
DRAFT 0.0

Glen Cowan
3 June, 2013

Goodness of fit and Wilks’ theorem

Suppose we model data y with a likelihood L(µ) that depends on a set of N parameters
µ = (µ1, . . . , µN ). Define the statistic

tµ = −2 ln
L(µ)

L(µ̂)
, (1)

where µ̂ are the ML estimators for µ. The value of tµ is a measure of how well the hypoth-
esized set of parameters µ stand in agreement with the data. If the agreement is poor, then
µ̂ will be far from µ, the ratio of likelihoods will be low and tµ will be large. Larger values
of tµ thus indicate increasing incompatibility between the data and the hypothesized µ.

According to Wilks’ theorem, if the parameter values µ are true, then in the asymptotic
limit of a large data sample, the pdf of tµ is a chi-square distribution for N degrees of freedom.
We will write this as

f(tµ|µ) ∼ χ2
N . (2)

Suppose we have a data set that gives us an observed value of the statistic tµ,obs. We
can quantify the level of compatibility between µ and the observed data by computing the
p-value

pµ =

∫

∞

tµ,obs

fχ2

N
(tµ|µ) dtµ . (3)

Now suppose that the set of parameters µ can be expressed as µ(θ) where θ = (θ1, . . . , θM )
is a set of M parameters with M < N . Now define

qµ = −2 ln
L(µ(θ̂))

L(µ̂)
. (4)

That is, in the numerator we adjust M parameters and in the denominator N . In this case,
Wilks’ theorem states

f(qµ|µ(θ)) ∼ χ2
N−M (5)

Provided certain regularity conditions are satisfied, this holds regardless of the value of θ.
This is a very useful property that allows one to compute p-values without needing to assume
particular values for the parameters θ. In this case the p-value reflects the compatibility of
the assumed functional form µ(θ).

1



1 Gaussian data

Suppose that the data are a set of N independent Gaussian distributed values,

yi ∼ Gauss(µi, σi) , i = 1, . . . , N , (6)

where the standard deviations σi are known but the µi must be determined from the data.
The likelihood is

L(µ) =
N
∏

i=1

1√
2πσi

e−(yi−µi)
2/2σ2

i , (7)

so that the log-likelihood is

lnL(µ) = −1

2

N
∑

i=1

(yi − µi)
2

σ2
i

+ C , (8)

where C does not depend on µ. By setting the derivatives of lnL(µ) with respect to the µi

to zero we find the ML estimators to be

µ̂i = yi , (9)

and from this we find

tµ = −2 ln
L(µ)

L(µ̂)
=

N
∑

i=1

(yi − µi)
2

σ2
i

. (10)

In the case where M parameters θ1, . . . , θM are fitted, the statistic qµ is

qµ = −2 ln
L(µ(θ̂))

L(µ̂)
=

N
∑

i=1

(yi − µi(θ̂))
2

σ2
i

. (11)

Thus we can use the minimized value of the sum of squares from an LS fit to test the
goodness of fit. In such a case the values of µi are obtained by assuming a functional relation
between µ and a control variable x, whose value is fixed for each measurement of y. That is,

µi(θ) = µ(xi;θ) , i = 1, . . . , N . (12)

The p-value therefore reflects the degree of compatibility between the data and the functional
form µ(x;θ).

2 Histogram of Poisson or multinomial data

Consider now a set of data values n = (n1, . . . , nN ) which we may think of as a histogram
with N bins. Suppose the values ni are independent and Poisson distributed with mean
values νi, so that the joint probability for the vector n is
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P (n;ν) =
N
∏

i=1

νni

i

ni!
e−νi . (13)

The log-likelihood is therefore

lnL(ν) =
N
∑

i=1

[ni ln νi − νi] + C , (14)

where C represents terms that do not depend on ν.

If we regard each of the νi as adjustable, then by setting the derivatives of lnL(ν) with
respect to all of the νi to zero we find the ML estimators

ν̂i = ni , i = 1, . . . , N . (15)

Using this we can write down the statistic analogous to Eq. (1),

tν = −2 ln
L(ν)

L(ν̂)
(16)

= −2
N
∑

i=1

[

ni ln
νi

ν̂i
− νi + ν̂i

]

(17)

= −2
N
∑

i=1

[

ni ln
νi

ni
− νi + ni

]

, (18)

where in the final line we used ν̂i = ni. By going back to the original Poisson probabilities
one can see that if ni = 0, then the logarithmic term in Eq. (16) is in fact absent. As with
the statistic tµ from above, Wilks’ theorem says that the distribution of tν approaches a
chi-square distribution for N degrees of freedom in the limit of a large data sample. Here
one can see the role of the large sample limit, since then the estimators ν̂i = ni become
approximately Gaussian distributed.

Now suppose that the set of N mean values ν can be determined through a set of M
parameters θ = (θ1, . . . , θM ). We can then define the statistic

qν = −2 ln
L(ν(θ̂))

L(ν̂)
= −2

N
∑

i=1

[

ni ln
νi(θ̂)

ni
− νi(θ̂) + ni

]

. (19)

As with the statistic qµ above, this will follow a chi-square distribution for N −M degrees
of freedom.

In some problems one may want to model a histogram of values n = (n1, . . . , nN ) as
following a multinomial distribution. This is similar to the Poisson case above except that
the total number of entries,

ntot =
N
∑

i=1

ni (20)
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is regarded as constant. There are in effect N − 1 free parameters in the problem, which can
be taken as all but one of the probabilities p = (p1, . . . , pN ) for an event to be in one of the
N bins. One of the pi is fixed from the constraint

N
∑

i=1

pi = 1 . (21)

The multinomial distribution for n is

P (n|p, ntot) =
ntot!

n1!n2! . . . nN !
pn1

1 pn2

2 . . . p
nN

N . (22)

Since ntot is fixed, we can regard the parameters to be νi = pintot. The log-likelihood function
is then

lnL(ν) =
N
∑

i=1

ni ln
νi

ntot
+ C . (23)

As in the Poisson case the ML estimators for the νi are found to be ν̂i = ni, so the statistic
tν then becomes

tν = −2
N
∑

i=1

ni ln
νi

ni
. (24)

That is, it is the same as in the Poisson case but without the terms −νi + ni. Because here
there are only N − 1 fitted parameters (one of the ν̂i can be determined from ntot minus
the sum of the rest), Wilks’ theorem says that tν follows a chi-square distribution for N − 1
degrees of freedom.

If the N mean values ν are determined from M parameters θ = (θ1, . . . , θM ), then the
distribution of the corresponding qν ,

qν = −2
N
∑

i=1

ni ln
νi(θ̂)

ni
, (25)

is a chi-square distribution for N −M − 1 degrees of freedom.

Now suppose instead of evaluating the νi terms in Eqs. (19) and (25) with the ML esti-
mators for θ, we write the corresponding quantities as a function of θ, i.e.,

χ2
M(θ) = −2

N
∑

i=1

ni ln
νi(θ)

ni
, (26)

χ2
P(θ) = −2

N
∑

i=1

[

ni ln
νi(θ)

ni
− νi(θ) + ni

]

, (27)

where the subscripts M and P refer to the multinomial or Poisson cases, respectively. These
expressions are equal to the corresponding values of −2 lnL(θ). So to maximize the likelihood
one can simply minimize χ2

P(θ) or χ
2
M(θ), and the same ML estimators θ̂ will result.
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As an added bonus, however, the value of the minimized function can be used directly for
a test of the goodness of fit, and to the extent that Wilks’ theorem is satisfied, its sampling
distribution is a chi-square distribution for N − M (Poisson) or N − M − 1 (multinomial)
degrees of freedom.
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