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Who Should Be Afraid of the

Jeffreys-Lindley Paradox?
Aris Spanos*y
The article revisits the large n ðsample sizeÞ problem as it relates to the Jeffreys-Lindley
paradox to compare the frequentist, Bayesian, and likelihoodist approaches to inference
and evidence. It is argued that what is fallacious is to interpret a rejection of H0 as pro-
viding the same evidence for a particular alternative H1, irrespective of n; this is an ex-
ample of the fallacy of rejection. Moreover, the Bayesian and likelihoodist approaches
are shown to be susceptible to the fallacy of acceptance. The key difference is that in fre-
quentist testing the severity evaluation circumvents both fallacies but no such principled
remedy exists for the other approaches.

1. Introduction. The large n problem was initially raised by Lindley
ð1957Þ in the context of the simple Normal model,

Xk ∼ NIIDðv; j2Þ; k 5 1; 2; : : : ; n; : : : ; ð1Þ
where NIIDðv; j2Þ stands for Normal, Independent, and Identically Distrib-
uted with mean v ∈ ð2`;`Þ and variance j2 > 0 ðassumed knownÞ, by
pointing out

ðaÞThe large n problem. Frequentist testing is susceptible to the fallacious

result that there is always a large enough sample size n for which any sim-

Recei

*To c
VA 2

yThan
ymou

Philos
Copyr
ple ðpointÞ null hypothesis, sayH0: v5 v0, will be rejected by a frequentist
a-significance level test.
ved April 2012; revised August 2012.

ontact the author, please write to: Department of Economics, Virginia Tech, Blacksburg
4061; e-mail: aris@vt.edu.

ks are due to Deborah Mayo for numerous discussions on these topics and to two anon
s referees for many useful comments and suggestions.

ophy of Science, 80 (January 2013) pp. 73–93. 0031-8248/2013/8001-0004$10.00
ight 2013 by the Philosophy of Science Association. All rights reserved.

73

This content downloaded from 128.186.110.134 on Mon, 28 Oct 2013 17:16:01 PM
All use subject to JSTOR Terms and Conditions
,

-

http://www.jstor.org/page/info/about/policies/terms.jsp


Lindley went on to claim that this result is paradoxical because, when
viewed from the Bayesian perspective, one can show
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ðbÞ the Jeffreys-Lindley paradox. For certain choices of the prior, the

posterior probability of H0; given a frequentist a-significance level rejec-

T

This

T

tion, will approach one as n→ `.

his result was later called the Jeffreys-Lindley paradox because the

broader issue of conflicting evidence between the frequentist and Bayesian
approaches was first raised by Jeffreys ð1939/1961, 359–60Þ. Claims a and b
contrast the behavior of a frequentist test ðp-valueÞ and the posterior prob-
ability of H0 as n→ `, which brings up a potential for conflict between the
frequentist and Bayesian accounts of evidence:

ðcÞ Bayesian charge 1. “The Jeffreys-Lindley paradox shows that for in-

ference about v; p-values and Bayes factors may provide contradictory ev-

idence and hence can lead to opposite decisions” ðGhosh, Delampady,
and Samanta 2006, 177Þ.

potential conflict is given a more distinct Bayesian slant by
ðdÞ Bayesian charge 2. A hypothesis that is well supported by the Bayes

factor can be ðmisleadinglyÞ rejected by a frequentist test when n is large

ðsee Berger and Sellke 1987, 112–13; Howson 2002, 45–49Þ.

he problem of conflicting evidence pertains to the broader philosophical

issue of grounding statistical practice on sound principles of inference and
evidence. What has not been adequately explained in this literature is why,
given the rejection of H0 by a frequentist test, its posterior probability going
to one as n→ ` ðirrespective of the truth or falsity of H0Þ is conducive to a
more sound account of evidence.

The primary objective of this article is to consider this issue by compar-
ing the frequentist, Bayesian, and likelihoodist accounts of inference and
evidence. The discussion can be seen as part of a wider endeavor to use the
error statistical perspective ðMayo 1996Þ in an attempt to have a closer look
at several Bayesian allegations that have undermined the credibility of fre-
quentist statistics in philosophical circles over the past half century.

The brief comments in section 2 provide a prelude to the discussion that
follows by clarifying certain key issues at the outset. Section 3 introduces
the large n problem in frequentist testing using a numerical example dis-
cussed by Stone ð1997Þ. This example is based on a very large sample
ðn5 527,135Þ that is used to bring out the fallacious claims associated with
the Jeffreys-Lindley paradox without the technical difficulties of invoking
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limiting arguments as n→ `. In sections 4 and 5, the Bayesian and likeli-
hoodist approaches are applied to this example with a view to demonstrate

AFRAID OF THE JEFFREYS-LINDLEY PARADOX? 75
that both approaches are far from immune to fallacious results, contrary to
the current view among proponents of the Bayesian and likelihoodist per-
spectives ðsee Berger 1985; Royall 1997; Robert 2007; inter aliaÞ. Section 6
illustrates how the postdata severity evaluation of the p-value and accept/
reject results addresses not only the large n problem but also the broader fal-
lacies of acceptance/rejection and calls into question the charges stemming
from the Jeffreys-Lindley paradox. The severity perspective is then used in
section 7 to shed light on why the Bayesian and likelihoodist accounts of ev-
idence give rise to highly fallacious results.

2. Clarifying What Is Fallacious or Paradoxical. Before discussing the
various claims that relate to the Jeffreys-Lindley paradox, it is important to
bring out certain key issues that have not been adequately illuminated by
the literature.

First, in frequentist testing, which includes both Fisher’s significance and
the Neyman-Pearson testing, the large n problem arises naturally because the
power of any “good” ðconsistentÞ test increases with n. An a-significance
level Neyman-Pearson test is said to be consistent when its power to detect
any discrepancy g ≠ 0 from H0 approaches one as n→ `: In this sense,
there is nothing fallacious or paradoxical about a small p-value or a rejec-
tion of the null, for a given significance level a; when n is large enough,
since a highly sensitive test is likely to pick up on tiny ðin a substantive
senseÞ discrepancies from H0.

Second, Bayesian charge 2 ðdÞ overlooks the fact that the cornerstone of
Neyman-Pearson testing is the trade-off between the type I ðreject H0 when
trueÞ and type II ðaccept H0 when falseÞ error probabilities. In this sense,
these charges ignore the decrease in the type II error probability as n in-
creases, since, for a given discrepancy g, the power is one minus the type II
error probability. Indeed, various attempts have been made to alleviate the
large n problem, including decreasing a as n increases in an attempt to coun-
terbalance the increase in power associated with n ðsee Lehmann 1986Þ. The
difficulty, however, is that only crude rules of thumb for adjusting a can be
devised because the power of a test depends on other factors besides n.

Third, the large n problem ðaÞ constitutes an example of a broader prob-
lem known as the fallacy of rejection: ðmisÞinterpreting reject H0 ðevidence
against H0Þ as evidence for a particular H1; this can easily arise when a test
has very high power. Due to the trade-off between type I and II error proba-
bilities, any attempt to ameliorate the problem by selecting a smaller signif-
icance level when n is large might render the result susceptible to the re-
verse fallacy known as the fallacy of acceptance: ðmisÞinterpreting acceptH0

ðno evidence againstH0Þ as evidence forH0; this can easily arise when a test
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has very low power ðe.g., n is very smallÞ. As argued below, the large n prob-
lem ðaÞ, when a rejection of H is interpreted as evidence for H , and the
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Jeffreys-Lindley paradox ðbÞ constitute examples of the fallacies of rejec-
tion and acceptance, respectively.

The main argument of this article can be stated succinctly as follows:
ðiÞ Although there is nothing fallacious about a small p-value, or a rejection
of H0;when n is large ðit is a feature of a good frequentist testÞ, ðiiÞ there is a
problem when such results are detached from the test itself and are treated
as providing the same evidence for a particular alternative H1 regardless of
the generic capacity ðthe powerÞ of the test in question. The large n problem
is directly related to points ðiÞ and ðiiÞ because the power depends crucially on
n: That in turn renders a rejection of H0 with a large n ðhigh powerÞ very dif-
ferent in evidential terms from a rejection of H0 with a small n ðlow powerÞ.
That is, the real problem does not lie with the p-value or the accept/reject
rules as such but with how such results are fashioned into evidence for or
against a particular hypothesis or an inferential claim relating to H0 ðH1Þ.
ðiiiÞ It is argued that the large n problem can be circumvented by using the
postdata severity assessment to provide a sound evidential account for fre-
quentist inference. Whether data x0 provide evidence for or against a partic-
ular hypothesis ðH0 or H1Þ depends crucially on the capacity of the test in
question to detect discrepancies from the null. This stems from the intuition
that a small p-value or a rejection of H0 based on a test with low power ðe.g.,
a small nÞ for detecting a particular discrepancy g provides stronger evi-
dence for the presence of g than using a test with much higher power ðe.g.,
a large nÞ. As first pointed out byMayo ð1996Þ, this intuition is completely at
odds with the Bayesian and likelihoodist intuitions articulated by Berger
andWolpert ð1988Þ, Howson andUrbach ð2006Þ, and Sober ð2008Þ. Indeed,
Mayo went on to propose a frequentist evidential account based on harness-
ing this perceptive intuition in the form of a postdata severity evaluation of
the accept/reject results. This is based on custom tailoring the generic capac-
ity of the test to establish the discrepancygwarranted by data x0. This eviden-
tial account can be used to circumvent the above fallacies, as well as other
ðmisplacedÞ charges against frequentist testing ðsee Spanos 2011Þ. ðivÞ In
contrast to frequentist testing, no such reasoned remedy exists for the Bayes-
ian and likelihoodist approaches, whose evidential accounts are shown to
be equally vulnerable to these fallacies. A strong case can be made, or so it
is argued, that the fallacious nature of the Jeffreys-Lindley paradox stems
primarily from the fact that the Bayesian and likelihoodist approaches dis-
miss the relevance of the generic capacity of the particular test in their evi-
dential accounts. Indeed, these accounts cast aside the relevance of the sam-
ple space beyond x0 and “controlling” the relevant error probabilities for
being the key weaknesses of the frequentist approach.
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3. The Large n Problem in Frequentist Testing. The approach to fre-
quentist statistics followed in this article is known as error statistics ðMayo
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1996Þ. It can be viewed as a refinement/extension of the Fisher-Neyman-
Pearson approach that offers a unifying inductive reasoning for frequentist
inference. It refines the Fisher-Neyman-Pearson approach by bringing out
the importance of specifying explicitly as well as validating vis-à-vis data x0

the inductive premises of inference. It extends the Fisher-Neyman-Pearson
approach by supplementing it with a postdata severity assessment with a
view to address a number of foundational problems relating to a sound ev-
idential account ðsee Mayo and Spanos 2004, 2006, 2011Þ.

Consider the following numerical example discussed by Stone ð1997Þ:

A particle-physics complex plans to record the outcomes of a large number

of independent particle collisions of a particular type, where the outcomes

How
are either type A or type B. . . . The results are to be used to test a theoreti-
cal prediction that the proportion of type A outcomes, h, is precisely 1/5,
against the vague alternative that h could take any other value. The results
arrive: 106,298 type A collisions out of 527,135. ð263Þ

can one test this substantive hypothesis of interest?

The first step is to embed the above material experiment into a statistical

model and frame the substantive hypothesis in terms of statistical param-
eters. With that in mind, let us assume that each of these n trials can be
viewed as a realization of a sample ðX1; X2; : : : ; XnÞ of IID random vari-
ables defined by

X 5
1 if type A collision occurs;

0 if type B collision occurs;

(

which transforms the observed sequence of particles into data x0:5 ð1, 0, 0,
1, 1, . . . , 0Þ. These conditions render the simple Bernoulli ðBerÞ model,

Xk ∼ BerIID½v; vð12 vÞ�; v ∈ ½0; 1�; k 5 1; 2; : : : ; n; : : : ; ð2Þ

appropriate as a statistical model in the context of which the material exper-
iment can be embedded. Note that in practice one should validate the IID
assumptions to secure the reliability of inference. The substantive hypothesis
of interest, h5 .2, can be framed in terms of the Neyman-Pearson statistical
hypotheses:

H0∶v5 v0 versus H1∶v ≠ v0; for v0 5 :2; ð3Þ
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specified solely in terms of the unknown parameter of the statistical model
in ð2Þ. A proper framing of the Neyman-Pearson hypotheses requires a par-
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titioning of the parameter space, irrespective of whether one is substantively
interested in one or more specific values of v. From the statistical perspec-
tive, all values of v in ½0; 1� are relevant for defining the optimality of the test
ðsee Spanos 2010, 569Þ.

The test Ta :5 fdðXÞ; C1ðaÞg, defined by

dðXÞ5
ffiffiffi
n

p ðX n 2 v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0ð12 v0Þ

p ∼H0 Bin 0; 1; nð Þ;

C1ðaÞ5 fx∶jdðxÞj ≥ cða=2Þg;
ð4Þ

whereX n 5 ð1=nÞon

i51Xi and C1ðaÞ; cða=2Þ denote the rejection region and
value, respectively, is a uniformly most powerful unbiased Neyman-Pearson
test ðsee Lehmann 1986Þ. Using ð4Þ one can define the type I error probabil-
ity ðsignificance levelÞ:

PðjdðXÞj > cða=2Þ;H0Þ5 a: ð5Þ
The sampling distribution in ð4Þ is based on the fact that for a Bernoulli IID
sample X :5ðX1, X2, . . . , XnÞ, the random variable Y 5 nXn 5on

i51Xi;where
Y denotes the number of 1’s in n trials, is binomially ðBinÞ distributed:

f ðy; v; nÞ5 n
y

� �
v yð12 vÞn2y; y5 0; 1; 2; : : :; n:

In light of the large sample size ðn 5 527,135Þ, it is often judicious to
choose a small type I error ðLehmann 1986Þ, say a 5 .003, which yields a
rejection value of cða=2Þ 5 2:968; note that the Normal approximation to the
binomial distribution is quite accurate in this case.

The power of test Ta at v1 5 v0 1 g1 defined by

Pðv1Þ5 PðjdðXÞj > cða=2Þ; v1 5 v0 1 g1Þ;
for v1 ∈ V1;

as well as the type II error probability bðv1Þ5 12 Pðv1Þ; for v1 ∈ V1, are
evaluated using the sampling distribution of dðXÞ underH1, which takes the
form:

dðXÞ ∼v5v1 Binðdðv1Þ;V ðv1Þ; nÞ; for v1 ∈ V1 :5 V2 f:2g;

where dðv1Þ5
ffiffiffi
n

p ðv1 2 v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0ð12 v0Þ

p and V ðv1Þ5 v1ð12 v1Þ
v0ð12 v0Þ :

ð6Þ
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This indicates that test Ta is consistent because its power increases with
dðv Þ—a monotonically increasing function of

ffiffiffi
n

p
—approaching one as
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1

n→ ` ðsee Lehmann 1986Þ. Hence, other things being equal, increasing n
increases the power of this test, confirming that there is nothing paradox-
ical about a larger n rendering a ðconsistentÞ test more sensitive.

Applying the Neyman-Pearson test Ta to the above data,

xn 5
106;298

527;135
5 0:20165233;

dðx0Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
527;135

p ½ð106;298=527;135Þ2 :2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:2ð12 :2Þp 5 2:999;

ð7Þ

leads to a rejection of H0. The p-value, defined as the probability of ob-
serving an outcome x ∈ f0; 1gn that accords less well with H0 than x0 does
when H0 is true, confirms the rejection of H0:

PðjdðXÞj > jdðx0Þj;H0Þ5 pðx0Þ5 :0027: ð8Þ

This definition is preferred to the traditional one, “the probability of observ-
ing a result more extreme than x0 underH0,” because it blends in better with
the postdata severity evaluation discussed in section 6. The result pðx0Þ5
:0027 suggests that data x0 indicate “some” discrepancy between v0 and the
“true” v ðthat gave rise to x0Þ, but it provides no information about its mag-
nitude.

As mentioned above, what is problematic is the move from the accept/
reject results, and the p-value, to claiming that data x0 provide evidence for a
particular hypothesis, because such a move is highly vulnerable to the fal-
lacies of acceptance and rejection. However, in the context of frequentist
testing, this vulnerability can be circumvented using a postdata severity eval-
uation.

How does the Jeffreys-Lindley paradox arise in this context? Using a
spiked prior distribution ðLindley 1957Þ of the form

pðv5 v0Þ5 p0 and pðv ≠ v0Þ5 12 p0; ð9Þ

the formal claim associated with this paradox is

p H0jXn 5 v0 1 cða=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v0ð12 v0Þ=n

p� �
→ 1 as n→ `;

that is, the posterior probability of H0; conditional on dðx0Þ5 cða=2Þ, goes to
one as n approaches infinity. What is not so obvious is why this result is
considered an indicator of the soundness of the Bayesian account of evi-
dence.
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In relation to the nature of the null hypothesis ðsimple or compositeÞ, it
is important to elucidate certain issues raised in this literature. First, in the
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case of two composite hypotheses

H0∶v ≤ v0 versus H1∶v > v0; where v0 5 :2; ð10Þ
the test T *

a
:5fdðXÞ; C*

1ðaÞg; where C*
1ðaÞ5 fx: dðxÞ ≥ cag; is both consis-

tent and uniformly most powerful ðsee Lehmann 1986Þ. In this sense, the
large n problem has nothing to do with the restriction to a point null hypoth-
esis; it is simply a feature of a consistent Neyman-Pearson test. The nature
of the null ðsimple or compositeÞ only matters for the behavior of the like-
lihoodist ratio, the Bayes factor, and the posterior probability of H0. Sec-
ond, the fact that the discrepancy between the p-value and the Bayes factor
is smaller for a composite null is not particularly interesting because both
measures are misleading in different ways.

Third, the comparison of the posterior pðvjx0Þ; as v varies over ½0; 1�
ðwhich represent one’s revised beliefs about v in light of x0Þ, with error prob-
abilities ðwhich measure how often a frequentist procedure errs as x varies
over f0; 1gnÞ, is dubious. Indeed, as argued byCasella andBerger ð1987, 110Þ,
the comparison is made possible by using a blatant misinterpretation of the
p-value: “The phrase ‘the probability that H0 is true’ has no meaning within
frequency theory, but it has been argued that practitioners sometimes at-
tach such a meaning to the p value. Since the p value, in the cases consid-
ered, is an upper bound on the infimum of PrðH0jxÞ it lies within or at the
boundary of a range of Bayesian measures of evidence demonstrating the
extent to which the Bayesian terminology can be attached.”

4. The Bayesian Approach. Consider applying the Bayes factor procedure
to the hypotheses ð3Þ using a uniform prior :

v ∼ Uð0; 1Þ; that is; pðvÞ5 1 for all v ∈ ½0; 1�: ð11Þ

This gives rise to the Bayes factor:

BFðx0; v0Þ5 Lðv0; x0Þ

E1

0

Lðv; x0Þdv

5

�
527;135
106;298

�
ð:2Þ106;298ð12 :2Þ527;1352106;298

E1

0

��
527;135
106;298

�
v106;298ð12 vÞ527;1352106;298

�
dv

5
:000015394

:000001897
5 8:115:

ð12Þ
This content downloaded from 128.186.110.134 on Mon, 28 Oct 2013 17:16:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


It is interesting to note that the same Bayes factor ð12Þ arises in the case of
the spiked prior ð9Þ with p 5 :5; where v5 v is given prior probability of
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0 0

:5 and the other half is distributed equally among the remaining values of v.
This is because for p0 5 :5, the ratio p0=ð12 p0Þð Þ5 1 and will cancel out
from BFðx0; vÞ.

The next step in Bayesian inference is to use ð12Þ as the basis for fashion-
ing an evidential account. A Bayes factor result BFðx0; v0Þ > k; for k ≥ 3:2;
indicates that data x0 favor the null with the “strength of evidence” increas-
ing with k. In particular, for 3:2 ≤ k < 10, the evidence is substantial, for
10 ≤ k < 100 the evidence is strong, and for k ≥ 100 is decisive ðsee Robert
2007Þ.

Comparing the result in ð12Þ with the p-value in ð8Þ, Stone ð1997, 263Þ
pointed out: “The theoretician is pleased when the ½likelihood–Bayes-
minded� statistician reports a Bayes factor of 8 to 1 in favour of his brain-
child, but the pleasure is alloyed when he uses his own P-value cookbook
to reveal the 3.00 standard deviation excess of type A outcomes.”

A closer scrutiny of the evidential interpretation of the result in ð12Þ sug-
gests that it is not as clear-cut as it appears. This is because, on the basis of
the same data x0, the Bayes factor BFðx0; v0Þ “favors” not only v0 5 :2 but
each individual value v1 inside a certain interval around v0 5 :2:

VBF :5 ½:199648; :203662� ⊂ V1 :5 V2 f:2g; ð13Þ

where the square bracket indicates inclusion of the end point, in the sense
that, for each v1 ∈ VBF; BFðx0; v1Þ > 1, that is,

Lðv1; x0Þ > E1

0

Lðv; x0Þdv; for all v1 ∈ VBF: ð14Þ

Worse, certain values vz inVBF are favored by BFðx0; v
zÞmore strongly than

v0 5 :2:

vz ∈ VLR :5 ð:2; :20331� ⊂ VBF; ð15Þ

where the left parenthesis indicates exclusion of the end point. It is im-
portant to emphasize that the subsets VLR ⊂ VBF ⊂ V exist for every data x0;
and one can locate them by trial and error. However, there is a much more
efficient way to do that. As shown in section 5, VLR can be defined as a
subset of V around the maximum likelihood estimate ðMLEÞ bvMLEðx0Þ5
:20165233: This is not coincidental because, as Mayo ð1996, 200Þ pointed
out, v♦ 5 v̂MLEðx0Þ is always the maximally likely alternative, irrespective of
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the null or other substantive values of interest. In this example, the Bayes factor
for H∶v5 v♦ versus H∶v ≠ v♦ yields
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0 1

BFðx0; v
♦Þ5

�
527;135
106;298

�
ð:20165233Þ106;298ð12 :20165233Þ527;1352106;298

E1

0

��
527;135
106;298

�
v106;298ð12 vÞ527;1352106;298

�
dv

5
:0013694656

:000001897
5 721:911; ð16Þ

indicating not only decisive evidence for v5 v♦ but also that

v♦ is favored by BFðx0; v
♦Þmore than 89

≃
721:911

8:115
times stronger than v0 5 :2!

This result is an instance of the fallacy of acceptance in the sense that the
Bayes factor BFðx0; v0Þ > 8 is misinterpreted as providing evidence for H0:
v0 5 :2 against any value of v in V1 :5 V2 f:2g; when in fact BFðx0; v

zÞ
provides stronger evidence for certain values of vz in VLR ⊂ V1.

What is the source of these conflicting evidence? Stone ð1997, 263Þ con-
jectured the following explanation: “A subhypothesis strongly rejected by a
significance test may be strongly supported in posterior probability if the
prior puts insufficient weight on the hypotheses of non-negligible likeli-
hood.”

Let us flesh out this conjecture. First, chooseVBF ⊂ V1 as a range of values
of v that BFðx0; v

yÞ favors in the sense given in ð14Þ. To this range of values
the prior attributes insufficient weight since

E:203662

:199648

dv5 :004:

Second, one can relate VBF to both an equal-tail Bayesian ð12 aÞ5 :9997
credible interval as well as the frequentist ð12 aÞ confidence interval:

½ v̂MLEðXÞ2 ð3:6267ÞSDð v̂MLEðXÞÞ; v̂ðXÞMLE 1 ð3:6267ÞSDð v̂MLEðXÞÞ�;

where SDð v̂MLEðXÞÞ denotes the standard deviation of v̂MLEðXÞ: In light of
this, one can considerVBF to represent a range of values of v with nonneg-
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ligible likelihood. Third, the weight attributed to these values by the Bayes
factor,
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E:203662

:199648

��
527;135
106;298

�
v106;298ð12 vÞ527;1352106;298

�
dv5 :0000018965; ð17Þ

is rather tiny, providing some support for Stone’s conjecture.
This is connected to the large n problem because for n5 53 and y :5 nxn

5 11 that keeps xn close to its original value, the Bayes factor attribution in
ð17Þ would have been much larger ð≫Þ since

E:203662

:199648

�
53
11

�
v11ð12 vÞ42dv5 :000535 ≫ :0000018965:

This raises the broader problem of how the large n problem might affect
the Bayesian results. In light of the fact that for n5 53; y5 11,�

n
y

�
v yð12 vÞn2y 5 :13280; E1

0

�
n
y

�
v yð12 vÞn2ydv5 :018518518;

the large n problem does not affect the ratio in ð12Þ, but it does affect the
Bayes attribution by rendering the numerator and denominator much smaller.

Focusing on the latter problem, the question is whether one can address
the “insufficient weight” problem, due to the large n; by varying the value
of p0 in pðv0 5 :2Þ5 p0. That will take an extreme tilting of the prior for a
whole range of values of v to compensate for the particular n. For instance,
the tilted spiked-prior

pðv5 vzÞ5 :01 and pðv ≠ vzÞ5 :99; for all vz ∈ VLR;

can counteract the maximally likely alternative problem. ðFor further discus-
sion on data-based priors, see Shafer ½1982�.Þ Reflecting on this issue, Stone
ð1997, 264Þ decried such a Bayesian move, arguing that “if the statistician
were towithdraw his uniform prior and claim that he ought to have organized
some more probability in the neighbourhood of v5 1=5; this would be a
confession that his Bayesianity does not have a bedrock quality, that his co-
herence has only the ðdoubtfully usefulÞ temporal value.”

Returning to the invariance of the Bayes factor to the sample size n, it
can be shown that it stems from the Fisher-Neyman factorization theorem,
where, for a sufficient statistic s for v, the likelihood function simplifies into

Lðv; x0Þ5 f ðs; vÞ � hðx0jsÞ; for all v ∈ V ð18Þ
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ðsee Cox and Hinkley 1974, 22Þ. In the case of the simple Normal ð1Þ and
Bernoulli ð2Þ models,X is a minimal sufficient statistic for v, and thus
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n

the Bayes factor in ð12Þ depends only on the observed value xn. That is,
the factor hðx0jsÞ cancels out because it is common to both the numerator
and denominator.

Although it seems sensible that the likelihood ratio depends only on
f ðs; vÞ; the claim that it is irrelevant whether xn results from n5 10 or n
5 1010 when going from BFðx0; v0Þ > 8 to claiming that data x0 provide
strong evidence for H0 seems counterintuitive. As argued in section 7, the
large n problem also plagues the Bayes factor primarily because its invari-
ance to n renders its evidential interpretation vulnerable to the fallacy of
acceptance, the reverse problem plaguing the p-value. Despite this vulner-
ability, the likelihood ratio has been proposed as an effective way to deal
with the large n problem ðsee Freeman 1993Þ.

5. The Likelihoodist Approach. The likelihoodist approach ðRoyall 1997,
24Þ evaluates how data x0 compares two simple hypotheses:

H0∶v5 v0 versus H1∶v5 v1;

using the likelihood ratio ðLRÞ:

LRðv0; v1; x0Þ5 Lðv0; x0Þ
Lðv1; x0Þ : ð19Þ

Law of Likelihood: The observations x0 favor hypothesis H0 over hy-

pothesis H1 if and only if Lðv0; x0Þ > Lðv1; x0Þ. And the degree to which
x0 favorsH0 over H1 is given by the likelihood ratio ½19�. ðSober 2008, 32Þ

It is interesting to note that the Law of Likelihood ðLLÞwas first proposed
by Hacking ð1965Þ, but a few years later, when reviewing a book on “like-
lihood,”Hacking changed his mind: “The only great thinker who tried it out
was Fisher, and he was ambivalent. Allan Birnbaum and myself are very fa-
vourably reported in this book for things we have said about likelihood, but
Birnbaum has given it up and I have become pretty dubious” ðHacking 1972,
137Þ.

The idea behind the use of the likelihood ratio in ð19Þ is that it ameliorates
the large n problem by affecting both hypotheses equally ðsee Howson and
Urbach 2006, 155Þ. Strictly speaking, the LR can only be applied to the case
where both hypotheses are simple ðsee Royall 1997Þ. For hypotheses such as
the Neyman-Pearson hypotheses ð3Þ, however, the alternative takes an infi-
nite number of values, and thus one needs to select particular point alterna-
tives of interest to apply the LL.
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In the case of the above example, a particularly interesting point alterna-
tive to v5 :2 is v♦ 5 v̂ ðx Þ. For the hypotheses
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MLE 0

H0∶v5 v0 versus H0∶v5 v♦;

LRðv0; v♦; x0Þ

5

�
527;135
106;298

�
ð:2Þ106;298ð12 :2Þ527;1352106;298�

527;135
106;298

�
ð:20165233Þ106;298ð12 :20165233Þ527;1352106;298

5
:000015394

:001369466
5 :011241;

which reverses the Bayes factor result and suggests that the degree to which
data x0 favor v5 v♦ over v0 5 :2 is much stronger ð89 ≃ ð1=:011241ÞÞ, con-
firming the maximally likely alternative problem in ð16Þ. In fact, when it
comes to fallacious results, the LL is in sync with the Bayes factor proce-
dure because the former can be used directly to establish the subset VBF in
ð13Þ.

To see this, consider pairwise comparisons of different values of v ∈ V1

with v5 :2:

H0∶v5 :2 versus H1∶v5 v1; for all v1 ∈ V1 :5 V2 f:2g: ð20Þ

The LL reveals that data x0 favor each value v1 in VLR over v0 5 :2 since

Lðv1; x0Þ > Lðv0 5 :2; x0Þ; for all v1 ∈ VLR:

As mentioned above, there is nothing coincidental about the subset VLR ⊂ VBF

since

VLR :5 ð:2; :20331�5 ½ v̂MLEðx0Þ � 3 SDð v̂MLEÞ�; ð21Þ
where

SDð v̂MLEðx0ÞÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:20165233ð12 :20165233Þ

527;135

s
5 :0005526:

That is, ð21Þ is related to Stone’s remark associated with the p-value indi-
cating “3 standard deviation excess of type A outcomes,” when it is viewed
as an observed confidence interval ðCIÞ. Having said that, it is important to
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reiterate that although we used a CI around bvMLEðx0Þ to define VLR, such a
subset exists in V for all data x ; irrespective of the way one locates V .
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In summary, applying the Bayes factor to the statistical hypotheses,

H0∶v5 v0 5 :2 versus H1∶v5 v1; for all v1 ∈ V1 5 V2 f:2g; ð22Þ

indicates that data x0 provides substantial evidence for v0 5 :2 over v ≠ :2:
However, this inference is undermined by the fact that each value v1 ∈ VLR

⊂ V1 turns out to be favored more strongly than v0 5 :2 when tested using
the generic hypotheses:

H0∶v5 v0 versus H1∶v5 v1; for each v1 ∈ VLR ⊂ V1; ð23Þ

falling prey to the fallacy of acceptance. These conflicting results seriously
undermine the initial favoring of v0 5 :2 over v ≠ :2, and they bring out the
fallacious implications of Bayesian and likelihoodist inferences, calling into
question the Jeffreys-Lindley paradox. As aptly put by Stone ð1997, 263Þ:
“When not misused, they ½P-values� still provide some sort of control over
the pursuit of weak clues—not a measure of faith in some alternative hypoth-
esis. A P-value is a P-value is a P-value! That some users like to misinter-
pret it as a posterior probability or odds ratio or other inferential measure . . .
should not detract from the P-value’s intrinsic, if uninterpretable, value.”

As shown in the next section, in the case of the p-value, there is a prin-
cipled way to circumvent its weaknesses using Mayo’s ð1996Þ postdata se-
verity assessment.

6. Severity: Addressing theLargen Problem. Severity constitutes a post-
data evaluation of the Neyman-Pearson accept/reject results with a view to
establish the ðsmallest/largestÞ discrepancy g from H0 warranted by data
x0: As such, the severity evaluation is by definition directional since post-
data one has an outcome dðx0Þ whose sign indicates the relevant direction
of departure from H0:

A hypothesisH passes a severe test Ta with data x0 if ðiÞ x0 accords withH
ðusing a suitable measure of accordanceÞ, and ðiiÞ with very high proba-
bility, test Ta would have produced a result that accords less well with H
than x0 does, if H were false.

The case of testing the hypotheses ð3Þ using ð4Þ yielded dðx0Þ5 2:999;
which led to rejecting H0. Postdata, the sign of the observed test statistic,
dðx0Þ > 0; indicates that the rejection is clearly in the direction of values
greater than v0 5 :2. That is, in light of data x0, the two-sidedness of the
original Neyman-Pearson test is irrelevant. Indeed, the same severity evalu-
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ation applies to the case of the one-sided test for the composite hypotheses
ð10Þ. Condition ðiÞ of severity implies that the generic form of the inferential
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claim that “passed” is ðMayo and Spanos 2006Þ:

v > v1 5 v0 1 g; for some g ≥ 0: ð24Þ

It is important to emphasize that ð24Þ is not a reformulation of the original
hypotheses but a framing of the relevant inferential claim associated with the
rejection of H0 stemming from dðx0Þ5 2:999 ðsee Spanos 2011Þ. The rejec-
tion of H0 calls for the appraisal of the largest discrepancy g from H0 war-
ranted by data x0. Condition ðiiÞ calls for the evaluation of the probability of
“outcomes that accord less well with v > v1 than x0 does,” which translates
into all those outcomes x ∈ f0; 1gn such that ½dðxÞ ≤ dðx0Þ�: This gives rise
to:

SEVðTa; v > v1Þ5 Pðx∶dðXÞ ≤ dðx0Þ; v > v1 is falseÞ: ð25Þ

Given the numerical values in ð7Þ and the relevant distribution in ð6Þ, one
can proceed to evaluate ð25Þ for different v1 > v0 using the standardized sta-
tistic:

dðXÞ2 dðv1Þffiffiffiffiffiffiffiffiffiffiffi
V ðv1Þ

p ∼v5v1 Binð0; 1; nÞ; for v1 > v0: ð26Þ

Table 1 reports the severity evaluation for different discrepancies of interest.
To explain how one derives the results in table 1, consider the case

g5 :002, that is, the relevant claim is v > :202: Evaluating the relevant
components

dðx0Þ2 dðv1Þffiffiffiffiffiffiffiffiffiffiffi
V ðv1Þ

p 5
2:9992 3:63ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:0007
p 5 2:631;

dðv1Þ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
527135

p ð:2022 :2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:2ð12 :2Þp 5 3:63;

V ðv1Þ5 :202ð12 :202Þ
:2ð12 :2Þ 5 1:0007;

one can proceed to evaluate SEVðTa; v > v1Þ using the Nð0; 1Þ tables, which
yields:

SEVðTa; v > v1Þ5 Pðx∶dðXÞ ≤2:631; v5 :202Þ5 :264:
This content downloaded from 128.186.110.134 on Mon, 28 Oct 2013 17:16:01 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


The results in table 1 indicate that, for a severity threshold of say :9, the claim
for which data x0 provide evidence is v > :20095 ⇒ g* ≤ :00095.

TABLE 1. REJECT HO: v5 ðdðxoÞ5 2:999Þ
Inferential Claim SEVðTa; v > v1Þ

g v > v1 5 v0 1 g; Pðx∶dðXÞ ≤ 2dðX0Þ; v5 v1Þ
0 v > .2000 .999
.0009 v > .2009 .914
.00095 v > .20095 .900
.001 v > .2010 .882
.0015 v > .2015 .609
.00165 v > .20165 .500
.002 v > .2020 .264
.0023 v > .2023 .120
.0024 v > .2024 .087
.0025 v > .2025 .062
.003 v > .203 .007
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How does this answer relate to the original question of interest of testing
the theoretical prediction that the proportion of type A outcomes is .2? One
needs to answer the question whether the particular discrepancy from the
null, g*; is substantively significant, which cannot be answered exclusively
on statistical grounds because it pertains to the substantive subject matter in-
formation. That is, one needs to consider g* in the context of the theory of
particle physics that motivated the above experiment to decide whether it is
substantively significant.

It is important to emphasize that the postdata severity evaluation goes be-
yond avoiding the misuse of p-values, as suggested by Stone ð1997Þ in the
above quotation. It addresses the key problem with Fisherian p-values in the
sense that the severity evaluation provides the “magnitude” of the warranted
discrepancy from the null by taking into account the generic capacity of
the test ðthat includes nÞ in question as it relates to the observed data x0:

As shown in Mayo and Spanos ð2006Þ, the postdata severity assessment
can be used to supplement frequentist testing with a view to bridge the gap
between the p-value and the accept/reject rules, on the one hand, and pro-
viding evidence for or against a hypothesis in the form of the discrepancy g
from the null warranted by data x0, on the other hand. Its key difference
from the Bayesian and likelihoodist approaches is that it takes into ac-
count the generic capacity of the test in establishing g.

The severity-based evidential interpretation addresses not just the large-n
problem but the fallacies of acceptance and rejectionmore broadly, as well as
other charges leveled against frequentist testing, including the “arbitrariness”
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of choosing the significance level, the one-sided versus two-sided framing of
hypotheses, the reversing of the null and alternative hypotheses, and so forth
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ðsee Mayo and Spanos 2011; Spanos 2011Þ.

7. Bayesian and Likelihoodist Accounts Revisited. Where does the above
severity assessment leave the Bayesian and likelihoodist inferences? Both
approaches are plagued by the maximally likely alternative problem ðMayo
1996Þ in the sense that the value bvMLEðx0Þ5 v♦ is always favored against
every other value of v, irrespective of the substantive values of interest. Any
attempt to sidestep that problem will require an extreme data-based tilting
of the prior against all values vz ∈ VLR. In contrast, the severity of the infer-
ential claim v > v♦ is always low, being equal to :5 ðtable 1Þ, calling into
question the appropriateness of such a choice. In addition, the severity as-
sessment in table 1 calls seriously into question the results associated with the
two intervals VBF :5 ½:199653; :203662� and VLR :5 ð:2; :20331� because
these intervals include values vz of v, for which the severity of the rele-
vant inferential claim v > vz is very low ðe.g., SEVðTa; v > :2033Þ ≃ :001Þ.

The question that naturally arises is why the Bayesian and likelihoodist
approaches give rise to the above conflicting and confusing results. The se-
verity account gives a straightforward answer: both approaches ignore the
generic capacity of a test when going from

step 1: LRðv0; v1; x0Þ5 Lðv0; x0Þ
Lðv1; x0Þ

> k; ð27Þ

indicating that v0 is k times more likely than v1, to step 2: fashioning the re-
sult in ð27Þ into the strength of evidence for or against vi; i5 0; 1:

Bayesians and likelihoodists are likely to challenge this criticism as mis-
placed by invoking the distinction between the logic versus the epistemology
of inference to claim that the generic capacity of the test belongs to the latter,
but their approaches are primarily focused on the former. Demarcating the
logic of inference as pertaining to what follows from given premises ðin a
deductive senseÞ and the epistemology of inference as concerned with “how
we learn from data x0,” the generic capacity of a test belongs squarely within
the logic of inference because it follows deductively from the premises ðthe
statistical modelÞ without any reference to data x0. The inductive dimension
of severity emanates from the fact that its evidential account uses the par-
ticular data x0 to infer something pertaining to the underlying generating
mechanism represented by the statistical model.

The Bayesian objection would have had some merit if the approach were
to end after BFðx0; v0Þ is evaluated, but it does not. Similarly, likelihoodists
do not end after LRðv0; v1; x0Þ is evaluated but proceed to claim an evidential
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based on benchmarks for the “strength of statistical evidence” for v0.
For instance, LRðv ; v ; x Þ > k; k 5 8, is considered moderate evidence,
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while k 5 32 is considered strong evidence ðsee Royall 1997Þ. In contrast,
the severity account ensures learning from data x0 by employing reliable pro-
cedures to establish trustworthy evidence for hypotheses or claims pertain-
ing to the underlying generating mechanism, the reliability of inference being
calibrated in terms of the relevant error probabilities, both predata and post-
data.

What is particularly interesting is that the Bayes factor and the likelihood
ratio are directly related to the test ð4Þ in the sense that the test statistic
dðXÞ is a monotone function of the likelihood ratio statistic lðv;XÞ5
½Lðv0;XÞ=maxv∈V Lðv;XÞ�, and its rejection region C1ðaÞ is related to lðv;XÞ
> k ðsee Lehmann 1986Þ. In this sense, the key difference between the fre-
quentist and the other two approaches is that they ignore the sampling dis-
tribution and the associated error probabilities of the test in ð4Þ by invoking
the likelihood principle ðBerger and Wolpert 1988Þ, which asserts that no
other value x of the sample X, apart from data x0; is relevant for inference
purposes. Indeed, Bayesian statisticians take delight in poking fun at fre-
quentist testing by quoting Jeffreys’s ð1939/1961, 385Þ remark about the
“absurdity” of invoking the quantifier “for all x ∈ f0; 1gn

”: “What the use
of P implies, therefore, is that a hypothesis that may be true may be rejected
because it has not predicted observable results that have not occurred. This
seems a remarkable procedure.”

What these critics overlook is that their attempts to provide an evidential
account for statistical hypotheses go astray exactly because they ignore
the generic capacity of the test, which calls upon the quantifier “for all
x ∈ f0; 1gn

” for its evaluation. Viewed from the severity perspective, the
trouble with using a small p-value as a basis for inferring evidence for a par-
ticular alternative H1 stems from the fact that it only indicates the presence
of “some” discrepancy from H0, but it provides no information about its
magnitude; the latter requires summoning the generic capacity of the test. In
light of this fatal flaw of the p-value as a basis for an evidential account,
the literature concerned with “reconciling” the p-value ðor some modification
of itÞ with various Bayesian measures ðsee Berger and Delampady 1987;
Berger, Boukai, and Wang 1997; Sellke, Bayarri, and Berger 2001; Berger
2003; inter aliaÞ is overlooking the real issue. Any evidential account aiming
to provide a sound answer to the question of when data x0 provide evi-
dence for or against a hypothesis ðor a claimÞ can ignore the generic capacity
of a test at its peril!

Intuitively, what goes wrong is that the Bayesian factor and the likelihood-
ist procedures use Euclidean geometry based on LRðv0; v1; x0Þ to evaluate
evidence for different hypotheses ðH0 orH1Þ, when in fact the statistical test-
ing space is curved, with the curvature determined primarily by the capac-
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ity of the test to detect discrepancies from H0. This is especially relevant for
the large n problem because the power of the test in ð4Þ increases with ffiffiffi

n
p

:
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The use of Euclidean geometry is clearly apparent in the following quota-
tion from Berger and Wolpert ð1988, 7Þ:

For a testing example, suppose it is desired to test

H0∶m521 versus H1∶m5 1; ½28�
based on X ∼ Nðm, .25Þ. The rejection region X ≥ 0 gives a test with error
probabilities ðtype I and type IIÞ of .0228. If x5 0 is observed, it is
then permissible to state that H0 is rejected and that the error probabil-
ity is a5 :0228: Common sense, however, indicates that x5 0 fails to
discriminate at all between H0 and H1. Any sensible person would be
equally uncertain as to the truth of H0 or H1 ðbased just on data x5 0Þ.

Any “sensible” Bayesian/likelihoodist would be wrong to conclude that
x5 0 provides the same evidence for both H0 and H1 just because it is half-
way between their hypothesized values of m ðsee Spanos 2011Þ.

Although there is a connection between the “curved statistical space” and
Stone’s ð1997Þ conjecture concerning “insufficient weight on the hypoth-
eses of non-negligible likelihood,” there is no way to use the generic capacity
of the test to provide a more appropriate weighting scheme within the Bayes-
ian and likelihoodist frameworks.

8. Summary and Conclusions. The Jeffreys-Lindley paradox has played
an important role in undermining the credibility of frequentist inference by
focusing attention on how the large-n problem renders frequentist testing
vulnerable to the fallacy of rejection. It was argued that although there is
nothing fallacious about rejecting H0; when n is large, there is a problem
when this result is detached from the test itself and viewed as providing the
same evidence for a particular alternativeH1 regardless of the generic capac-
ity ðthat depends on nÞ of the test in question. This renders the p-value and
the accept/reject rules vulnerable to the fallacies of acceptance and rejection.

The discussion has also called into question the basic premise of the
Jeffreys-Lindley paradox concerning the sagacity of the Bayes factor favor-
ing H0 as n increases as symptomatic of the fallacy of acceptance, the re-
verse problem plaguing the p-value. More generally, it was shown that the
move from ½Lðv0; x0Þ=Lðv1; x0Þ� > k to inferring that x0 provides weak or
strong evidence for H0, depending on the value of k > 1; renders the Bayes
factor and the likelihood ratio equally susceptible to the same fallacies.

It was argued that in the context of frequentist testing these fallacies can
be circumvented using a postdata severity evaluation. The key is that this
evaluation takes into account the test’s generic capacity in establishing the
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discrepancy g from the null warranted by data x0. The underlying intuition
is that detecting a particular discrepancy g using a very sensitive ðinsensitiveÞ
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test provides less ðmoreÞ strong evidence that g is present. In contrast, the
Bayesian and likelihoodist approaches have no principled way to circumvent
these fallacies.
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