to thank Kenji Yamanishi for several fruitful conversations. I have also had useful discussions and correspondence with Steve Omohundro, Erik Ordentlich, Don Kimber, Phil Chou and Erhan Cinlar. Finally, I am grateful to Curt Callan for supporting and encouraging this project and to Phil Anderson for helping with travel funds to the 1995 Workshop on Maximum Entropy and Bayesian Methods. This work was supported in part by DOE grant DE-FG02-91ER40671.

A Measuring Indistinguishability of Distributions

Let us take Θ_{p} and Θ_{q} to be points on a parameter manifold. Since we are working in the context of density estimation a suitable measure of the distinguishability of
Θ_{p} and Θ_{q} should be derived by taking N data points drawn from either p or q and asking how well we can guess which distribution produced the data. If p and q do not give very distinguishable distributions, they should not be counted separately since that would count the same distribution twice.

Precisely this question of distinguishability is addressed in the classical theory of hypothesis testing. Suppose $\left\{e_{1} \ldots e_{N}\right\} \in E^{N}$ are drawn iid from one of f_{1} and f_{2} with $D\left(f_{1} \| f_{2}\right)<\infty$. Let $A_{N} \subseteq E^{N}$ be the acceptance region for the hypothesis that the distribution is f_{1} and define the error probabilities $\alpha_{N}=f_{1}^{N}\left(A_{N}^{C}\right)$ and $\beta_{N}=f_{2}^{N}\left(A_{N}\right)$. (A_{N}^{C} is the complement of A_{N} in E^{N} and f^{N} denotes the product distribution on E^{N} describing N iid outcomes drawn from f.) In these definitions α_{N} is the probability that f_{1} was mistaken for f_{2} and β_{N} is the probability of the opposite error. Stein's Lemma tells us how low we can make β_{N} given a particular value of α_{N}. Indeed, let us define $\beta_{N}^{\epsilon}=\min _{A_{N} \subseteq E^{N}, \alpha_{N} \leq \epsilon} \beta_{N}$. Then Stein's Lemma tells us that:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \lim _{N \rightarrow \infty} \frac{1}{N} \ln \beta_{N}^{\epsilon}=-D\left(f_{1} \| f_{2}\right) \tag{14}
\end{equation*}
$$

By examining the proof of Stein's Lemma ([9]) we find that for fixed ϵ and sufficiently large N the optimal choice of decision region places the following bound on β_{N}^{ϵ} :

$$
\begin{equation*}
-D\left(f_{1} \| f_{2}\right)-\delta_{N}+\frac{\ln \left(1-\alpha_{N}\right)}{N} \leq \frac{1}{N} \ln \beta_{N}^{\epsilon} \leq-D\left(f_{1} \| f_{2}\right)+\delta_{N}+\frac{\ln \left(1-\alpha_{N}\right)}{N} \tag{15}
\end{equation*}
$$

where $\alpha_{N}<\epsilon$ for sufficiently large N. The δ_{N} are any sequence of positive constants that satisfy the property that:

$$
\begin{equation*}
\alpha_{N}=f_{1}^{N}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \ln \frac{f_{1}\left(e_{i}\right)}{f_{2}\left(e_{i}\right)}-D\left(f_{1} \| f_{2}\right)\right|>\delta_{N}\right) \leq \epsilon \tag{16}
\end{equation*}
$$

for all sufficiently large N. Now $(1 / N) \sum_{i=1}^{N} \ln \left(f_{1}\left(e_{i}\right) / f_{2}\left(e_{i}\right)\right)$ converges to $D\left(f_{1} \| f_{2}\right)$ by the law of large numbers since $D\left(f_{1} \| f_{2}\right)=E_{f_{1}}\left(\ln \left(f_{1}\left(e_{i}\right) / f_{2}\left(e_{i}\right)\right)\right.$. So, for any fixed δ we have:

$$
\begin{equation*}
f_{1}^{N}\left(\left|\frac{1}{N} \sum_{i=1}^{N} \ln \frac{f_{1}\left(e_{i}\right)}{f_{2}\left(e_{i}\right)}-D\left(f_{1} \| f_{2}\right)\right|>\delta\right)<\epsilon \tag{17}
\end{equation*}
$$

for all sufficiently large N . For a fixed ϵ and a fixed N let $\Delta_{\epsilon, N}$ be the collection of $\delta>0$ which satisfy Equation 17. Let $\delta_{\epsilon N}$ be the infimum of the set $\Delta_{\epsilon, N}$. Equation 17 guarantees that for any $\delta>0$, for any sufficiently large $N, 0<\delta_{\epsilon N}<\delta$. We conclude that $\delta_{\epsilon N}$ chosen in this way is a sequence that converges to zero as $N \rightarrow \infty$ while satisfying the condition in Equation 16 which is necessary for proving Stein's Lemma.

We will now apply these facts to the problem of distinguishability of points on a parameter manifold. Let Θ_{p} and Θ_{q} index two distributions on a parameter manifold and suppose that we are given N outcomes generated independently from one of them. We are interested in using Stein's Lemma to determine how distinguishable Θ_{p} and Θ_{q} are. By Stein's Lemma:
$-D\left(\Theta_{p} \| \Theta_{q}\right)-\delta_{\epsilon N}\left(\Theta_{q}\right)+\frac{\ln \left(1-\alpha_{N}\right)}{N} \leq \frac{\beta_{N}^{\epsilon}\left(\Theta_{q}\right)}{N} \leq-D\left(\Theta_{p} \| \Theta_{q}\right)+\delta_{\epsilon N}\left(\Theta_{q}\right)+\frac{\ln \left(1-\alpha_{N}\right)}{N}$
where we have written $\delta_{\epsilon N}\left(\Theta_{q}\right)$ and $\beta_{N}^{\epsilon}\left(\Theta_{q}\right)$ to emphasize that these quantities are functions of Θ_{q} for a fixed Θ_{p}. Let $A=-D\left(\Theta_{p} \| \Theta_{q}\right)+(1 / N) \ln \left(1-\alpha_{N}\right)$ be the average of the upper and lower bounds in Equation 18. Then $A \geq-D\left(\Theta_{p} \| \Theta_{q}\right)+(1 / N) \ln (1-\epsilon)$ because the $\delta_{\epsilon N}\left(\Theta_{q}\right)$ have been chosen to satisfy Equation 16. We now define the set of distributions $U_{N}=\left\{\Theta_{q}:-D\left(\Theta_{p} \| \Theta_{q}\right)+(1 / N) \ln (1-\epsilon) \geq(1 / N) \ln \beta^{*}\right\}$ where $1>\beta^{*}>0$ is some fixed constant. Note that as $N \rightarrow \infty, D\left(\Theta_{p} \| \Theta_{q}\right) \rightarrow 0$ for $\Theta_{q} \in U_{N}$. We want to show that U_{N} is a set of distributions which cannot be very well distinguished from Θ_{p}. The first way to see this is to observe that the average of the upper and lower bounds on $\ln \beta_{N}^{\epsilon}$ is greater than or equal to $\ln \beta^{*}$ for $\Theta_{q} \in U_{N}$. So, in this loose, average sense, the error probability β_{N}^{ϵ} exceeds β^{*} for $\Theta_{q} \in U_{N}$.

More carefully, note that $(1 / N) \ln \left(1-\alpha_{N}\right) \geq(1 / N) \ln (1-\epsilon)$ by choice of the $\delta_{\epsilon N}\left(\Theta_{q}\right)$. So, using Equation 18 we see that $(1 / N) \ln \beta_{N}^{\epsilon}\left(\Theta_{q}\right) \geq(1 / N) \ln \beta^{*}-\delta_{\epsilon N}\left(\Theta_{q}\right)$. Exponentiating this inequality we find that:

$$
\begin{equation*}
1 \geq\left[\beta_{N}^{\epsilon}\left(\Theta_{q}\right)\right]^{(1 / N)} \geq\left(\beta^{*}\right)^{(1 / N)} e^{-\delta_{\epsilon N}\left(\Theta_{q}\right)} \tag{19}
\end{equation*}
$$

The significance of this expression is best understood by considering parametric families in which, for every $\Theta_{q}, X_{q}\left(e_{i}\right)=\ln \left(\Theta_{p}\left(e_{i}\right) / \Theta_{q}\left(e_{i}\right)\right)$ is a random variable with finite mean and bounded variance, in the distribution indexed by Θ_{p}. In that case, taking b to be the bound on the variances, Chebyshev's inequality says that:

$$
\begin{equation*}
\Theta_{p}^{N}\left(\left|\frac{1}{N} \sum_{i=1}^{N} X_{q}\left(e_{i}\right)-D\left(\Theta_{p} \| \Theta_{q}\right)\right|>\delta\right) \leq \frac{\operatorname{Var}(X)}{\delta^{2} N} \leq \frac{b}{\delta^{2} N} \tag{20}
\end{equation*}
$$

In order to satisy $\alpha_{N} \leq \epsilon$ it suffices to choose $\delta=(b / N \epsilon)^{1 / 2}$. So, if the bounded variance condition is satisfied, $\delta_{\epsilon N}\left(\Theta_{q}\right) \leq(b / N \epsilon)^{1 / 2}$ for any Θ_{q} and therefore we have the limit $\lim _{N \rightarrow \infty} \sup _{\Theta_{q} \in U_{N}} \delta_{\epsilon N}\left(\Theta_{q}\right)=0$. Applying this limit to Equation 19 we find that:

$$
\begin{equation*}
1 \geq \lim _{N \rightarrow \infty} \inf _{\Theta_{q} \in U_{N}}\left[\beta_{N}^{\epsilon}\left(\Theta_{q}\right)\right]^{(1 / N)} \geq 1 \times \lim _{N \rightarrow \infty} \inf _{\Theta_{q} \in U_{N}} e^{-\delta_{\epsilon N}\left(\Theta_{q}\right)}=1 \tag{21}
\end{equation*}
$$

In summary we find that $\lim _{N \rightarrow \infty} \inf _{\Theta_{q} \in U_{N}}\left[\beta_{N}^{\epsilon}\left(\Theta_{q}\right)\right]^{(1 / N)}=1$. This is to be contrastd with the behaviour of $\beta_{N}^{\epsilon}\left(\Theta_{q}\right)$ for any fixed $\Theta_{q} \neq \Theta_{p}$ for which $\lim _{N \rightarrow \infty}\left[\beta_{N}^{\epsilon}\left(\Theta_{q}\right)\right]^{(1 / N)}=$ $\exp -D\left(\Theta_{p} \| \Theta_{q}\right)<1$. We have essentially shown that the sets U_{N} contain distributions that are not very distinguishable from Θ_{p}. The smallest one-sided error probability β_{N}^{ϵ} for distinguishing between Θ_{p} and $\Theta_{q} \in U_{N}$ remains essentially constant leading to the asymptotics in Equation 21.

Define $\kappa \equiv-\ln \beta^{*}+\ln (1-\epsilon)$ so that we can summarize the region U_{N} of high probability of error β^{*} at fixed ϵ as $\kappa / N \geq D\left(\theta_{p} \| \theta_{q}\right)$. In this region, the distributions are indistinguishable from Θ_{p} with error probabilities $\alpha_{N} \leq \epsilon$ and $\left(\beta_{N}^{\epsilon}\right)^{(1 / N)} \geq\left(\beta^{*}\right)^{(1 / N)} \exp -\delta_{\epsilon N}$.

References

[1] S.I. Amari. Differential Geometrical Methods in Statistics. Springer-Verlag, 1985.
[2] S.I. Amari, O.E. Barndorff-Nielsen, R.E. Kass, S.L. Lauritzen, and C.R. Rao. Differential Geometry in Statistical Inference, volume 10. Institute of Mathematical Statistics Lecture Note-Monograph Series, 1987.
[3] J.J. Atick. Could information theory provide and ecological theory of sensory processing? In W. Bialek, editor, Princeton Lectures in Biophysics. World Scientific, 1991.
[4] V. Balasubramanian. A geometric formulation of occam's razor for inference of parametric distributions. Available as preprint number adap-org/9601001 from http://xyz.lanl.gov/ and as Princeton University Physics Preprint PUPT-1588, January 1996.
[5] A.R. Barron. Logically Smooth Density Estimation. PhD thesis, Stanford University, August 1985.
[6] A.R. Barron and T.M. Cover. Minimum complexity density estimation. IEEE Transactions on Information Theory, 37(4):1034-1054, July 1991.
[7] W. Bialek. Optimal signal processing in the nervous system. In W. Bialek, editor, Princeton Lectures in Biophysics. World Scientific, 1991.
[8] B.S. Clarke and A.R. Barron. Information-theoretic asymptotics of bayes methods. IEEE Transactions on Information Theory, 36(3):453-471, May 1990.
[9] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley, New York, 1991.
[10] R.R. de Ruyter van Steveninck, W. Bialek, M. Potters, R.H. Carlson, and G.D. Lewen. Adaptive movement computation by the blowfly visual system. In Princeton Lectures in Biophysics, 1995. In preparation.
[11] C. Itzykson and J.M. Drouffe. Statistical Field Theory. Cambridge University Press, 1989.
[12] H. Jeffreys. Theory of Probability. Oxford University Press, 3rd edition, 1961.
[13] P.M. Lee. Bayesian Statistics: An Introduction. Oxford University Press, 1989.
[14] S.K. Ma. Statistical Mechanics. World Scientific, 1985.
[15] D.J.C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.
[16] D.J.C. MacKay. A practical bayesian framework for backpropagation networks. Neural Computation, 4(3):448-472, 1992.
[17] M. Potters and W. Bialek. Statistical mechanics and visual signal processing. Journal de Physique I, 4(11):1755-1775, 1994.
[18] J. Rissanen. Universal coding, information, prediction and estimation. IEEE Transactions on Information Theory, 30(4):629-636, July 1984.
[19] J. Rissanen. Stochastic complexity and modelling. The Annals of Statistics, 14(3):1080-1100, 1986.
[20] C.S. Wallace and P.R. Freeman. Estimation and inference by compact coding. Journal of The Royal Statistical Society, 49(3):240-265, July 1987.
[21] K. Yamanishi. A decision-theoretic extension of stochastic complexity and its applications to learning. Submitted to the IEEE Transactions of Information Theory, June 1995.

[^0]: *vijayb@puhep1.princeton.edu

[^1]: ${ }^{1}$ This applies the principle of maximum entropy on the invariant space of distributions rather than the arbitrary space of parameters
 ${ }^{2}$ This assertion is not strictly true. See Appendix A for more details.
 ${ }^{3}$ We have assumed that the derivatives with respect to Θ commute with expectations taken in the distribution Θ_{p} to identify the Fisher Information with the matrix of second derivatives of the relative entropy.

[^2]: ${ }^{4}$ The α and β errors can be treated more symmetrically using the Chernoff bound instead of Stein's lemma, but we will not do that here.

[^3]: ${ }^{5}$ In Section 3.2 we will discuss how to relax these conditions.
 ${ }^{6}$ See [1, 2] for discussions of differential geometry in a statistical setting.

[^4]: ${ }^{7}$ This term is $O(N)$, not $O(1)$, because $(1 / N) \ln \operatorname{Pr}(E \mid \hat{\Theta})$ approaches a finite limit at large N.

[^5]: ${ }^{8}$ If we fix a fraction $f<1$ where f is close to 1 , the integrand of the Bayesian posterior will be greater that f times the peak value in an elliptical region around the maximum.

[^6]: ${ }^{9}$ In other words，assume that given any neighbourhood of $\Theta^{*}, \hat{\Theta}$ falls in that neighbourhood with high probability for sufficiently large N ．If the maximum likelihood estimator is not consistent， statistics has very little to say about the inference of probability densities．
 ${ }^{10}$ In other words，given any $\epsilon>0$ ，there is a neighbourhood of M of Θ^{*} such that for every e_{i} and $\Theta \in M,\left|\ln \operatorname{Pr}\left(e_{i} \mid \Theta\right)-\ln \operatorname{Pr}\left(e_{i} \mid \Theta^{*}\right)\right|<\epsilon$ ．

[^7]: ${ }^{11}$ In Section 3.1 we have discussed how Bayesian inference embodies Occam's razor by penalizing complex families until the data justifies their choice. Here we are discussing Occam's razor for choice of saddlepoints within a given family.

