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Abstract. Testing of precise (point or small interval) hypotheses is reviewed, 
with special emphasis placed on exploring the dramatic conflict between 
conditional measures (Bayes factors and posterior probabilities) and the 
classical P-value (or observed significance level). This conflict is highlighted 
by finding lower bounds on the conditional measures over wide classes of 
priors, in normal and binomial situations, lower bounds, which are much 
larger than the P-value; this leads to the recommendation of several alter- 
natives to P-values. Results are also given concerning the validity of 
approximating an interval null by a point null. The overall discussion 
features critical examination of issues such as the probability of objective 
testing and the possibility of testing from confidence sets. 
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1. INTRODUCTION AND BASICS 

1.1 Basics and Measures of Evidence 

Suppose X having density f (x I 6 ' )  is observed, with 
6' being an unknown element of the parameter space 
0, and that it is desired to test Ho: 6' = 6'0 versus 
HI: 8 # 6'0. (In Section 2 this will be argued to be a 
good approximation to many realistic scenarios con- 
cerning testing of a precise hypothesis.) We consider 
and compare three measures of evidence against Ho, 
the classical P-value, the weighted likelihood ratio or 
Bayes factor and the Bayesian posterior probability 
of Ho. 

P-value. Let T(X) be a test statistic, extreme val- 
ues of which are deemed to be evidence against Ho. If 
X = x is observed, with corresponding t = T(x), the 
P-value (or observed significance level) is 

Bayes factor. Let g(6')be a continuous density on 
(6'# do). Then the Bayes factor, or weighted likelihood 
ratio of HO to H1, is 
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where 

For a Bayesian, g would be the prior density for 0,  
conditional on H1 being true. For a likelihoodist, g 
might be thought of merely as some weight function 
to allow the computation of an average likelihood for 
HI. B might then be called a "weighted likelihood 
ratio" for the two hypotheses. Its interpretation is 
similar to that of a usual likelihood ratio; e.g., a value 
of B = l/lo means that Hl is supported ten times as 
much by the data as is Ho. 

Posterior probability. If a Bayesian spgcifies, in 
addition tog, the prior probability of Ho, to be denoted 
by TO, then the posterior probability of Ho is 

Example 1. Suppose we observe X - N (6, a2/n), 
where a2  is known. Then, letting 

T(X) = &(X -

One the P-value as 

( 5 )  = 2[1 - + ( I  t l ) l ,  

where 9 is the standard normal cumulative distribu- 
tion function (cdf). 
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An easy to analyze density g is the N(p, r2)density. 
Calculation yields that 

where p = a/(&r) and 7 = (do - p)/r. Note that p 
will often be chosen to be do (so as to have a symmetric 
"weight function"), in which case 

(7) B = exp - -( :[(l f2P2J}*  

The posterior probability of Ho can be found from 
these formulas and (4), provided no is specified. 

As a specific example, suppose p = do, T = u and 
r0 = lh. For various t and n, the various measures 
of evidence are given in Table 1. There P stands 
for P(Ho I x). 

1.2 Motivation 

Here are some commonly held opinions that this 
testing scenario strongly contraindicates: 

Opinion 1. Classical and Likelihood or Bayesian 
Answers Typically Agree. Bayesian answers can, of 
course, vary markedly depending on the choice of 
prior, so that a more precise phrasing of this opinion 
would be that classical answers will agree with some 
sensible ("objective") Bayesian analysis. Such is sim- 
ply not the case in the testing of precise hypotheses. 
This is indicated in Table 1 where, for instance, 
P(HoI x) is from 5 to 50 times larger than the P-value, 
a. The Bayesian analysis here is close to that recom- 
mended by Jeffreys (1961) as a "standard" Bayesian 
significance test. (Jeffreys chose a Cauchy form for 
the prior, but this makes a substantial difference only 
when 1 t 1 is large.) Thus, if n = 50 and t = 1.960, 
Jeffreys would conclude that Ho has probability .52 of 
being true, although the classical statistician would 
"reject Ho at significance level a = .05." Admittedly, 
classical statisticians will warn against interpreting a 
as the probability that Ho is true, but surely the 
classicist feels that a = .05 is reasonable cause to 
doubt Ho, in marked contrast to the Bayesian conclu- 
sion. This is perhaps the simplest problem where the 
Bayesian and classical statistician are in fundamental 

TABLE1 
Measures of evidence, normal example 

t a 1 5 10 20 50 100 

B P B P B P B P B P B P  

practical disagreement, and as such,, the problem de- 
serves intense study. (Our label "classical statistician" 
is admittedly ambiguous; there are' statisticians who 
consider themselves to be "classical," and yet do not 
view P-values as meaningful measures of evidence, 
and there are Bayesians who view P-values as useful 
measures of evidence; see Section 5.) 

Opinion 2. Objective Bayesian Analyses Are Always 
Possible. Having automatic statistical procedures 
available is certainly advantageous for certain users. 
The frequent criticism of Bayesian analysis, to the 
effect that (nonautomatic) prior specification is re- 
quired, is effectively answered by the well developed 
and very successful Bayesian approach using nonin- 
formative ("objective") priors (see Berger (1985) for 
references). Do such objective Bayesian methods al- 
ways exist, however? The answer is no, and the precise 
null testing situation is a prime example in which 
objective procedures do not exist. 

To see this, note that a Bayesian must specify no 
and g. One can argue that .rro = lh is the objective 
choice for the prior probability of Ho, or can objec- 
tively avoid the choice of no by concentrating on the 
Bayes factor, B. There is no choice of g, however, that 
can claim to be objective. One might argue that g 
should be symmetric about do (at least when the pa- 
rameter space is the entire real line), and perhaps that 
g should be nonincreasing in I 0-60 I (to avoid treating 
values of d other than do as special). For many prob- 
lems the exact functional form of g can be shown to 
be rather irrelevant, so that one might argue in Ex- 
ample 1, say, that g could be taken to be N(do, r2)or 
maybe Cauchy (do, r2)(the form preferred by Jeffreys). 
Unfortunately, the choice of the scale factor, 7, for g 
has a large effect on the answer. This can be seen in 
Example 1by looking at (7); for interesting (moderate 
to large) T the value of p will typically be small, so 
that 

and (with no = %), 

Thus, T has a dramatic effect on the Bayesian or 
likelihood answer. Furthermore, letting r2--, 03 SO that 
g becomes "noninformative" is ridiculous, because 
then P(Ho I x) -, 1. Thus, a Bayesian must, at a 
minimum, subjectively specify r2 ,  and there is no 
default value that "lets the data speak for itself." 

In light of this fact, the derivations of "automatic" 
Bayesian significance tests in Jeffreys (1961) (see also 
Zellner and Siow, 1980, and Smith and Spiegelhalter, 
1980) are of considerable interest. Both proceed by 
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arguing that "if one must specify a default g for 
automatic use, then a good such g is .".In Example 
1, Jeffreys argued for a Cauchy (Oo, a') default g, 
although Smith and Spiegelhalter argued for a con- 
stant default g (but a particular constant); these de- 
fault g actually often give very similar answers. 

We agree that, if one must produce an automatic 
Bayesian significance test, then the Jeffreys, Zellner- 
Siow or Smith-Spiegelhalter tests are quite satisfac- 
tory. Furthermore, we feel that automatic use of such 
tests is vastly superior to automatic use of P-values, 
for reasons to be made clear later. Nevertheless, we 
would argue that either test imposes a particular and 
highly informative g on the user, and as such cannot 
claim to be objective. 

This should not be interpreted as lending support 
to the P-value, because its formal definition in (1) 
appears to be objective; appearances can be deceiving. 
For instance, in Example 1when t = 1.96, a posterior 
probability of 0.05 can only be achieved (among sym- 
metric unimodal weight functions g, say) by choosing 
?ro to be 0.11 or smaller. It would certainly not be 
"objective" to state that the posterior probability of 
Ho is 0.05, hiding the fact that most of this "evidence" 
is due to the prior probability being only 0.11. Yet 
many users of P-values do interpret 0.05 as providing 
19 to 1 evidence against Ho, i.e., interpret it as a 
posterior probability. We feel that the correct inter- 
pretation of a P-value, although perhaps objective, is 
nearly meaningless, and that the actual meaning usu- 
ally ascribed to a P-value by practitioners contains 
hidden and extreme bias. 

Opinion 3. Testing Is Somewhat Irrelevant; One 
Should Concentrate on Confidence Sets, Testing from 
Them If Necessary. The motivation for this opinion 
is that significance testing ignores a crucial question, 
namely "how far is 6 from 6o?" Having statistically 
significant evidence that 6 # Oo might be irrelevant if 
6 and 60 are within, say, 10-lo of each other. So, the 
argument goes, one should simply find (say) a 95% 
confidence set for 6. If flo is not in this set it can be 
rejected, and looking at  the set will provide a good 
indication as to the actual magnitude of the difference 
between 0 and 60. 

This opinion is wrong, because it ignores the sup- 
posed special nature of 60. A point can be outside a 
95% confidence set, yet not be so strongly contrain- 
dicated by the data. Only by calculating a Bayes factor 
(or related conditional measure) can one judge how 
well the data supports a distinguished point Oo. Fur-
ther discussion of this will be given in Section 4.3. 

1.3 Lower Bounds on ~oncjitional Measures 

A non-Bayesian might be tempted to dismiss the 
conflict between a and the conditional measures B or 
P(HoI x) in Table 1by arguing that the difference is 

simply due to the specific g that was chosen. That this 
is not the case can be seen by looking at lower bounds 
on B and P(Ho I x) over wide classes of g, and observ- 
ing that even these lower bounds are much larger than 
a. Thus, if G is a class of densities under consideration, 
we will investigate 

(8) B = inf B = f (x 160) 
-

gEG 	 SUPmg(x) 
gEG 

and 

-P(H0 I x) = inf P(Ho I x) 
gEG 

Interesting classes of G to consider include G = (all 
densities), G = (all conjugate densities with mean Oo], 

G = (all densities symmetric about 60
(10) 	 and nonincreasing in I 6 - 60 I ] 

and variations thereof. (By "conjugate densities" here 
we will mean "textbook" conjugate priors, although 
other versions could be considered.) The most inter- 
esting choices for G are those that are neither too big 
nor too small. One wants G to include all g that are 
a priori reasonable (in order for the lower bounds to 
be valid lower bounds), but a too large G might result 
in uselessly small bounds. Another way of saying this 
is that B or P(Ho I x) are calculated by choosing that 
g E G, which is most favorable to HI;  to minimize this 
bias toward HI, one should try to choose G as small 
as possible, consistent with a priori beliefs. 

In this light, choosing G = (all densities] seems 
certainly too extreme, allowing for severe bias toward 
HI. It is astonishing that, even for this choice, B and 
-P(HoI x) (for ro= lh) are still often substantially 
larger than the P-value (see Edwards, Lindman and 
Savage (1963)), indicating that even extreme bias 
toward HI in a Bayesian analysis results in less evi- 
dence against Ho than would appear to have been 
obtained by the P-value. 

Choosing G = (all conjugate densities with mean 60) 
actually works quite well, but one might fear that too 
many sensible g are omitted to trust the resulting 
lower bounds. The class in (10) strikes a nice balance 
between these two extremes. In situations such as 
Example 1, it is natural to argue (on grounds of 
objectivity) that g should be symmetric and nonin- 
creasing in I 0 - 60I .  (Either of these properties could 
be dropped, without qualitatively changing the re-
sults.) Virtually any "objective" weight function that 
would be proposed is in this class, and no density in 
the class is clearly ridiculous. Hence, we will tend to 
use (lo), or variants of it, in our analyses. 
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1.4 History and Overview 	 It should be emphasized that B and P are of interest 

There is substantial literature on the subject of 
Bayesian testing of a point null. Among the many 
references to analyses with particular priors, as in 
Example 1, are Jeffreys (1957, 1961), Good (1950, 
1958, 1965, 1967, 1983, 1985, 1986), Lindley (1957, 
1961, 1965, 1977), Raiffa and Schlaiffer (1961), Ed- 
wards, Lindman and Savage (1963), Smith (1965), 
Zellner (1971, 1984), Dickey (1971, 1973, 1974, 1980), 
Lempers (1971), Leamer (1978), Smith and Spiegel- 
halter (1980), Zellner and Siow (1980), Diamond and 
Forrester (1983) and G6mez and de la Horra Navarro 
(1984). Many of these works specifically discuss the 
relationship of P(Ho I x) to significance levels; other 
papers in which such comparisons are made include 
Pratt (1965), DeGroot (1973), Dempster (1973), 
Dickey (1977), Bernardo (1980), Hill (1982), Shafer 
(1982) and Good (1984). Finally, the papers that find 
lower bounds on B and P(Ho I x )  that are similar to 
those we consider include Edwards, Lindman and 
Savage (1963), Hildreth (1963), Good (1967, 1983, 
1984), Dickey (1973, 1977), Berger (1986), Berger and 
Sellke (1987), Casella and Berger (1987), Delampady 
(1986a, 1986b, 1986c) and Delampady and Berger 
(1987). 

Edwards, Lindman and Savage (1963) deserves spe- 
cial mention, being the first to approach the problem 
from the viewpoint of finding lower bounds on B and 
P(HoI x) over g E G. They were the first to make the 
extent of the conflict between P-values and posterior 
probabilites unambiguously clear. Berger and Sellke 
(1987) were the first to utilize classes G, such as (lo), 
which we tend to prefer and, along with the adjoining 
paper by Casella and Berger (1987) and associated 
discussion, explores.. the extent and meaning of the 
conflict between P-values and posterior probabili- 
ties in the univariate normal problem and certain 
extensions. 

The purpose of this paper is to further explore the 
issues raised in Section 1.2. Of primary importance is 
further discussion of the conflict between P-values 
and conditional measures of evidence. Section 3.1 
briefly reviews the normal theory situation for con- 

, 	 text. One can very reasonably inquire, however, as to 
the extent of the conflict for nonnormal (and nonsym- 
metric) problems. 

To alleviate concerns that the conflict is special to 
the normal problem, we consider in Section 3.2 the 
binomial problem. In the binomial problem, there is 
no natural definition of symmetry, and it is not clear 
how to develop classes G for determination of P and 
B. We will consider a variety of different classes G -
and show that the answers are qualitatively similar 
for the G considered but all differ markedly from the 
P-value. 

in their own right. Lower bounds on the evidence 
against Ho can immediately demonstrate, without hav- 
ing to go through a detailed Bayesian analysis, that 
the evidence against Ho is weak.-Indeed, it is tempting 
to replace use of "automatic" P-values by the far less 
misleading "automatic" B;problems with doing so are, 
however, discussed in Section 5, which describes our 
general recommendations. 

Section 2 is an important preliminary to the subject. 
It attempts to quantify when it is reasonable to model 
a hypothesis testing problem as a test of a point null 
hypothesis. Thus, it essentially defines the class of 
problems that is being addressed. As an immediate 
application, a resolution of Jeffreys's paradox is of- 
fered. Finally, a description of the situation from a 
"robust Bayesian" viewpoint is described; this may be 
the part of the paper of most interest to a Bayesian. 

In Section 4, a number of common objections to the 
analysis (mainly defenses of P-values) are considered. 

2. PRECISE HYPOTHESES AND POINT NULLS 

It is rare, and perhaps impossible, to have a null 
hypothesis that can be exactly modeled as 6 = Oo. One 
might feel that hypotheses such as 

Ho:A subject has no ESP, 

Ho: Talking to plants has no effect on their growth, 

are representable as exact (and believable) point nulls, 
but, even here, minor biases in the experiments de- 
signed to test hypotheses will usually prevent exact 
representations as points. 

More common precise hypotheses, such as 

Ho: Vitamin C has no effect on the common cold, 

are clearly not meant to be thought of as exact point 
nulls; surely vitamin C has some effect, although per- 
haps a very miniscule effect. Thus, in reality, precise 
hypotheses are better represented as tests of, say, 

(11) Ho: 16- O o I  S E  versus HI: 16- 001 > E ,  

where E is "small." It is then of interest to determine 
when one can approximate (11) by the point null test 

Ho*:O=Oo versus HT:O#Oo. 

2.1 Classical Approximation by Point Nulls 

From a classical perspective, there is no difficulty 
in determining when E is small enough so that the test 
in (11) can be approximated by Ho* versus HT. The 
definition of a P-value for (11) would be 
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Thus, one can seek conditions under which a, E a. 
(the P-value corresponding to H:). 

Example 2. Suppose one observes X - N(6, 
a2/n), where a2 is known, and that it is desired to 
test (11).Again defining T(X) = &(if - Oo)/a, cal- 
culation gives 

Suppose that one is interested in (say) determining 
when 

a 0  Z ( 0 . 9 ) ~ ~ ~  

(so that approximating the interval null by a point 
leads to no more than a 10% error in the P-value). 
The values c* = &&/a that achieve this are those 
values less than or equal to the entries in Table 2 (for 
various t). Thus, as long as c is no more than l/i to l/6 

of a sample standard deviation, the use of a point null 
will cause at most 10% error in the calculated P-value 
(for moderate t). See also Hodges and Lehmann 
(1954). 

2.2 Bayesian Approximation by Point Nulls 

A Bayesian, when considering a test such as (11) 
with c small, has in mind a prior density, a(6), which 
is continuous but sharply spiked near Oo. It is conven- 
ient to define Q = (6: I 6 - 60 I I c], = Complement 
of Q, 

Thus, a. is the prior probability assigned to Ho, go is 
the conditional density of 6 given that Ho is true, and 
g1 is the conditional density of 0 given that Hl is true. 
Typically, go will be a sharply spiked density, although 
g1 will be rather diffuse. 

It is usually fairly easy to specify TO, by thinking of 
the prior probability of the original hypothesis (e.g., 
Ho: Vitamin C has no (or negligible) effect). Likewise, 
specification of gl(6), the conditional density given 
that Ho is false, is reasonably tractable. (Note also 
that specification of a. can be avoided through use of 
the Bayes factor, and we will be addressing elimination 

TABLE2 
Bounds on E *  yielding 10%error in the P-value 

t 1.645 1.96 2.576 2.807 3.29 3.89 
P-value 0.10 0.05 0.01 0.005 0.001 0.0001 

Bound on c* 0.257 0.221 0.173 0.160 0.138 0.117 

of g1 through use of lower bounds over gl.) It can be 
very difficult, however, to choose c and to choose go; 
it is simply hard to make fine distinctions about small 
sets with large probability. 

Because of the difficulties in choosing c and go, it is 
of interest to determine when one can approximate 
(11)by the point null test of Ho* versus HT, where the 
"prior" assigns mass a. to (6 = Oo], and gives condi- 
tional prior density g(6) to (6 # Oo]; we assume that 

(13) 
(ii) A = lg(6) dB is suitably small. 

The idea here is that one assigns the same probability 
to H: as to Ho, and specifies g(6) by using the same 
intuition that would have been used to specify g1 (6). 
We are hoping the answer obtained from this simple 
test is close to that which would have been obtained 
for the original formulation, ( l l ) ,  thus avoiding the 
difficult assessment of c and go. 

We will consider the case where we are to observe 
X - N(6, a2/n), where a2 is known. Letting f (2 I 6 )  
denote this density, the exact Bayes factor for testing 
Ho versus H1 in (11)is 

while the Bayes factor for testing H: versus HT is 

where m, ( f )  = J f (f 1 6)g(6) do. The following 
theorem gives conditions under which B E B. 
For use in this theorem, define z* = c &/a and t = 
&(% - 6o)/a as in Example 2, and define 

1 
(16) y = ---- [@(t+ c*) - @(t- c*)] - 1,

2&*4(t) 

where 4 and @ are the standard normal density and 
cdf, respectively. 

THEOREM1. Suppose that a(6) and g(6) are 
unimodal and symmetric about Oo, and that I t 1 r 1, 
c* < I t I - 1, and B I (1+ y)-l. Then 

where 

PROOF. See the Appendix. 
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If both X and y are small, then the error in approx- 
imating B by B will be small. Table 3 gives, for various 
common t and associated P-values, the maximum E* 
for which y I .l.Note also that a crude bound on X is 

Thus, for moderately large n, this will also be quite 
small. 

Example 3. Suppose g is taken to be N(O0, r2 ) ,  
with the user asked to specify 7'. Then 

This is less than .1if n r 64(~*a /7)~ .  1.96Thus, if t = 
is observed, a = 7, E* = 1/4 and n r 4, the error in 
approximating B by B (note that B is given by (15)) 
is no more than 10%. 

Recalling that E = &*a/& is the half-width of a, 
these numbers suggest that the point null approxi- 
mation to Ho will be reasonable so lon as fl is one- 
half a sample standard deviation (a/ 2n)  in width or 
smaller. (This is substantially stronger than the re- 
lated result in Dickey (1976), which can be used to 
verify the accuracy of the point null approximation, 
providing Q is no more than '/lo a sample standard 
deviation in width.) Note also the essential agreement 
of this result with the related result for a frequentist 
approximation that was discussed in Section 2.1. 

2.3 Jeffreys's Paradox 

"Jeffreys's paradox" or "Lindley's paradox" (cf. Jef- 
frey~, 1961, and Lindley, 1957) concerns the fact that, 
in testing H; versus HT with a fixed TO and g, data f,, 
which yields (for each sample size n )  a fixed P-value 
a ,  will result in 

no matter how small a is. Thus, when n is very large, 
a Bayesian test will frequently yield a posterior prob- 
ability of H; near one, even when the P-value is very 
small. This has been much discussed (cf. Bernardo, 
1980, and Shafer, 1982), but is of questionable rele- 
vance because, as n 4 w, E = &*a/& 4 0. Thus, a 
precise hypothesis Ho: 10 - 00 I I e0 will fail to be 
approximable by H;: 0 = 80 when n gets very large. In 

TABLE3 
e*yielding 10%upper error 

t 1.645 1.96 2.576 2.807 3.29 3.89 
P-value 0.10 0.05 0.01 0.005 0.001 0.0001 

Bound on e* 0.62 0.47 0.33 0.30 0.25 0.20 

fact, for Ho: 10 - Oo I I EO, it can be shown for fixed 
~ ( 0 )that f,, which yields (for each sample size n )  a 
fixed P-value a, will often result in 

in marked contrast to Jeffreys's paradox. The reason 
for this is that, as the likelihood function becomes 
concentrated at  the edge of the interval null (where it 
must be located for the P-value to be a ) ,  the interval 
null becomes, effectively, a half line; and, for one- 
sided testing, P-values and posterior probabilities are 
often similar (cf. Pratt, 1965, and Casella and Berger, 
1987). 

2.4 Robust Bayesian Interpretation 

Imagine being faced with a test of a precise hypoth- 
esis. A satisfactory Bayesian output for many purposes 
(see also Sections 4 and 5) would be B, the Bayes 
factor against Ho, together with n(0 I x, n ) ,  the pos- 
terior density conditional on Ho being false. In the 
vitamin C example, B would measure how strongly the 
data support Ho, while ~ ( 6  x, n )  would communicate I 
the location of 0 should Ho be wrong. From these, 
most decisions or conclusions could be made. 

One has a "robust Bayesian" conclusion if the an- 
swers are not highly dependent on uncertain inputs. 
For testing a precise hypothesis, the actual "width" of 
Ho and form of the prior in this region are typically 
very uncertain inputs. Section 2.2 indicates that these 
specifications are, however, avoidable if one can make 
the crude judgment that the width is less than half a 
sample standard deviation. Also, by use of B one can 
even avoid (at this stage of the analysis) specification 
of TO, the prior probability of Ho. The only necessary 
prior specification is thus gl, the prior density assum- 
ing Hois false. In many situations this can be fairly 
easily specified. And if not, one can often present 
answers for a variety of gl or calculate bounds on the 
answers over plausible classes of gl; examples will be 
given later. (Note that, for large n, the condition that 
the width of the null interval be less than half the 
sample standard deviation will be violated. Robustness 
can then be lacking (see Rubin, 1971). 

3. LOWER BOUNDS ON BAYES FACTORS AND 

POSTERIOR PROBABILITIES 


This section will explore the conflict between P- 
values and conditional measures that was discussed in 
"Opinion 1" of Section 1.2. Section 3.1 reviews the 
normal situation, whereas Section 3.2 considers the 
much more difficult binomial case. Section 3.2 is in- 
cluded to demonstrate the generality of the conflict 
being discussed, but can be skipped by readers inter- 
ested only in the broad picture. 
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3.1 Lower Bounds for Symmetric Unimodal G Numerical values in Table 4 were computed by using 

Often, as when dealing with the multivariate normal 
distribution with covariance matrix a multiple of the 
identity, the problem is symmetric about Oo (more 
precisely, is orthogonally invariant). A very natural 
class of weight functions g to consider is then the class 
given by (lo), of unimodal, symmetric about Oo densi-
ties. Either symmetry or unimodality (or sometimes 
both) could be dropped (see Berger and Sellke, 1987), 
but recall that we have to perform a delicate balancing 
act: we want to allow all reasonable ("objective"?) g 
into the class G, but disallow unreasonable g that will 
excessively bias the lower bounds B and f toward HI. 
The class G in (10) is a reasonable balance. 

This class is also relatively easy to work with, be- 
cause of the following standard result. We assume, in 
this section, that the parameter space is RP. 

THEOREM2. over G in (10) of ~ h e ~ s u ~ r e m u m  

m,(x) = J f (x  I e)g(B) do 

is attained at a uniform distribution on a sphere of 
some radius h.In  other words, 

sup m, (x) = sup -
gEG 

where V(k) is the volume of a sphere of radius k. 

It follows from Theorem 2 that B and f (HoI x) (see 
(8) and (9)) can be calculated by simple one-dimen- 
sional maximizations. This is a delightful simplifica- 
tion; the original space G is very complex. This result 
was first utilized in Berger and Sellke (1987). The 
following application ta the multivariate normal dis- 
tribution is from Delampady (1986a). 

Example 4. Testing a p-Variate Normal Mean. 
Suppose X - Np(8, I ) ,  where X = (XI, Xz, ...,Xp) 
and 8 = (81, 02, ..., Op). It is desired to test 

Ho: 8 = 8' against HI: 8 # do, 

where 8' = (8?, 88, . ., 8;) is a specified vector. The 
classical significance test statistic is 

T(X) = J X - e 0 1 2 ,  
which has a xidistribution under Ho. Therefore, the 
P-value of the data x is 

a = P(xp2 ) T(x)). 

Using Theorem 2, the lower bound on the Bayes factor 
over the class G is 

-B = 

the above result for different dimensions and different 
P-values. Here a is the P-value, _P is the lower bound 
on the posterior probability of Ho for ?ro = l/z and B is 
the lower bound on the Bayes factor. 

Note the dramatic discrepancy between a and the 
lower bounds. When p = 1and a = .05, for instance, 
B = .4092; thus, the weighted likelihood of Hl is at 
most 2% times that of Ho. A likelihood ratio of 2% is 
not particularly strong evidence, particularly when it 
is a bound. However, it is customary in practice to 
view a = .05 as strong evidence against Ho. A P-value 
of a = .01, often considered very strong evidence 
against Ho, corresponds to B = .1227, indicating that 
Hl is at most 8 times as likely as Ho. The message is 
simple: common interpretation of P-values, in terms 
of evidence against precise hypotheses, are faulty; 
Bayes factors or posterior probabilities are typically 
at ieast an order of magnitude larger. Note that a 
natural generalization of the symmetry assumption 
is to an assumption of invariance, when a testing 
problem is suitably invariant under a group of trans- 
formations. See Delampady (1986~) for such a gener- 
alization and examples. 

3.2 A Nonsymmetric Situation: Binomial Testing 

3.2.1 Introduction 

We have seen that the class of symmetric unimodal 
densities is sensible and easy to work with. If the 
testing problem is not naturally symmetric in 8, how- 
ever, it is not possible to use such a class. Nevertheless, 
it is possible to find reasonable lower bounds on B 
and P(Ho I x). A natural way to proceed is to consider 
a transformed version of the problem in which sym- 
metry is plausible and proceed as before. This is 

TABLE4 
Lower bounds for spherically symmetric unimodal densities 

l)irnen- a = .001 a = .O1 a = .05 a = .10 

sion _ p g _ p E _ p E _ p E 
1 .0179 .0182 .lo93 .I227 .2904 .4092 .3916 .6437 
2 .0141 .0143 ,0891 .0978 .2582 .3481 .3630 .5699 
3 .0118 .0119 .0827 .0902 .2458 .3259 .3505 .5396 
4 .0113 .0114 ,0783 .0850 .2390 .3141 .3435 .5232 
5 .0098 .0099 .0761 .0824 .2350 .3072 .3391 .5131 
6 .0096 ,0097 .0747 .0807 .2321 ,3023 .3359 .5058 
7 .0095 .0096 ,0738 ,0797 .2302 .2990 .3335 ,5004 
8 .0094 ,0095 .0731 .0789 .2286 .2963 .3318 .4966 
9 .0093 .0094 .0725 .0782 .2273 .2942 .3303 .4932 

10 .0093 ,0094 .0721 .0777 .2264 .2927 .3292 .4908 
15 .0092 .0093 .0699 ,0752 .2233 .2875 .3255 .4826 
20 .0092 .0093 .0692 .0743 .2214 .2844 .3235 .4782 
30 .0091 .0092 .0685 .0735 .2193 ,2809 .3209 .4725 
40 .0091 .0092 .0680 .0730 .2183 ,2793 .3200 .4706 
03 .0090 ,0091 .0678 .0727 .2180 .2788 .3189 .4682 
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illustrated in Subsection 3.2.2. A second possibility is 
to consider the class of all prior densities g, which 
have median and mode at 80; this is illustrated in 
Subsection 3.2.3. A third possibility is to consider the 
class of all conjugate densities having mean 80; this is 
illustrated in Subsection 3.2.4. (Choosing G to be all 
densities was cbnsidered in Edwards, Lindman and 
Savage (1963), but as mentioned in Section 1, we feel 
that the resulting lower bounds are too seriously 
biased in favor of HI to be very useful.) 

The problem that will be considered in this section 
is that of testing a binomial parameter. Thus, X will 
have a binomial distribution with parameters n and 8. 
The problem of interest is to test Ho:8 = 80 against 
HI: 8 # 80, where 0 < 80 < 1is a specified quantity. I t  
is clear'there is no natural symmetry in this problem 
unless 80 = 95.This even makes difficult the definition 
of a P-value. We will use the "intrinsic significance 
level" obtained by choosing T(X) = l/f (X I 80) in (1). 
This leads to defining the P-value of an observation x 
as 

3.2.2 A Natural Transformed Symmetric Class 

When 80 = l/2 it is easy to define a notion of prior 
symmetry; simply choose all densities which are sym- 
metric about the point lh. It is not clear how to define 
symmetry otherwise, however. A natural way to obtain 
a notion of symmetry is to consider symmetry in a 
suitable transformation of the parameter 8. One such 
transformation is suggested by the normal approxi- 
mation to the binomial likelihood function. Thus, if 
HO:8 = 80 is to be tested, it may be reasonable to 
specify symmetry in the variable 

note that this has a range of (-a, a),unlike 8 E 
(0, 1).Let h be a nonnegative, unimodal symmetric 
function about the origin (the symmetric unimodal 
density of u). Transforming back to 8, yields the 
density 

(Because u(8) is an increasing function of 8, the 
Jacobian can be written (du(8)/d8) instead of 
I (du(8)/d8) 1 .) Note that Bo is the median of .  the 
density g, because 

Let Gus be the set of all densities of the form given by 
(20). Using Theorem 2, a simple expression for the 

lower bound on the posterior probability of Ho: 8 = 80 
can be obtained as follows. 

Pus = inf P(Ho1 x)-
~ E G u s  

where l(u) = (:)8(u)"(l - 8(u))"-" and 8(u) is the 
inverse function of u(8), given by 

PROOF. See the Appendix. 

REMARK. The supremum over k is actually at-
tained for some k, since (1/2k) $kk  Z ( U )  du converges 
to l(0) > 0 as k +0 and vanishes at a. 

It is a simple numerical computation to obtain PUS 
by using Theorem 3. For a 0  = 1/2 and selected values 
of 80, n and x, these lower bounds are tabulated along 
with the corresponding P-values in Table 5. 

The differences between a and Pus are of the 
same magnitude here as in the normal situation of 
Section 3. For a: = .01, .05, .lo, the values of PUSfrom 
Table 4 (in one dimension) were .109, .290 and .392, 
respectively, all similar to the corresponding PUS in 
Table 5. Thus, the discreteness of X and the lack of 
natural symmetry of the parameter space do not mark- 
edly affect the large discrepancy between a: and 
P(HoI x). Of course, the notion of symmetry that was 
used here could be questioned, but other notions of 
symmetry were tried in Delampady (1986a) and gave, 
if anything, larger discrepancies between a and _P. 

TABLE5 
Lower bounds for transformed symmetric densities 

a n x p0 Maximizing k Pus 
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3.2.3 Cksses with Specified Mode .nd bYedian 

In a number of situations, the class of densities g, 
which have their median and mode at 80, is quite 
reasonable. In fact, the class of symmetric unimodal 
densities about the point Oo is a subclass of this set. 
Study of this class pf densities will help us judge if the 
definition of symmetry suggested in the previous sec- 
tion is reasonable. 

Let G1 be the set of all densities on [0, 11 with 
median at 80. Then, 

Let Go be the set of all unimodal densities on the 
interval [0, 11with median and mode at 80. That is, 

1
Go= {g : 1 4 g ( 8 )  d8 = - ;andg is nondecreasing 

2 

on [0, 00], and nonincreasing on [Oo, 11I . 

Then Go C GI. Of these two classes, Go may be the 
most reasonable; G1 allowing unrealistic concentration 
at particular points. Lower bounds on the posterior 
probability of the null hypothesis, Ho:8 = 00, in the 
binomial case are once again considered. 

1 

sup 1(i) 8)"-'g(8) d8 8'(1-
gEG, 

PROOF.See the Appendix. 

where 

#,, MeanCkss with Conjugate3.2.4 

may be calculated. These lower bounds denoted, 

respectively, as &,Me, EsM~M,,, were computed for 

some selected values of n, x, 80 <when r0 = lh, 

and are tabulated along with the corresponding P-

values in Table 6. We defer discussion of the table 

until Section 3.2.5. 


The class of conjugate g with mean Eg(8) = 80 are 
studied here, and the relevant lower bounds are ob- 
tained. For the binomial distribution, the beta distri- 
butions form a family of conjugate distributions. The 
density of beta(a, b) with parameters a > 0, b > 0, is 
given by 

and the mean is (a/(a + b)). Therefore, the class of 
conjugate priors to consider is that which consists of 
all beta(a, b) distributions such that (a/(a + b)) = 80, 
or equivalently such that a = coo, b = c(1 - 80) for 
some c > 0. Let GC denote the class of all such 
densities. 

-PC= inf P(H0 I x) 
gEGc -

r ( ~ ) r ( ~ + 8 ~ ) r ( n - ~ + ~ ( l - 8 ~ ) )x sup
,,o r(c8,)r (41- 80))J?(n+ ~ ) ( 8 ~ ) ' ( 1- 8o)"-' 

PROOF.See the Appendix. . 

TABLE6 
Lower bounds for densities with specified median, mode 

PROOF.See the ~ p ~ e n c b x .  

Using the expressions given in Theorem 4 and 5, 
the lower bounds on the posterior probability of Ho 
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The lower bounds on the posterior probability of HO 
given x can easily be computed numerically, for spec- 
ified values of 80, n, x and TO. For TO= % and some 
selected values of n, x, these lower bounds, denoted 
-PCare tabulated in Table 7 along with the correspond- 
ing P-values. Again, we defer discussion until Section 
3.2.5. 

Good (1950, 1958, 1967) and Edwards, Lindman 
and Savage (1963) contain results related to the lower 
bounds on Ho over the class of conjugate densities 
that are presented here. 

3.2.5 Comparisons and Conclusions 

The major results of this section are now summa- 
rized and compared. Table 8 very briefly summarizes 
all of the earlier tables. Here "a" is the P-value, 
"range" is the range of the lower bounds on the pos- 
terior probability of Ho for the binomial distribution 
as the corresponding P-value varies around "a"; C 
stands for the class of conjugate priors, US for the 
class of priors that are unimodal symmetric in the 
transformed parameter, SMeMo for the class of priors 
with specified median and mode and finally, SMe 
stands for the class of priors with specified median. 

Clearly the conjugate priors bounds tend to be the 
largest, followed by the US and SMeMo bounds that 
are similar, with the SMe bounds being the smallest. 
This ordering was to be expected, because the corre- 
sponding classes of densities are roughly inversely 
related to size. Our own preference is for the -US 
bounds, because of our feeling that the US class of 
densities is an excellent compromise between being 
too big (and hence too biased against Ho) and too 
small. 

One observation of interest is that the three classes 
that attempt to spread mass on both sides of Oo, 

TABLE7 
Lower bounds for conjugate densities 

TABLE8 
Summary of lower bounds 

- -

Normal Range o f  binomial lower bounds 
a bounds C US SMeMo SMe 

namely C, US and SMeMo, all yield moderately sim- 
ilar lower bounds. The bounds for SMe are substan- 
tially smaller only because this class allows the mass 
from one side to be concentrated in the middle, a not 
terribly reasonable eventuality. 

Note also, that the bounds obtained for the normal 
distribution in Table 4 are similar to the first three 
binomial lower bounds. This gives considerable sup- 
port to the notion that the discrepancy between P- 
values and posterior probabilities in testing precise 
hypotheses is a general phenomenon. 

4. COMMON REJOINDERS 

Many studies, such as those in Section 3, have been 
performed for a wide variety of testing situations 
involving a precise null hypothesis. The overwhelming 
conclusion is that P-values are typically at least an 
order of magnitude smaller than Bayes factors or 
posterior probabilities far Ho. This would indicate that 
say, claiming that a P-value of .05 is significant evi- 
dence against a precise hypothesis is sheer folly; the 
actual Bayes factor may well be near 1, and the pos- 
terior probability of Ho near lh. Needless to say, 
supporters of P-values will marshal1 a number of 
arguments against such dismissal of P-values. In 
this section we consider, and reply to, a number of 
such rejoinders. 

4.1 Rejoinder 1: Point Nulls Are Unreasonable 

This argument is basically that it is rare or impos- 
sible to encounter hypotheses that are representable 
a's exact point nulls. The argument continues with 
voicing of the suspicion that the conflict between P- 
values and P(HoI x) is due to the assignment of ,the 
positive mass a. to a single point. 

Section 2 effectively rebuts this argument. It shows 
that point nulls are often reasonable, as an approxi- 
mation to fuzzy precise nulls, and that the mass, ao, 
assigned to 8 = 80 is simply the mass corresponding to 
the precise hypothesis Ho: 18 - 80 1 Ic. For true 
precise hypotheses, such as Ho:"vitamin C has negli- 
gible effect on the common cold," the assignment of a 
positive mass to the hypothesis is perfectly natural. 

Also, the above argument ignores the role of B. The 
Bayes factor does not depend on ao, and can be 
thought of as the evidence (in a likelihood ratio sense) 
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provided by the data against Ho. We have seen that B 
and 	P(Ho1 x) convey essentially the same message 
concerning P-values. 

Sometimes it is argued (cf. Casella and Berger, 
1987) that the important testing problems are one- 
sided tests of the form Ho: 8 I 80 versus HI: 8 > 80, 
where there is no strong belief that 8 is 
near 80. For a reply to this point, see the rejoinder by 
Berger and Sellke (1987), where it is argued that the 
only problems which probably should be formulated 
as testing problems are those involving precise (i.e., 
small interval) hypotheses. (One-sided testing situa- 
tions are typically better handled as decision prob- 
lems.) Of course, every statistician must judge for 
himself or herself how often precise hypotheses ac- 
tually occur in practice. At the very least, however, we 
would argue that all types of tests should be able to 
be properly analyzed by statistics. 

Note also that it is not the two-sided feature of our 
testing formulation that is the cause of the discrepancy 
between the P-value and the posterior probability. 
Testing Ho: 8 = Bo versus HI: 8 > 80 (or Ho: 
1 8 - go I Ie versus HI: 8 > 80 + e)  yields Bayes factors 
and posterior probabilities with qualitatively the same 
behavior as the two-sided case. The key feature is that 
of Ho being precise, as opposed to diffuse in the 
Casella-Berger (1987) sense. 

4.2 	Rejoinder 2: The P-Value Is Just a Data 
Summary, Which We Can Learn To Properly 
Calibrate 

Typically, the P-value is a monotonic function of 
the actual evidence against HO (either B or P(HoI x), 
say), and one can argue that, through experience, one 
can learn how to interpret P-values. There are several 
obstacles to such "calibration" of P-values, however, 
including: 

(i) It is dependent on sample size-see Table 1for 
an illustration. 

(ii) The interpretation of P-values can depend 
strongly on the model f (x I 8)-see Berger and Sellke 
(1987) for an illustration. 
, (iii) The interpretation depend,^ strongly on the 
stopping rule used-see Berger and Berry (1987) for 
illustration. 

(iv) The interpretation depends strongly on the type 
of null hypothesis being tested. In particular, the 
degree to which it is precise, as opposed to diffuse, has 
a very large effect, as the following generalization of 
Example 2 from Section 2.1 demonstrates. (See Good 
(1986) for a related analysis). 

Example 2 (continued). Suppose X - N(8, a2/n), 
a2  known, and that it isdesired to test 

H ~ :(8-801 I &  against HI: 18-801 >e.  

Let T = &(X - 80)/a and t, be the critical value 
(which depends on e )  such that 

Were we to observe T = t,, we would report a as 
the P-value. To compare this with the posterior prob- 
ability when t, is observed, consider priors ?r for 8 that 
(i) are symmetric about 80; (ii) are nonincreasing in 
18 - 1; and (iii) give prior probability .5 to Ho. 
Denote this class by US. In Delampady (1986b) it is 
shown that 

-P(HoI x) = inf Pr(Ho1 x)
rEUS 

where b = [a(&*- t,) - a(-&* - t,)]/24(t,), 
c* = &&/a and 4 and 9 are the standard normal 
density and cdf, respectively. Figure 1 presents 
-P(Ho1 x) as a function of c*, when the P-value is 
fixed at a = .05 (i.e., for each e*, x is assumed to be 
such that T(x) = t.06). Here "LENGTH" stands for 
the standardized length c* of the half interval, and 
"BOUND" denotes _P(HoI x). 

When e* (and hence e)  is zero, the test is that of a 
point null, and P(H0 I x) is the lower bound discussed 
in Section 3; note that it is much larger than the P- 
value, a = .05. On the other hand, as e* +a~(i.e., Ho 
becomes more diffuse) ~ ( H o  I x )  + a. (This is essen- 
tially the result of Casella and Berger, 1987.) 

The above example demonstrates that the interpre- 
tation of a P-value, as evidence against Ho, depends 
crucially on the nature of Ho.But if the interpretation 
depends on Ho, the sample size, the density and the 

FIG.1. P(H0I X )  for interval nulls. 
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stopping rule, all in crucial ways, it becomes ridiculous 
to argue that we can intuitively learn to properly 
calibrate P-values. 

4.3 Rejoinder 3: Just Use Confidence Intervals 

This was Opinion 3 discussed in Section 1.2. "Just 
determine a confidence region (or Bayesian credible 
region, perhaps with an objective prior)," so the ar- 
gument goes, "and draw conclusions directly from the 
region." The chief advantage of a confidence or cred- 
ible region, of course, is that it indicates the magnitude 
of the discrepancy of 0 from 60. 

This argument is not unreasonable when Ho is dif- 
fuse, but is wrong when Ho is precise. Confidence 
regions and "objective" Bayesian credible regions gen- 
erally correspond to very diffuse prior distributions, 
and are simply inappropriate if there is a special value 
Bo. Only measures such as B or P(HoI x) can indicate 
the strength of evidence against a particular value 
specified by Ho:6 = 60. To put this another way, the 
likelihood of a special point 60, which is outside, say, 
a 95% confidence set C, is often not too much smaller 
than the "average" likelihood of 0 in C, and there is 
then no strong justification for rejecting 60. 

For hypothesis testing problems with a special point 
Bo (or special small interval (Bo - e, Bo + e)), we would 
urge reporting both the Bayes factor, B, against Bo and 
a confidence or credible region, C. The Bayes factor 
communicates the evidence in the data against 00, and 
C indicates the magnitude of the possible discrepancy. 

4.4 Rejoinder 4: There May Be No Alternatives 

Suppose the hypothesis of interest is that X - Fo, 
but that no alternatives to Foare specified. It might 
still be possible to specify a statistic T(X) to measure 
discrepancy of the data with Fo, and one could then 
calculate a P-value against Fo.Without explicit alter- 
natives, however, no Bayes factor or posterior proba- 
bility could be calculated. Thus, the argument goes, 
one has no recourse but to use the P-value. 

A number of Bayesian responses to this argument 
have been raised (cf. Berger and Wolpert, 1984); here 
we concentrate on responding in terms of the discus- 
sion in this paper. If, indeed, it is the case that 
P-vAlues for precise hypotheses essentially always 
drastically overstate the actual evidence against Ho 
when the alternatives are known, how can one argue 
that no problem exists when the alternatives are not 
known? To the contrary, what we have learned about 
testing precise hypotheses when we have alternatives, 
should serve as overwhelming evidence that a small 
P-value against a precise hypothesis simply may not 
indicate strong cause to doubt the hypothesis. 

Often there are, in fact, alternatives lurking in the 
background, which can be used to calculate Bayes 

factors or posterior probabilities for Ho. Consider, for 
instance, the following example ( from Delampady and 
Berger, 1987), concerning the x test of fit. 

Example 5 .  x2  Test of Fit. Consider a statistical 
experiment in which N independent and identically 
distributed random quantities Xl, X2, .. ., XN are 
observed from a distribution F. The problem is to test 
the hypothesis 

Ho: F = FO versus HI: F Z  Fo, 

where Fo is a specified distribution. The standard test 
procedure for this problem is the x test of fit. 

X 2  Test Procedures. First, a partition (ai]Lo of the 
real line is considered. Then the frequencies of the N 
observations in this partition are found. Let z = 
(zl, - . . , z,) ' denote these frequencies; thus, zi= the 
number of Xi's in (ai-1, ail. Let 

pi = F(ai) - F(U~-~)  

= PF(U~-~< X 5 ai), 

p: = Fo(ai) - Fo(ai-1) 

= P&(U~-~ a;),< X 5 


and 


Then the x 2  test procedure is to calculate the test 
statistic, 

and compute the P-value assuming a Xk-l distribution 
for T, as 

a = P ( T  2 t). 

But reducing the observations to the vector z of fre- 
quencies really means that we are testing 

Ho: p = p0 versus HI: p # pO, 

where z has a multinomial (N, p) distribution. Thus, 
there really are implied alternatives, and one can 
calculate B or P(Ho 1 z) for this precise null testing 
problem. 

It is shown in Delampady and Berger (1987) that 
lower bounds on B and P(Ho I x), analogous to those 
discussed in this paper, can be found for this multi- 
nomial testing problem. For all "objective" classes of 
priors considered, these lower bounds are once again 
an order of magnitude larger than the P-value. 

Of course, not all nonparametric tests can so easily 
be reduced to parametric tests amenable to Bayesian 
analysis. The example thus mainly serves to reinforce 
skepticism of the argument that P-values are okay if 
no alternatives have been specified. 
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4.5 Rejoinder 5: P-Values Have a Valid 
Frequentist Interpretation 

This rejoinder is simply not true. P-values are not 
a repetitive error rate, at least in any real sense. A 
Neyman-Pearson error probability, a ,  has the actual 
frequentist interpretation that a long series of a level 
tests will reject no more than 100a% of true Ho, but 
the data-dependent P-values have no such interpre- 
tation. P-values do not even fit easily into any of the 
conditional frequentist paradigms. 

Furthermore, any type of a repetitive "error rate" 
can be accused of addressing the wrong question. Most 
hypothesis tests are set up to attempt to answer the 
question: "In light of the data, do I have reason to 
think that Ho is false." To see, in a long run repetitive 
scenario, that the P-value can be a misleading answer 
to this question, consider the following example from 
Berger and Sellke (1987). 

Example 6. Jeffreys (1980) states, concerning the 
answers obtained using his prior for testing a point 
null, 

"These are not far from the rough rule known to 
astronomers, i.e., that differences up to twice 
standard error usually disappear when more or 
better observations become available, and that 
those of three or more times usually persist." 

Suppose such an astronomer learned, to his sur- 
prise, that many statistical users rejected null hy- 
potheses at the 5% level when t = 1.96 was observed. 
Being of an open mind, the astronomer decides to 
conduct an "experiment" to verify the validity of re- 
jecting Ho when t = 1.96. He looks back through his 
records, and finds a large number of normal tests of 
approximate point nulls, in situations for which the 
truth eventually became known. Suppose he first no- 
ticed that, overall, about half the point nulls were false 
and half were true. He then concentrates attention on 
the subset he is interested in, namely those tests that 
resulted in t being between, say, 1.96 and 2. In this 
subset of tests, the astronomer finds that Ho had 
turned out to be true 30% of the time, so he feels 
vindicated in his "rule of thumb" that t z 2 does not 
imply Ho should be confidently rejected. 

In probability language, the "experiment" of the 
astronomer can be described as taking a random series 
of true and false null hypotheses (half true and half 
false), looking at those for which t ends up between 
1.96 and 2 and finding the limiting proportion of these 
cases in which the null hypothesis was true. It can be 
shown that this limiting proportion will be at least .22, 
and is usually much larger. 

Note the important distinction between the "exper- 
iment" here and the typical frequentist "experiment" 
used to evaluate the performance of, say, the a = .05 
test. The typical frequentist argument is that, if one 

confines attention to the sequence of true Ho in the 
"experiment," then only 5% will have t r 1.96. This 
is, of course, true, but is not the answer the astronomer 
was interested in. He wanted to know what he should 
think about the truth of Ho upon observing t G 2, and 
the frequentist interpretation of LY = .05 says nothing 
about this. 

4.6 Rejoinder 6: The P-Value Is a Measure of 
Surprise 

It is true that, were HO true, we would not expect to 
observe data that yield a small P-value. The issue, 
however, is whether or not the actual magnitude of 
the P-value can be given a quantitative interpretation 
in terms of the evidence against Ho. We feel that no 
reasonable such interpretation can be given; a t  best, 
the P-value can only serve as a crude indicator that 
something surprising is going on, perhaps acting as 
spur to carry out a meaningful Bayes factor or poste- 
rior probability calculation. 

Some statisticians argue that the implied logic con- 
cerning a small P-value is compelling: "Either Ho is 
true and a rare event has occurred, or Ho is false." One 
could again argue against this reasoning as addressing 
the wrong question, but there is a more obvious major 
flaw: the "rare event" whose probability is being cal- 
culated under Ho is not the event of observing the 
actual data xo, but the event 

E = (possible data x: 1 T(x) I r I T(x0) I ) .  
The inclusion of all data "more extreme" than the 
actual xo is a curious step, and one which we have seen 
no remotely convincing justification for. Indeed; there 
are at least the following two arguments against such 
inclusion: 

(i) There is a vast difference between being told 
that X =xo and being told only that X EE. Intuitively, 
the difference is clear; the latter seems to be substan- 
tially stronger evidence against Ho. This is quantified 
in Berger and Sellke (1987), where it is demonstrated 
that P(Ho ( E) is frequently very close to the P-value 
and, hence, much smaller than P(Ho ( x0). See also 
Good (1984), Note C200. Note that the "logic of sur- 
prise" cannot differentiate between xo and E (at least, 
in its usual forms of implementation). 

(ii) The logic of surprise cannot separate evidence 
against the hypothesis from "unlucky" data. It is not 
hard to construct examples (cf. Example 19 on page 
202 of Berger, 1985) in which data can be extremely 
surprising yet not contraindicate Ho. 

This matter is of enough importance that one more 
example (this one similar to examples in Edwards, 
Lindman and Savage, 1963) is in order. 

Example 7. An ESP experiment is conducted to 
see if the subject can forecast the outcome of the flip 
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of a fair coin. A fixed sample of 400 flips is taken, and 
the subject is correct 220 times. Letting X = # correct 
guesses out of n = 400 trials, with 0 = probability of a 
correct guess, clearly X - binomial (n, 8) and testing 
Ho: 0 = 0.5 versus HI: 8 # 0.5 is of interest. The P- 
value of x = 220 (two-sided) is almost exactly .05 (note 
that the one-sided P-value would be 0.025), yet 

where f (x 10) is the binomial density. This likelihood 
ratio is an absolute lower bound on the Bayes factor, 
and so the evidence against Ho can be no more than 
7.5 to 1. Thus, even though we are surprised to see 
x = 220, and the amount of our surprise might be 
representable as 20 to 1 or 40 to 1 (two-sided or one- 
sided), we can explicitly calculate that the evidence 
against Hois at most 7.5 to 1. Use of the class (10) of 
"objective" weight functions would yield a lower bound 
on the Bayes factor of about 112.5, causing even 
greater doubt about the relevance of "surprise" to 
"evidence against Ho." 

4.7 	Rejoinder 7: Decision-Theoretic Analysis Is 

Necessary in Testing Problems 


A frequent attempt to dismiss the conflict between 
P-values and Bayes factors is to argue that neither is 
relevant: one should instead quantify losses in incor- 
rectly accepting or rejecting Hoand perform a decision 
analysis. We certainly agree that this is a good idea, 
but would argue that the basic point we have made is 
still relevant. In particular, knowing that there is a 
probability mass P(Ho( x) at (or very close to) Bo can 
be very important in the decision analysis. For in- 
stance, if one is testing a current scientific theory Ho, 
the size of this point mass may be all important in the 
decision problem. Or, if one is conducting a screening 
test of two completely new drugs, with 8 being the 

cally) to both drugs being completely ineffective, then 
the size of P(Ho I x) will be very important in the 
decision problem concerning whether to proceed with 
more extensive testing. The point is that one cannot 

I always ignore the special nature of 00 in decision 
analyses. 

5. WHAT SHOULD BE DONE? 

First and foremost, when testing precise hypotheses, 
formal use of P-values should be abandoned. Almost 
anything will give a better indication of the evidence 
provided by the data against'H0. 

Before discussing alternatives to P-values, com- 
ments about informal uses of P-values are in order. It 
is often vigorously argued that P-values are valuable 

0 corresponding (typi- = 6'mean difference and Ho: 

in informal stages of model development. (By "model" 
here we mean the entire stochastic structure, possibly 
including the prior or priors. This is even argued by 
many Bayesians (cf. Dempster, 1971, 1973; Box, 
1980).) The argument is that, at a given point in the 
model development process, the currently entertained 
model is similar to a precise null, but alternatives have 
not been formulated; although Bayes factors cannot 
then be calculated, it is nevertheless desirable to have 
mechanisms to determine whether or not the present 
model is satisfactory. The P-value, it is argued, can be 
useful in making this decision. 

This situation is very similar to that discussed in 
Section 4.4, in which we argued that the lack of 
alternatives does not in any way save the P-value. 
There is, however, an important difference here: the 
precise null being considered at an interim stage in 
the model formulation process is not usually a model 
that is believed to be true a priori, in the sense that 
there is a much sharper concentration of prior beliefs 
about this model than elsewhere (in "model space"). 
P-values are not necessarily terrible, as measures of 
evidence, in the absence of such apriori concentration. 
Of course, even here a small P-value should not, by 
itself, lead to rejection of the model; it may lead to a 
search for alternatives, but, once the alternatives are 
formulated, final decisions should be based on Bayes 
factors or posterior probabilities. 

The above discussion points out the care that must 
be taken in formulating hypotheses and thinking 
about testing. With P-values, it matters very little 
whether, say, one formulates a problem as a one-sided 
test or as a two-sided test of a point null (assuming, 
of course, that 0 is a real-valued parameter); the P- 
value can change by a factor of two, but this is rela- 
tively minor (in the grand scope of things). Bayes 
factors for the two formulations typically differ by at  
least an order of magnitude, however. Thus, it is 
crucial to distinguish between precise hypotheses that 
are just stated for convenience and have no special 
prior believability, and precise hypotheses which do 
correspond to a concentration of prior belief. It is the 
latter that are being addressed in this paper. 

Returning to "what should be done," several possi- 
bilities deserve consideration: 

Method 1. Use the Lower Bounds B and c. It 
would be substantial improvement over P-values to 
report, as the evidence against Ho, the lower bound B 
in (8) or c (Ho I x) in (9) (the latter for, say, TO = %) 
with G chosen appropriately. This would, at least, 
result in the reporting of numbers that are (usually) 
of the correct order of magnitude. 

The choice of G is somewhat arbitrary, but, as we 
have seen, there is often considerable robustness with 
respect to this choice. The bounds based on broad 
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classes such as (10) (e.g., (18) for the normal problem 
and (21) for the binomial problem) have the appeal of 
arguably being absolute "objective" lower bounds. 

It is probably not optimal, however, to strive for 
absolute lower bounds, because we are imagining use 
of these numbers as actual evidence against Ho. A 
lower bound may w'ell be unreasonably small, espe- 
cially if G is chosen to be a large class. Recall that 
using a lower bound as the reported evidence is bias 
toward HI, which is usually considered to be undesir- 
able. (Indeed, the only reason we might actually en- 
courage use of the lower bounds, with their attendant 
biases, is that they are much less misleading than are 
P-values.) 

An attractive intermediate class, G, is the class of 
all standard conjugate densities with mean equal to 
60. (Conjugate densities may not exist or be well- 
defined; but any low-dimensional class of priors hav- 
ing mean, or median, equal to 60 and having a wide 
range of variances would likely be reasonable.) Lower 
bounds for this class (see, for example, Section 3.2.4) 
are often not too extreme and tend to be almost trivial 
to calculate. This is because the marginal density, 
m,(x), typically has a closed form representation if g 
is conjugate, and the class of all conjugate g that have 
mean Bo is usually a small (often one-) dimensional 
class; the minimizations in (8) or (9) are then easy 
(often one-variable) minimization problems. Several 
other examples can be found in Edwards, Lindman 
and Savage (1963). 

Method 2. Use a Conventional Prior. Although 
vastly superior to P-values, B and P can be mislead- 
ingly small. An indication of this is that all lower 
bounds discussed herein do not depend on the sample 
size. But Table 1indicates that, for actual fixed prior 
opinions, B and P should eventually be increasing in 
n (indeed, roughly as a multiple of &); cf. Jeffreys 
(1961), Lindley (1961) and Good (1984, Notes C144 
and C200). Hence, especially for large n, B and _P are 
suspect (although see Section 2). 

This suggests simply choosing a prior density g in 
some conventional fashion. Note that, as argued in 
Section 1.2, there is no objective or noninformative 
choice for g that can be made,. The conventional 
choices for g that are referenced in Section 1.2 are all 
reasonable, but it would take too long to discuss their 
differing motivations. We would feel comfortable with 
the use of any of the conventional choices, especially 
if augmented with presentation of B or _P. 

Note, especially, the use of P(H0 I x) for no = lh and 
any of the conventional g. This requires no subjective 
inputs of the user, and is onderstandable as the final 
probability of Ho,in light of the data. It is as easy to 
use as a P-value, much easier to understand, and much 
less likely to be misinterpreted. The point of empha- 

sizing this is that such automatic Bayesian methods 
are often criticized as being "arbitrary," altl~ough full 
subjective Bayesian analysis is described as being too 
hard. But the user domains are different. For those 
who have the capability, we would urge a fully subjec- 
tive Bayesian analysis; for those requiring an auto- 
matic method, at least the automatic P(Ho ( x) for a 
conventional prior will be much better than the au- 
tomatic P-value. 

Method 3. Subjective Bayesian Analysis. Fully 
subjective Bayesian analysis is often quite easy in this 
problem. The reason is that, as indicated in Section 
2, only a few key features of the prior are typically 
required: no, the probability of Ho, and (say) the 
quartiles of g, the conditional prior distribution as- 
suming that Hois false. (no can be omitted if one uses 
the Bayes factor.) The exact functional form of g is 
frequently irrelevant, so that one can choose, say, a 
conjugate form to do the analysis. 

Furthermore, graphical displays of, say, B as a func- 
tion of the parameters ofg can be used to communicate 
scientific results to a wide variety of different users 
with different prior opinions (cf. Dickey, 1973). 

Example 8. Suppose we observe XI, . . .,X,,, dis-
tributed as iid. N(6, a2) random variables, 6 and a2 
unknown. It is desired to test Ho: 6 = 0 versus HI: 
6 # 0. The actual experiment has n = 15, 3i. = 20.93, 
s = 37.71 and t = &?/s = 2.15. The P-value for this 
t test is 0.05. 

To perform a subjective Bayesian analysis, it suf- 
fices to specify p and T, where ,u is the median of g 
and p f T are the quartiles. (Thus, p would be the 
guess for 6, assuming Ho to be false, etc.) Then, follow- 
ing the analysis in Section 4.10 of Berger (1985) (based 
on independent Cauchy and noninformative priors for 
6 and a2, respectively), one can construct a contour 
graph of B as a function of p and T. See Figure 2. 
Thus, an individual who believes that if HI is true 
then 6 is likely to be between 10 and 50 (specifically, 
who chooses p = 30, so 1 ,u - li: 1 = 9.07 and T = 20) 
will conclude that B E 0.38 (i.e., the evidence against 
Ho is only 1to 2.5). An individual with p = 30, but r 
only partly specified, say 10 r T r 30, will conclude 
that 0.26 r B r 0.51. Note that, for the "objective" 
choice p = 0, the lower bound on B over all T is about 
0.55, even though the P-value was 0.05. 

APPENDIX 

PROOFOF THEOREM1. Since go is unimodal and 
symmetric about do, it can be represented as a mixture 
of uniform densities, 
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FIG.2. Contours of B as a function of I j i  - i I and r when i = 20.93, s = 37.71 and n = 15. 

so that so that 

(22)  

l f ( 2I o )go(o)ao 

= 1[$[:: f ( 2 l o )  do]F(da) .  
(24)  

lf(iI o)sl(o)do 

For It1 r l a n d a < c = c * a / & w i t h e * <  It1 -1,it 
is easy to see that the bracketed integrand in (23) is , . 

= [ m g ( 2 )- Jn f(i1 o )g (o)  do] 
an increasing function of a. Hence, 

= mg(3c)(l+ $2), 

' f ( ~ l o o )5 J f ( 2 l o ) g 0 ( 6 )n do 5 l f ( i 1 8 )  do. where 

This can be rewritten 

r 
Observing that g(O)/A is a unimodal symmetric den- 

where 0 5 Iy. 
Next, we observe that, on a; 

sity on 52, it follows as in the argument leading to (23)  
that 
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where 0 r #T r y. Hence, 

X X 
(25)  ---- [ I  - B ( I  + y ) ]  r $35-

( 1  - A )  
- [l-Bl. 

Thus, combining (23) ,(24) and (25) ,we get 

where 

r ( 1  + 7 )  
1 + X ( l  - X ) - l [ l  - B ( 1  + y ) ]  ' 

Algebra, together with the bounds 0 5 B 5 

( 1  + y)- l ,  yields (17) .  

inf P ( H o1 n, x )  

where Gus consists of all g such that 

and h is unimodal symmetric about 0. Let H be the 
class of all unimodal symmetric densities h. Then, 

from Theorem 2, which proves the result. 

where hl r 0 on [0, 801, h2 r 0 on [ O o ,  11 and 
J t h l ( 8 )dB= % = J j o  h 2 ( B )  dB. L e t x l n r  00. Then, 

because (:)BX(1- 8)"-" has its maximum at 6 = x / n  
and decreases monotonically on both sides. In the 
other case, where x l n  > 60, the roles of hl and h2are 
reversed. 

PROOFOF THEOREM5. Assume that x/n r Bo;  the 
other case is similar. Let 

I = sup l1(:) B x ( l  - 0)"-'g(B) dB. 
gE Go 

Then 

I = sup loo(:)BX(1 - 1 3 ) ~ - ~ h ~ ( B )dB 
h1 

where hl r 0 and nondecreasing on [0,O o ] ,  h2r 0 and 
nonincreasing on [ O o ,  11, and J $  hl(13) dB = lh = 
Jioh2(B)dB. Therefore, 

1= sup 1'( : ) O x ( l  - 8)"-'g(0) dB 
gEGo 

= sup [(:)BX(1 - R)"-'h1(B) dB 
hl 

because (:)BX(1- B)"-", in this case, is decreasing 
monotonically on both sides of ( x l n )  r 60.Hence, 

I = sup lZoog ( X ,n, B)h3(B)dB + 
h3 

where 

for B 5 00, 
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and h3 r 0 is unimodal and symmetric about d o ,  
$ i B o  h 3 ( 8 )dB = lh. However, 

200 

s u p 1  g ( x ,  n , B ) h 3 ( 0 )  do  
h3 

= sup (:) d X ( 1- d).-' dB,
2r a,,-, 

because unimodal symmetric densities are mixtures of 
uniforms. 

inf P T ( H o( x )  
7rEC 

Now for 6 # do 

* ( d ) I ( d  z 00) 

= sup {J+*,,(:) OX(1- d)"-' 
c>o 

= sup 
c>o {r ( ~ e , ) r ( ~ ( l - o ~ ) )x 

which proves the theorem. 
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first raised many years ago by H. Jeffreys. The exten- 
sion of the discussion to include broad classes of priors 
is particularly striking. 

For those taking an eclectic view of statistical theory 
the comparison of different approaches to the same or 
similar problems is important, sometimes soothing 
and occasionally constructively alarming. What is one 
to make of the present comparisons? The authors are 
in no doubt. 

(i) "Rejoinder 5. P-values have a valid frequentist 
interpretation. This rejoinder is simply not true" 
(Section 4.5). 




