Goodness of fit and Wilks’ theorem

Suppose we model data \(y \) with a likelihood \(L(\mu) \) that depends on a set of \(N \) parameters \(\mu = (\mu_1, \ldots, \mu_N) \). Define the statistic

\[
t_\mu = -2 \ln \frac{L(\mu)}{L(\hat{\mu})},
\]

where \(\hat{\mu} \) are the ML estimators for \(\mu \). The value of \(t_\mu \) is a measure of how well the hypothesized set of parameters \(\mu \) stand in agreement with the data. If the agreement is poor, then \(\hat{\mu} \) will be far from \(\mu \), the ratio of likelihoods will be low and \(t_\mu \) will be large. Larger values of \(t_\mu \) thus indicate increasing incompatibility between the data and the hypothesized \(\mu \).

According to Wilks’ theorem, if the parameter values \(\mu \) are true, then in the asymptotic limit of a large data sample, the pdf of \(t_\mu \) is a chi-square distribution for \(N \) degrees of freedom. We will write this as

\[
f(t_\mu | \mu) \sim \chi^2_N.
\]

Suppose we have a data set that gives us an observed value of the statistic \(t_{\mu,\text{obs}} \). We can quantify the level of compatibility between \(\mu \) and the observed data by computing the \(p \)-value

\[
p_\mu = \int_{t_{\mu,\text{obs}}}^{\infty} f_{\chi^2_N}(t_\mu | \mu) \, dt_\mu.
\]

Now suppose that the set of parameters \(\mu \) can be expressed as \(\mu(\theta) \) where \(\theta = (\theta_1, \ldots, \theta_M) \) is a set of \(M \) parameters with \(M < N \). Now define

\[
q_\mu = -2 \ln \frac{L(\mu(\hat{\theta}))}{L(\hat{\mu})}.
\]

That is, in the numerator we adjust \(M \) parameters and in the denominator \(N \). In this case, Wilks’ theorem states

\[
f(q_\mu | \mu(\theta)) \sim \chi^2_{N-M}
\]

Provided certain regularity conditions are satisfied, this holds regardless of the value of \(\theta \). This is a very useful property that allows one to compute \(p \)-values without needing to assume particular values for the parameters \(\theta \). In this case the \(p \)-value reflects the compatibility of the assumed functional form \(\mu(\theta) \).
1 Gaussian data

Suppose that the data are a set of \(N \) independent Gaussian distributed values,

\[
y_i \sim \text{Gauss}(\mu_i, \sigma_i), \quad i = 1, \ldots, N,
\]

where the standard deviations \(\sigma_i \) are known but the \(\mu_i \) must be determined from the data. The likelihood is

\[
L(\mu) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i}} e^{-(y_i - \mu_i)^2 / 2\sigma_i^2},
\]

so that the log-likelihood is

\[
\ln L(\mu) = -\frac{1}{2} \sum_{i=1}^{N} \frac{(y_i - \mu_i)^2}{\sigma_i^2} + C,
\]

where \(C \) does not depend on \(\mu \). By setting the derivatives of \(\ln L(\mu) \) with respect to the \(\mu_i \) to zero we find the ML estimators to be

\[
\hat{\mu}_i = y_i,
\]

and from this we find

\[
t_\mu = -2 \ln \frac{L(\mu)}{L(\hat{\mu})} = \sum_{i=1}^{N} \frac{(y_i - \mu_i)^2}{\sigma_i^2}.
\]

In the case where \(M \) parameters \(\theta_1, \ldots, \theta_M \) are fitted, the statistic \(q_\mu \) is

\[
q_\mu = -2 \ln \frac{L(\mu(\hat{\theta}))}{L(\hat{\mu})} = \sum_{i=1}^{N} \frac{(y_i - \mu_i(\hat{\theta}))^2}{\sigma_i^2}.
\]

Thus we can use the minimized value of the sum of squares from an LS fit to test the goodness of fit. In such a case the values of \(\mu_i \) are obtained by assuming a functional relation between \(\mu \) and a control variable \(x \), whose value is fixed for each measurement of \(y \). That is,

\[
\mu_i(\theta) = \mu(x_i; \theta), \quad i = 1, \ldots, N.
\]

The \(p \)-value therefore reflects the degree of compatibility between the data and the functional form \(\mu(x; \theta) \).

2 Histogram of Poisson or multinomial data

Consider now a set of data values \(n = (n_1, \ldots, n_N) \) which we may think of as a histogram with \(N \) bins. Suppose the values \(n_i \) are independent and Poisson distributed with mean values \(\nu_i \), so that the joint probability for the vector \(\mathbf{n} \) is
\[P(n; \nu) = \prod_{i=1}^{N} \frac{\nu_i^{n_i}}{n_i!} e^{-\nu_i} . \] (13)

The log-likelihood is therefore
\[\ln L(\nu) = \sum_{i=1}^{N} [n_i \ln \nu_i - \nu_i] + C , \] (14)

where \(C \) represents terms that do not depend on \(\nu \).

If we regard each of the \(\nu_i \) as adjustable, then by setting the derivatives of \(\ln L(\nu) \) with respect to all of the \(\nu_i \) to zero we find the ML estimators
\[\hat{\nu}_i = n_i , \quad i = 1, \ldots, N . \] (15)

Using this we can write down the statistic analogous to Eq. (1),
\[t_{\nu} = -2 \ln \frac{L(\nu)}{L(\hat{\nu})} = -2 \sum_{i=1}^{N} \left[n_i \ln \nu_i - \nu_i + \hat{\nu}_i \right] \] (16)
\[= -2 \sum_{i=1}^{N} \left[n_i \ln \nu_i - \nu_i + n_i \right] , \] (17)
\[= -2 \sum_{i=1}^{N} \left[n_i \ln \frac{\nu_i}{n_i} - \nu_i + n_i \right] , \] (18)

where in the final line we used \(\hat{\nu}_i = n_i \). By going back to the original Poisson probabilities one can see that if \(n_i = 0 \), then the logarithmic term in Eq. (16) is in fact absent. As with the statistic \(t_{\mu} \) from above, Wilks’ theorem says that the distribution of \(t_{\nu} \) approaches a chi-square distribution for \(N \) degrees of freedom in the limit of a large data sample. Here one can see the role of the large sample limit, since then the estimators \(\hat{\nu}_i = n_i \) become approximately Gaussian distributed.

Now suppose that the set of \(N \) mean values \(\nu \) can be determined through a set of \(M \) parameters \(\theta = (\theta_1, \ldots, \theta_M) \). We can then define the statistic
\[q_{\nu} = -2 \ln \frac{L(\nu(\hat{\theta}))}{L(\nu)} = -2 \sum_{i=1}^{N} \left[n_i \ln \frac{\nu_i(\hat{\theta})}{n_i} - \nu_i(\hat{\theta}) + n_i \right] . \] (19)

As with the statistic \(q_{\mu} \) above, this will follow a chi-square distribution for \(N - M \) degrees of freedom.

In some problems one may want to model a histogram of values \(n = (n_1, \ldots, n_N) \) as following a multinomial distribution. This is similar to the Poisson case above except that the total number of entries,
\[n_{\text{tot}} = \sum_{i=1}^{N} n_i \] (20)
is regarded as constant. There are in effect $N - 1$ free parameters in the problem, which can be taken as all but one of the probabilities $p = (p_1, \ldots, p_N)$ for an event to be in one of the N bins. One of the p_i is fixed from the constraint

$$\sum_{i=1}^{N} p_i = 1 . \quad (21)$$

The multinomial distribution for n is

$$P(n|p, n_{tot}) = \frac{n_{tot}!}{n_1!n_2! \ldots n_N!} p_1^{n_1} p_2^{n_2} \ldots p_N^{n_N} . \quad (22)$$

Since n_{tot} is fixed, we can regard the parameters to be $\nu_i = p_i n_{tot}$. The log-likelihood function is then

$$\ln L(\nu) = \sum_{i=1}^{N} n_i \ln \frac{\nu_i}{n_{tot}} + C . \quad (23)$$

As in the Poisson case the ML estimators for the ν_i are found to be $\hat{\nu}_i = n_i$, so the statistic t_{ν} then becomes

$$t_{\nu} = -2 \sum_{i=1}^{N} n_i \ln \frac{\nu_i}{n_i} . \quad (24)$$

That is, it is the same as in the Poisson case but without the terms $-\nu_i + n_i$. Because here there are only $N - 1$ fitted parameters (one of the $\hat{\nu}_i$ can be determined from n_{tot} minus the sum of the rest), Wilks’ theorem says that t_{ν} follows a chi-square distribution for $N - 1$ degrees of freedom.

If the N mean values ν are determined from M parameters $\theta = (\theta_1, \ldots, \theta_M)$, then the distribution of the corresponding q_{ν},

$$q_{\nu} = -2 \sum_{i=1}^{N} n_i \ln \frac{\nu_i(\theta)}{n_i} , \quad (25)$$

is a chi-square distribution for $N - M - 1$ degrees of freedom.

Now suppose instead of evaluating the ν_i terms in Eqs. (19) and (25) with the ML estimators for θ, we write the corresponding quantities as a function of θ, i.e.,

$$\chi^2_M(\theta) = -2 \sum_{i=1}^{N} n_i \ln \frac{\nu_i(\theta)}{n_i} , \quad (26)$$

$$\chi^2_P(\theta) = -2 \sum_{i=1}^{N} \left[n_i \ln \frac{\nu_i(\theta)}{n_i} - \nu_i(\theta) + n_i \right] , \quad (27)$$

where the subscripts M and P refer to the multinomial or Poisson cases, respectively. These expressions are equal to the corresponding values of $-2 \ln L(\theta)$. So to maximize the likelihood one can simply minimize $\chi^2_P(\theta)$ or $\chi^2_M(\theta)$, and the same ML estimators $\hat{\theta}$ will result.
As an added bonus, however, the value of the minimized function can be used directly for a test of the goodness of fit, and to the extent that Wilks’ theorem is satisfied, its sampling distribution is a chi-square distribution for \(N - M \) (Poisson) or \(N - M - 1 \) (multinomial) degrees of freedom.

References

