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Abstract

The Jeffreys-Lindley paradox displays how the use of a p-value (or number
of standard deviations z) in a frequentist hypothesis test can lead to inferences
that are radically different from those of a Bayesian hypothesis test in the form
advocated by Harold Jeffreys in the 1930’s and common today. The setting
is the test of a point null (such as the Standard Model of elementary particle
physics) versus a composite alternative (such as the Standard Model plus a new
force of nature with unknown strength). The p-value, as well as the ratio of
the likelihood under the null to the maximized likelihood under the alternative,
can both strongly disfavor the null, while the Bayesian posterior probability for
the null can be arbitrarily large. The professional statistics literature has many
impassioned comments on the paradox, yet there is no consensus either on its
relevance to scientific communication or on the correct resolution. I believe that
the paradox is quite relevant to frontier research in high energy physics, where
the model assumptions can evidently be quite different from those in other
sciences. This paper is an attempt to explain the situation to both physicists
and statisticians, in hopes that further progress can be made.
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1 Introduction

On July 4, 2012, the leaders of two huge collaborations (CMS and ATLAS) presented
results at a joint seminar at CERN on the French-Swiss border outside Geneva, each
describing the observation of a “new boson”, suspected to be the long-sought Higgs
boson (Incandela and Gianotti, July 4, 2012). The statistical significances of the
results were expressed in terms of “σ”: carefully calculated p-values (not assuming
normality) were mapped onto the equivalent number of standard deviations in a one-
tailed test of the mean of a normal distribution. ATLAS observed 5σ significance
by combining the two most powerful detection modes (different sets of particles into
which the boson decayed) in 2012 data with full results from earlier data. With
independent data taken with a different apparatus and only partially correlated anal-
ysis assumptions, CMS observed 5σ significance in an similar combination, and when
combining with some other modes as CMS had planned for that data set, 4.9σ.

With both ATLAS and CMS also making similar observations about the size of
the effect (magnitude of the signal strength), the new boson was immediately in-
terpreted as the most anticipated and publicized discovery in high energy physics
(HEP) since the Web was born (also at CERN). Journalists went scurrying for expla-
nations for what a “σ” is, and why “high energy physicists require 5σ for a discovery”.
Meanwhile, those who knew a little or a lot about Bayesian model selection began
to wonder out loud why high energy physicists were still using frequentist p-values to
test a point null hypothesis against a composite alternative.

In this paper, I try to explain some of the traditions of discovery in high energy
physics, which have a decidedly frequentist flavor, drawing in a pragmatic way on both
Fisher and Neyman-Pearson, even where these giants disagreed over philosophical
foundations. Of course, a number of us have been aware for many years of the
criticisms of this approach, having had the real pleasure of interacting with some of
the top Bayesian statisticians (both subjective and objective in flavor) who attended
HEP workshops on statistics. These issues lead directly to a famous “paradox”, as
Lindley called it, when testing the hypothesis of a specific value of a parameter, θ0,
against a continuous set of alternatives θ. The different sample-size scaling of p-
values and Bayes factors, described by Jeffreys and emphasized by Lindley, can lead
the frequentist and the Bayesian to opposite inferences.

However, as this paper describes, it is an understatement to say that the commu-
nity of Bayesian statisticians has not reached full consensus on what should replace
p-values in scientific communication. For example, two of the most prominent voices
of “objective” Bayesianism (Jim Berger and José Bernardo) advocate fundamentally
different approaches to hypothesis testing for scientific communication, as discussed
below. Furthermore, in surveying the Bayesian literature, it is striking to me how
different the assumptions about “models” are in high energy physics compared to the
social sciences, for example.

Thus, my goal in this paper is to describe today’s rather unsatisfactory situation
as I see it. Progress in high energy physics meanwhile continues, but I think it
would be potentially quite useful if more statisticians became aware of our special
circumstances, and reflected on what the Jeffreys-Lindley paradox means to high
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energy physics, and vice versa.
In “high energy physics”, also known as “elementary particle physics”, the objects

of study are the smallest building blocks of matter and the forces between them. The
2004 Nobel Lecture by prize-winner Frank Wilczek (2004) provides an introduction
with insights and descriptions well beyond the topic for which he shared the prize
(the equation for one of the four forces of nature). For a variety of reasons, the experi-
mental techniques often make use of the highest-energy accelerated beams attainable.
But due to the magic of quantum mechanics, we can probe even higher energies by
carefully observing decays in intense lower-energy beams, with the ultimate reach
potentially attainable by watching a large vat of liquid (hoping to see protons decay);
and since the early universe was hotter than our most energetic beams, and still has
powerful cosmic accelerators and extreme conditions, astronomical observations are
a crucial source of information on “high energy physics”. Historically, some discov-
eries in high energy physics have been in the category known to statisticians as “the
interocular traumatic test; you know what the data mean when the conclusion hits
you between the eyes.” (Edwards et al, 1963, p. 217, citing J. Berkson). In other
cases, the evidence accumulated slowly, and it was considered essential to quantify
the evidence in a fashion that relates directly to this review.

A wide range of views on the Jeffreys-Lindley paradox can be found in reviews with
commentary by many distinguished statisticians, in particular those of Shafer (1982),
Berger and Sellke (1987), Berger and Delampady (1987a), and Robert, Chopin, and
Rousseau (2009). The review of Bayes factors by Kass and Raftery (1995) is also a
useful resource, and the earlier book by economist Leamer (1978) offers many inter-
esting insights. Some of the views these authors express about the nature of typical
statistical issues in data analysis are rather different than what we find in HEP, the
greatest being that we do often have non-negligible belief that our null hypotheses are
valid to a precision much greater than our measurement capability. Regarding the
search by ATLAS and CMS leading to the discovery of “a Higgs boson”, statistician
David van Dyk (2014) has prepared an informative summary of the procedures that
we used.

In Sections 2 and 3, I review the paradox, and explain how there may exist three
different scales in θ, and that the paradox arises if they have a certain hierarchy
that is common in high energy physics. In Section 4, I address the notions common
among statisticians that all models are wrong, and that scientists are typically biased
against the point null, so that the paradox is irrelevant. In passing, I briefly describe
the likelihood-ratio commonly used in HEP as the test statistic. In Section 5, I discuss
the difficult issue of how to choose the prior for θ, and in particular the scale τ of the
plausible values of θ; to me the so-called objective methods that attempt to use the
measuring apparatus to set this scale for hypothesis testing are not yet enlightening for
scientific communication. Section 6 briefly describes the completely different approach
to simple-vs-composite testing advocated by José Bernardo, which stands apart from
the rest of the Bayesian literature. In Section 7, I discuss effect size and the historical
usage of confidence intervals in high energy physics to augment the quoted p-value,
and how tiny effect sizes can be a window into very high energy physics. Section 8
discusses the choice of Type I error α when adopting the approach of Neyman-Pearson
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hypothesis testing, with some comments on the “5σ myth”. Finally, in Section 9, I
discuss the seemingly universal agreement that a single p-value is (at best) a woefully
incomplete summary of the data, and how confidence intervals at various confidence
levels can (and do) help the consumer in HEP. I conclude in Section 10.

2 The original “paradox” of Lindley, as corrected

by Bartlett

Lindley (1957), with a crucial correction by Bartlett (1957), lays out the paradox in
a form that is useful as our starting point. This section also draws on Section 5.0 of
Jeffreys (1961) and on Berger and Delampady (1987a). I use (mostly) the notation
of the latter, using the statistician’s convention of upper case for the random variable
and lower case for observed values.

Suppose X having density f(x|θ) is observed, with θ being an unknown element
of the parameter space Θ. It is desired to test H0: θ = θ0 versus H1: θ 6= θ0.
Following the Bayesian approach to hypothesis testing pioneered by Jeffreys (also
referred to as Bayesian model selection), we assign prior probabilities π0 and π1 =
1 − π0 to the respective hypotheses. Conditional on H1 being true, one also has a
continuous prior probability density g(θ) for the unknown parameter. If f is normal
with mean θ and known variance σ2, then with a random sample {x1, x2, . . . xn}, we
have X ∼ N(θ, σ2/n). For conciseness (and eventually to make the point that “n”
can be obscure), I define

σtot ≡ σ/
√
n. (1)

The likelihood is then

L(θ) =
1√

2πσtot
exp

{
−(x− θ)2/2σ2

tot

}
, (2)

with maximum likelihood estimate (MLE) θ̂ = x, so that the posterior probabilities
of the hypotheses are easily calculated:

P (H0|θ̂) =
1

A
π0

1√
2πσtot

exp
{
−(θ̂ − θ0)2/2σ2

tot

}
(3)

and

P (H1|θ̂) =
1

A
π1

∫
g(θ)

1√
2πσtot

exp
{
−(θ̂ − θ)2/2σ2

tot

}
dθ. (4)

Here A is a normalization constant to make the total probability unity, and the
integral is over the support of g(θ).

There will typically be a scale τ that indicates the range of values of θ over which
g(θ) is relatively large. One considers the case

σtot � τ, (5)

so that g(θ) varies slowly where the rest of the integrand is non-negligible, and thus
the integral is approximately g(θ̂). Then the ratio of posterior odds to prior odds for
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H0 with respect to H1, i.e., the Bayes factor (BF), is independent of A and π0, and
given by

BF =
P (H0|θ̂)
P (H1|θ̂)

/
π0
π1

=
1

√
2πσtotg(θ̂)

exp
{
−(θ̂ − θ0)2/2σ2

tot

}
=

1
√

2πσtotg(θ̂)
exp(−z2/2), (6)

where
z = (θ̂ − θ0)/σtot =

√
n(θ̂ − θ0)/σ (7)

is the usual test statistic indicating the departure from the null in units of σtot. Then
the p-value for the two-tailed test considered here is p = 2(1− Φ(z)), where Φ is the
cumulative distribution function for the unit normal density. (As discussed below, in
HEP typically θ is physically non-negative, and hence we use a one-tailed test, i.e.,
p = 1− Φ(z).)

Jeffreys (1961, p. 248) notes that g(θ̂) is independent of n and σtot goes as 1/
√
n,

and thus a given cutoff value of the BF does not correspond to a fixed value of z.
This discrepancy in sample-size scaling of z and p-values compared to Bayes factors
(already noted in the first edition in 1939, using a constant g on p. 194) is the core
of the “paradox”.

In Appendix B, Jeffreys (1961, p. 435) curiously downplays the discrepancy in
a sentence that begins by summarizing concisely his objections to testing based on
p-values (almost verbatim with p. 360 of the 1939 edition): “In spite of the difference
in principle between my tests and those based on the [p-values], and the omission of
the latter to give the increase in the critical values for large n, dictated essentially by
the fact that in testing a small departure found from a large number of observations
we are selecting a value out of a long range and should allow for selection, it appears
that there is not much difference in the practical recommendations.” He does say,
“At large numbers of observations there is a difference”, but suggests that this will
be rare and that one should suspect and test for internal correlations as the cause.

In contrast, Lindley (1957) emphasized how bad the discrepancy could be, with
the example where g(θ) was taken to be constant over an interval that contains θ̂ as
well as the range of θ in which the integrand is non-negligible. For any arbitrarily
small p-value (arbitrarily large z) that is traditionally interpreted as evidence against
the null, there will always exist n for which the BF can be arbitrarily large in favor
of the null.

Bartlett (1957) quickly noted that Lindley had neglected the length of the interval
over which g(θ) is constant, which should appear in the numerator of the Bayes
factor, and which makes the posterior probability of H0 “much more arbitrary”.
More generally, the normalization of g always has a scale τ that characterizes the
extent in θ of non-negligible g, so that g(θ̂) ∝ 1/τ . Thus there is a factor of τ
the numerator of the BF. For example, Berger and Delampady (1987a)) and others
consider g(θ) ∼ N(θ0, τ

2), which in the limit of Eqn. 5 leads to

BF =
τ

σtot
exp(−z2/2). (8)
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One reaches the same proportionality in the Lindley/Bartlett example if the length
of their interval is τ . The crucial observation is thus that the scaling,

BF ∝ τ

σtot
exp(−z2/2), (9)

is generic. Of course the details of g will in general lead to a different proportionality
constant depending on g(θ̂).

Meanwhile, from Eqn. 2, the ratio λ of the likelihood of θ0 under H0 and the
maximum likelihood under H1 is

λ = L(θ0)/L(θ̂) (10)

= exp
{

(θ̂ − θ0)2/2σ2
tot

}/
exp

{
(θ̂ − θ̂)2/2σ2

tot

}
(11)

= exp(−z2/2) (12)

∝
(σtot
τ

)
BF. (13)

Thus, unlike the case of simple-versus-simple hypotheses discussed below in Sec-
tion 2.2, this maximum likelihood ratio takes the side of the p-value in disfavoring the
null for large z, independent of σtot/τ , and thus independent of sample size n. This
difference between maximizing L(θ) under H1, and averaging it under H1 weighted
by the prior g(θ), can be dramatic.

From the derivation and the scaling equations, we also see that the paradox does
not depend on the value of π0 chosen; in particular it does not depend on the com-
monly suggested choice of π0 = 1/2. The paradox follows from assigning any non-zero
probability mass to the point of measure zero, θ = θ0.

The factor σtot/τ , arising from the average of L weighted by g in Eqn. 4, is often
touted as the “Ockham factor” that provides a desirable “Ockham’s razor” effect
(Jaynes, 2003, Chapter 20) by penalizing H1 for lack of precision in specification of θ.
But the fact that, even asymptotically, the Bayes factor is itself directly dependent
on the scale τ of the prior g(θ) (and more precisely on g(θ̂)) can come as a surprise
to those deeply steeped in Bayesian estimation, where typically the dependence on
all priors diminishes asymptotically. The surprise is perhaps enhanced since Bayes
factors are often introduced as the factor by which (even subjective) prior odds are
modified in light of the observed data, giving the initial impression that the subjective
part has been factorized out from the BF.

The situation clearly invites robustness studies, and various authors, beginning
with Edwards et al (1963), have explored in detail the effect of varying g(θ), making
numerical comparisons of p-values to Bayes factors in various contexts such as testing
a point null for a binomial parameter. Generally they give examples where the p-
values are always numerically smaller than the Bayes factors, even when the prior for
θ “gives the utmost generosity to the alternative hypothesis”.

2.1 Is there really a “paradox”?

The trivial “resolution” of Jeffreys-Lindley paradox is to point out that there is no
reason to expect the numerical results of frequentist and Bayesian hypothesis testing
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to agree, since they calculate different quantities. Still, it is a bit unnerving to many
that “hypothesis tests” that are nominally both communicating the same scientific
result can have such a large discrepancy. So is it a paradox?

I prefer to use the word “paradox” with the meaning I first learned in my school-
boy days, namely a seeming contradiction that upon closer inspection is not a contra-
diction. This is the meaning of the word, for example, in the celebrated “paradoxes”
of Special Relativity, such as the Twin Paradox and the Pole-in-Barn Paradox. (The
“resolution” of a paradox is then a careful explanation of why it is not a contradic-
tion.) I thus do not use the word paradox as a synonym for contradiction – that takes
a word with (I think) a very useful meaning and wastes it on a redundant meaning
of another word. It can however be confusing that what is paradoxical by my pre-
ferred definition depends on whether or not something “seems” contradictory, which
depends on the person. Thus, if someone says, “What Lindley called a paradox is not
a paradox”, then typically they either define paradox as a synonym for contradiction,
or it was always so obvious to them that the paradox is not a contradiction that they
think it is not paradoxical. (They could also mean that it is a contradiction that can-
not be resolved, with my preferred definition of paradox, but I have not seen that used
as an argument for why it is not a paradox.) Although it may still be questionable
as to whether there is a resolution satisfactory to everyone, for now I think that the
word paradox is quite apt, just as it is for the Twin Paradox in Special Relativity. As
the deep issue is the scaling of the BF with sample size (for fixed p-value) as pointed
out by Jeffreys already in 1939, I follow some others in calling it the Jeffreys-Lindley
paradox.

2.2 This paradox is not about testing simple vs simple

Testing simple H0: θ = θ0 versus simple H1: θ = θ1 provides another interesting
contrast between Bayesian and frequentist testing, but this is not the case of the
Jeffreys-Lindley paradox. In contrast to the Jeffreys-Lindley paradox, in the simple-
versus-simple case, the Bayes factor and the likelihood ratio are the same (in the
absence of nuisance parameters), and hence in agreement as to which hypothesis the
data favor.

In the Jeffreys-Lindley paradox situation, there is a value of θ under H1 that is
equal to the MLE θ̂, and which hence has a likelihood no lower than that of θ0. The
extent to which θ̂ was not favored by the prior is encoded in the Ockham factor in
Eqn. 13, and thus the BF and the likelihood ratio can disagree on both the magnitude
and the direction of the evidence.

Simple-vs-simple tests are far less common in HEP than simple-versus-composite,
but have in fact arisen in the last year as the CERN experiments have been performing
tests of quantum mechanical properties of the new boson, namely quantum numbers
known as spin and parity. Again supposing X having density f(x|θ) is observed, now
one can form two well-defined p-values, namely p0 indicating departures from H0 in
the direction of H1, and also p1 indicating departures from H1 in the direction of H0.
Any physicist will examine both p-values in considering what inference to draw.

That the set of the two p-values is “the evidence” has been argued for example
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by Thompson (2007, p. 108), and many in HEP may agree. If θ0 < θ̂ < θ1 and
σtot � θ1 − θ0, then it is conceivable, for example, that H0 is rejected at 5σ, while if
H1 is taken as the null, it would be rejected at 7σ. A physicist would be well aware
of this circumstance and hardly fall into the straw-man trap of implicitly accepting
H1 by “rejecting” H0. The natural reaction would be to question both hypotheses,
i.e., the two-simple-hypothesis model would be questioned.

Senn (2001, pp. 200-201) has further criticism and references regarding the issue
of sample-size dependence of p-values in the simple-vs-simple context.

3 Do point nulls exist in principle? In practice?

In the Bayesian literature, there are notably differing attitudes expressed regarding
the point null hypothesis θ = θ0 assumed above. There is disagreement on both its
relevance to one’s typical scientific work and on how to view its prior probability.

First, we recall that in the traditional frequentist paradigm, a point null value θ0
is treated like any other θ. For example, “Kendall and Stuart” and successors (Stuart
et al, 1999, p. 175), describe the duality between hypothesis testing and interval
estimation via confidence intervals. The hypothesis test for θ = θ0 at significance
level (“size”) α is entirely equivalent to whether or not θ0 is contained in a confidence
interval for θ with confidence level (CL) of one minus α. “Thus there is no need
to derive optimal properties separately for tests and intervals: there is a one-to-one
correspondence between the problems. . . ”

This direct connection between estimation and testing is decried in much of the
Bayesian literature starting with Jeffreys, and the fact that Bayesian hypothesis test-
ing can treat a point null (also called “sharp hypothesis”) in a special way is often
touted as an advantage. The test is often phrased in the language of model selec-
tion: the “smaller” model H0 is nested in the “larger” model H1. From this point of
view, it seems natural to have one’s prior probabilities π0 and π1 for the two models.
However, viewed from the point of view of putting a prior on the entire space Θ in
the larger model, this corresponds to a non-regular prior that has counting measure
(“probability mass”) on θ0 and Lebesgue measure (probability density) on θ 6= θ0. At
least one prominent advocate of “objective” priors (Bernardo, quoted below) argues
against this feature in “objective” analyses.

As discussed by Casella and Berger (1987a), some of the more disturbing features
of the Jeffreys-Lindley paradox are ameliorated (or even “reconciled”) if there is no
point null and the test is the so-called “one-sided test”, namely H0: θ ≤ θ0 versus
H1: θ > θ0. This is also true for the completely different decision-based approach
of Bernardo (Section 6). Given the importance of the issue of probability mass on a
point null, I first cite some of the opinions expressed in the statistics literature, and
describe our attitudes in HEP in Section 4.

We start with the position of Dennis Lindley (2009), who lauds the “triumph”
of Jeffreys’s “general method of significance tests, putting a concentration of prior
probability on the null—no ignorance here—and evaluating the posterior probability
using what we now call Bayes factors.” As a strong advocate of the use of subjective
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priors representing personal degree of belief, Lindley views the probability mass on the
point null as subjective. (In the same Comment, Lindley criticizes Jeffrey’s “error” of
integrating over the sample space of unobserved data in formulating his eponymous
priors used in estimation).

At the other end of the spectrum of Bayesian theorists, we find Lindley’s student,
José Bernardo (2009), commenting on Robert et al (2009): “Jeffreys intends to obtain
a posterior probability for a precise null hypothesis, and, to do this, he is forced to
use a mixed prior which puts a lump of probability p = Pr(H0) on the null, say H0 ≡
θ = θ0 and distributes the rest with a proper prior p(θ) (he mostly chooses p = 1/2).
This has a very upsetting consequence, usually known as Lindley’s paradox: for any
fixed prior probability p independent of the sample size n, the procedure will wrongly
accept H0 whenever the likelihood is concentrated around a true parameter value
which lies O(n−1/2) from H0. I find it difficult to accept a procedure which is known
to produce the wrong answer under specific, but not controllable, circumstances.”
Bernardo goes on to advocate discrepancy measures such as those in his “Reference
analysis” approach (Section 6), which “has the nontrivial merit of being able to use
for both estimation and hypothesis testing problems a single, unified theory for the
derivation of objective ‘reference’ priors.”

When pressed by Commenters on his own proposals (Section 6 below), Bernardo
(2011b) does say that “I am sure that there are situations where the scientist is willing
to use a prior distribution highly concentrated at a particular region and explore the
consequences of this assumption. . . What I claim is that, even in precise hypothesis
testing situations, the scientist is often interested in an analysis which does not assume
this type of sharp prior knowledge, and that standard reference priors may be used
to give an objective Bayesian answer to the question of whether or not a particular
parameter value is compatible with the data, without making such an important
assumption.”

A number of statisticians find point nulls irrelevant to their own work. In the
context of an unenthusiastic comment on the Bayesian information criterion (BIC),
Gelman and Rubin (1995) say “More generally, realistic prior distributions in social
science do not have a mass of probability at zero. . . ” Raftery (1995b) responds
that “social scientists are prepared to act as if they had prior distributions with
point masses at zero. . . social scientists often entertain the possibility that an effect
is small ”.

In commenting on Bernardo (2011b), Christian Robert and Judith Rousseau say,
“Down with point masses! The requirement that one uses a point mass as a prior
when testing for point null hypotheses is always an embarrassment and often a cause
of misunderstanding in our classrooms. Rephrasing the decision to pick the simpler
model as the result of a larger advantage is thus much more likely to convince our
students. What matters in pointwise hypothesis testing is not whether or not θ = θ0
holds but what the consequences of a wrong decision are.”

A number of comments on the point null are related to another claim, that all
models and all point nulls are at best approximations that are wrong at some level.
I discuss this point in more detail in Section 4, but include a few quotes here. Ed-
wards et al (1963) say, “. . . in typical applications, one of the hypotheses—the null

10



hypothesis—is known by all concerned to be false from the outset,” citing others
including Berkson (1938). Vardeman (1987) claims, “Competent scientists do not
believe their own models or theories, but rather treat them as convenient fictions. A
small (or even 0) prior probability that the current theory is true is not just a de-
vice to make posterior probabilities as small as p values, it is the way good scientists
think!”

Casella and Berger (1987b) object specifically to Jeffreys’s use of π0 = π1 = 1/2,
used in modern papers as well: “Most researchers would not put 50% prior proba-
bility on H0. The purpose of an experiment is often to disprove H0 and researchers
are not performing experiments that they believe, a priori, will fail half the time!”
Kadane (1987) expresses a similar sentiment: “For the last 15 years or so I have been
looking seriously for special cases in which I might have some serious belief in a null
hypothesis. I have found only one [testing astrologer]. . . I do not expect to test a
precise hypothesis as a serious statistical calculation.”

As discussed below, such statisticians have evidently not been socializing with too
many HEP physicists. In fact, in the literature I consulted, I encountered very few
statisticians who granted, as did Zellner (2009), that physical laws such as E = mc2

are point null, and “Many other examples of sharp or precise hypotheses can be given
and it is incorrect to exclude such hypotheses a priori or term them ‘unrealistic’. . . ”

As an opinion from a physicist outside HEP, over twenty years ago condensed
matter physicist and Nobel Laureate Philip Anderson (1992) argued in our profes-
sional magazine, Physics Today, for Jeffreys-style hypothesis testing with respect to
a claim for evidence for a fifth force of nature. “Let us take the ‘fifth force’. If we
assume from the outset that there is a fifth force, and we need only measure its mag-
nitude, we are assigning the bin with zero range and zero magnitude an infinitesimal
probability to begin with. Actually, we should be assigning this bin, which is the null
hypothesis we want to test, some finite a priori probability—like 1/2—and sharing
out the remaining 1/2 among all the other strengths and ranges.”

Already in Edwards et al (1963, p. 235) there was a key point related to our
situation in HEP: “Bayesians. . . must remember that the null hypothesis is a hazily
defined small region rather than a point.” They also emphasized the subjective nature
of singling out a point null hypothesis: “At least for Bayesian statisticians, however,
no procedure for testing a sharp null hypothesis is likely to be appropriate unless the
null hypothesis deserves special initial credence.”

That the “point” null can really be a “hazily defined small region” is clear from
the derivation in Section 2. The general scaling conclusion of Eqn. 9 remains valid
if “small region” means that the region of θ included in H0 has a scale ε0 such that
ε0 � σtot. Some modern authors, such as Berger and Delampady (1987a) have
explored quantitatively the approximation induced in the BF by non-zero ε0.

3.1 Three scales yield a paradox

We can conclude that the Jeffreys-Lindley paradox will arise if there exist three scales
in the parameter space Θ:
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1. ε0, the scale under H0,

2. σtot, the scale for the total measurement uncertainty, and

3. τ , the scale under H1;

and if there they have the hierarchy

ε0 � σtot � τ. (14)

This situation is in fact common in frontier experiments in HEP. We even have cases,
for example the mass of the photon, where ε0 = 0, i.e., most of the subjective prior
probability is on θ = 0.

As noted for example by Shafer (1982), the source of the precision of σtot does not
matter as long as condition in Eqn. 14 is satisfied. The statistics literature tends to
focus on the case where σtot arises from a sample size n via Eqn. 1. Then there can
be pedantic discussions about whether or not n can really be arbitrarily large, etc.
In my view the existence of a regime where the BF goes as τ/σtot for fixed z is the
fundamental characteristic that can lead to the Jeffreys-Lindley paradox, even if this
regime does not extend to σtot → 0. As I discuss in Section 4.1, such regimes exist in
HEP, and there is not always a well-defined n underlying σtot, a point I return to in
Sections 4.2 and 5 below in discussing τ . But first we consider the model itself.

4 Are all models wrong?

Do we believe our models?

At the heart of our measurement model is typically what is commonly known as a
“law of physics”. By some historical quirks, the current “laws” of elementary particle
physics, which have survived several decades of intense scrutiny with only a few
well-specified modifications, are collectively called a “model”, namely the Standard
Model. In this paper I refer to such a physics law/model, or an alternative potential
replacement for it, as a “core physics model”. The currently accepted core physics
models have parameters, such as masses of the quarks, which with few exceptions
have all been measured reasonably precisely (even if tricky to define). In going from
the core physics model to the full measurement model describing the probability
densities for data (for example momentum spectra of particles emerging from proton-
proton collisions at the Large Hadron Collider (LHC) at CERN), there are multiple
complications.

Theoretical calculations based on the core physics model can be quite difficult and
involve approximations due to truncation of power series, imperfect understanding of
the internal structure of colliding protons, and imperfect understanding of the manner
in which quarks emerging from the collision recombine into sprays of particles that
we measure. The results of the theoretical calculations, with attendant uncertainties,
must then be propagated through a simulation of the responses of the huge detectors,
which have extremely complex descriptions involving multitudes of calibration con-
stants, adjustments for inefficient detection, mis-identification of particles, etc. Much
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of the work in data analysis in HEP involves subsidiary calibration measurements to
measure detector responses, to perform checks against data for the theoretical calcu-
lations (in regimes where no departures are expected), and to confirm the accuracy
of the simulations.

The aphorism “all models are wrong” (Box, 1976) can certainly apply to the
detector simulation, where common assumptions of normality or log-normality are at
best good approximations. But the key point is that the pure core physics models still
exist as testable hypotheses about nature in which it makes sense to talk about point
null hypotheses. Typically the alternative to the Standard Model is a more generalized
model in which the Standard Model is nested, corresponding to parameters in the
alternative model being set to zero, unity, or infinity. It is perfectly sensible to try
to understand if some parameter in the core physics model is zero or not, even if one
must do so through the smoke of imperfect detector descriptions with many nuisance
parameters. Indeed much of what distinguishes the capabilities of experiments (and
experimenters) is how well they can do precisely that by understanding the detector
response through careful calibration and cross-checks. I believe that this distinction
is over-looked in the notion that usually one cannot test a point null hypothesis in
a core physics model because the rest of measurement model is imperfectly specified
(as suggested in Berger and Delampady (1987a)).

There is a deeper point I would like to make about our core physics models, and
that is the difference between the notion of a model being a good “approximation” in
the ordinary sense of the word, and the concept of a mathematical limit. The equa-
tions of Newtonian physics have been superseded by those of Special and General
Relativity, but we can now observe that they are not just approximations that did
a pretty good job in predicting (most) planetary orbits; they are the correct mathe-
matical limits in a precise sense. The kinematic expressions for momentum, kinetic
energy, etc., are the limits of the Special Relativity equations in the limit as the speed
goes to zero. That is, if you tell me how much error you are willing to tolerate in the
approximation of Newtonian mechanics, I can tell you a speed below which they will
be correct within that tolerance. Similarly, Newton’s Universal Law of Gravity is the
correct mathematical limit of General Relativity in the limit of small gravitational
fields and low speeds (conditions that famously were not satisfied to observational
precision for the orbit of the planet Mercury).

This limiting behavior can often be viewed from an appropriate power series. For
example, we can expand the expression for kinetic energy from Special Relativity,√
p2 +m2 −m, in powers of p2/m2 in the non-relativistic limit where momentum p

is much less than mass m. The Newtonian physics expression p2/2m is the first term
in the series, followed by the lowest order relativistic correction term, p4/8m3. (I use
the usual HEP units in which the speed of light is 1, dimensionless.) An analogous,
deeper concept arises in the context of effective field theories. An effective field theory
in a sense consists of the correct first terms in a power series of inverse powers of some
energy scale much higher than the applicable scale of the effective theory.

It is in this sense that physicists believe that the Standard Model, both its parts
and the collective whole, is “true”. (I am aware of course that there are deep philo-
sophical questions about reality, and that this point of view can be considered “naive”,
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but this is a point of view that is common among high energy physicists.) We fully
expect that the Standard Model is incomplete, in that more forces and quanta need
to be added to it, and that the current mathematical entities will become embedded
into larger mathematical entities; indeed much of our theoretical and experimental
research programs are aimed at uncovering these extensions (while a significant effort
is also spent on understanding further the consequences of the known equations). But
whatever new physics is added, we also expect that the Standard Model will remain
a correct mathematical limit, or a correct effective field theory with a well-defined
relationship to the more correct theory.

It may be that on deep inspection the distinction between an ordinary “approxi-
mation” and a mathematical limit is not so great, as even crude approximations can
perhaps be considered as some kind of limit. Also, the usefulness of our usual power
series breaks down in certain important “non-perturbative” regimes. Nonetheless I
think that the concepts of limits and effective field theories are helpful in explaining
what we mean when we say that we believe our core physics models. It has occurred
to me in reading the opinions of some statisticians that an important distinction is
the absence of core “laws” in their models. In that case, one would naturally be
averse to obsession about exact values of model parameters when the uncertainty in
the model itself is already dominant. In high energy physics, we are typically in a
different situation.

4.1 Examples of three scales in HEP

Many searches at the frontier of HEP have three scales with a hierarchy as in Eqn. 14.
Here I mention a few of my personal favorites.

In the 1980’s, I worked on an experiment searching for a particular decay of a
particle called the long-lived neutral kaon, the K0

L. This decay, to a muon and electron,
had been previously credibly ruled out down to a branching fraction (probability per
kaon decay) of 10−8 or so. With newer technology and beams, we proposed to search
down to a level of 10−12. The decay was forbidden at this level in the Standard Model,
but there was a possibility that the decay occurred (via a diagram where neutrinos
change type that was still within an expanded version of the Standard Model) at a
much lower level, say 10−17 or less; since it was out of reach for us, this was included
in our “null”.

Thus our search was a “fishing expedition” for beyond-the-Standard-Model (BSM)
physics (in this case a new force of nature) with, roughly speaking, ε0 < 10−17 and
σtot ≈ 10−12. Both the scale τ of prior belief and g(θ) would be hard to define, as our
motivation for performing the experiment was the capability to explore the unknown
with a potentially huge discovery of a new force. For me personally, π1 was small
(say 1%), and the scale τ was probably close to that of the range we were exploring,
10−8. (We were able to reach σtot ≈ 10−11 in the first incarnation of the experiment,
with unfortunately a null result.)

As perhaps the most extreme example, it is currently of great interest to determine
whether or not protons decay, i.e., whether or not the decay rate is exactly zero, as
so far seems to be the case experimentally. The experiments are currently probing
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values of the average decay rate per proton of 1 decay per 1031 to 1033 years. This is
part of the range of values predicted by certain unified field theories that extend the
Standard Model (Wilczek, 2004). As the age of the universe is order 1010 years, this
is a very small effect size indeed. Thanks to the exponential nature of decays, these
experiments are feasible by observing nearly 1034 protons (many kilotons of water)
for several years, rather than by observing several protons for 1034 years. Assigning
the three scales is rather arbitrary, but I would say that σtot ≈ 10−32 and τ initially
was perhaps 10−28. Historically the null under the Standard Model was considered to
be a point at exactly zero decay rate, until 1976 when ’t Hooft pointed out an exotic
non-perturbative mechanism in the Standard Model that can cause proton decay on
an immeasurably small scale. Hence again, Eqn. 14 applies.

Finally, among the multitude of current searches for BSM physics at CERN to
which Eqn. 14 applies, I mention the search for a heavy version of the Z boson
(Section 7), a so-called Z′ (pronounced Z-prime). This would be the quantum of
a new force of nature that appears somewhat generically in many speculative BSM
models; but there is no reliable prediction as to whether the mass or production rate
is accessible at the LHC, or many orders of magnitude beyond our capability. For
the Z′, ε0 in the current Standard Model is zero; σtot is determined by the LHC beam
energies, intensities, and our general-purpose detector’s measuring capabilities; the
scale τ is again rather arbitrary (as are π0 and g), but much larger than σtot.

A key point from these examples is that the three scales are to a large extent
independent. There can be a loose connection in that an experiment may be designed
with a particular subjective value of τ in mind, which then influences how resources
are allocated to obtain a σtot that has a good chance of settling a particular scientific
issue, if feasible. But this connection is so tenuous, and often absent in HEP (when
an existing general-purpose apparatus is applied to a new measurement), that I think
it unwise to attempt to assert a rule of thumb connecting τ to σtot. When a subjective
value of τ exists, one would seem to be better off declaring it and using it directly. I
return to this below in criticizing a common notion among statisticians that somehow
one can tie τ to σtot in some “objective” way.

Furthermore, even where I have indicated some sense of scale τ , there is still the
arbitrariness in the form of g. Many in HEP think in terms of “orders of magnitude”,
with an implicit metric that is uniform in the log of the decay rate. (E.g., “the
experiment is worth doing if it extends the reach by a factor of 10”, or “it is worth
taking data for another year if we double the data set”.) But it is not at all clear
such phrasing really corresponds to belief uniform in that metric.

4.2 Test statistics for computing p-values in HEP

There is a long tradition in HEP for using likelihood ratios, for both binned and
unbinned data. This was no doubt inspired by frequentist theory such as the Neyman-
Pearson Lemma and Wilks’s Theorem, sometimes described in the jargon of HEP
(James, 1980), and sometimes with more extensive sourcing (Eadie et al, 1971; Baker
and Cousins, 1984; James, 2006). When merited, quite detailed likelihood functions
(both binned and unbinned) are attempted, often based on Poisson models endemic
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to HEP.
Thus, when it comes to computing confidence intervals and regions, the work horse

test statistic is usually a likelihood-ratio λ that is either used to find approximate
confidence intervals bounded by−2∆ lnλ, or in some irregular cases used in a carefully
constructed Neyman-inspired hypothesis test inversion as advocated by Feldman and
Cousins (1998). In discovery analyses, typically the distribution of the test statistic
under H0: θ = θ0 is determined by simulation of samples using the Monte Carlo
method. In many cases, θ is a physically non-negative quantity (such as a Poisson
mean or mass) that vanishes under the null, so that θ0 = 0 and the alternative is
H1: θ > 0. Thus, the observed test statistic and the null distribution are used in
a one-tailed test to obtain a p-value, which is then converted to z, the equivalent
number of “σ” for a one-tailed Gaussian test,

z = Φ−1(1− p) =
√

2 erf−1(1− 2p). (15)

For example, z = 3 corresponds to a p-value of 1.35× 10−3, and z = 5 corresponds to
a p-value of 2.9×10−7. (For upper confidence limits, p-values are commonly modified
to avoid some issues caused by downward fluctuations, but this does not affect the
procedure for discovery.)

Nuisance parameters from detector calibration, estimates of background rates,
etc., are abundant in these analyses. A large part of the data analysis effort is de-
voted to understanding and validating the (often complicated) descriptions of the
responses of the experimental apparatus that are included in λ. For nuisance param-
eters, the uncertainties are typically listed as “systematic” in nature, the name that
elementary statistics book use for uncertainties that are not reduced with more sam-
pling. However, our systematic uncertainties typically are reduced as we take more
data, since the subsidiary analyses that calibrate them also benefit from more data.

A typical example is the calibration of the response of the detector to a high-
energy photon hitting it (crucial for one of the Higgs boson detection modes). The
raw detector response (an optical flash converted to an analog electrical pulse that is
digitized) must be converted to energy units. The resulting energy “measurement”
has both a smearing due to resolution as well as an offset due to a scale error. We
use calibration data and computer simulations to measure both the width and shape
of the smearing, as well as to try to set an unbiased scale that has still residual
uncertainty. Thus in terms of the simple N(θ, σ2

tot) model discussed throughout this
paper, we have the complications that the response shape may not be normal but is
measured, the bias on θ may not be zero but is measured, and σ is also measured,
with an uncertainty as well. All of the calibrations may change with temperature,
position in the detector, radiation damage, etc., and many resources are put into the
effort.

Such calibration takes place for all the different types of subdetectors in a HEP
experiment, for all the basic types of particles detected (electrons, muons, pions, etc.).
Ultimately, with enough data, some systematic uncertainties do often approach some
constant value that limits the usefulness (for certain measurements) of further data-
taking. In any case, after all this, it may not be clear at all what can be identified as
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n if one thinks in term of the “unit measurement” (Section 5) with σ =
√
nσtot that

is the basis for some “objective” methods of setting the scale τ .
Once the models for the nuisance parameters are selected, various approaches are

used in HEP to “eliminate” them from the likelihood ratio λ (Cousins, 2005). Profiling
the nuisances parameters (i.e., re-optimizing the MLEs of the nuisance parameters
for each trial value of the parameter of interest) has been in our basic software tools
(though not by those names) for decades (James, 1980). The Higgs results at the
LHC used profiling, partly because asymptotic formulas for profile likelihoods were
generalized (Cowan et al, 2011) and found to be useful. It is also common to integrate
out nuisance parameters in λ in a Bayesian fashion (typically using evidence-based
priors), usually by simple Monte Carlo integration (while still treating the parameter
of interest in a frequentist manner).

In many of our analyses, the result is fairly robust to the treatment of nuisance
parameters in the definition λ. For the separate step of obtaining the distribution
of λ under the null hypothesis, we can sometimes use asymptotic theory, but when
feasible we also perform Monte Carlo simulations of ensembles of experiments. These
simulations require sampling using the nuisance parameters that is performed in vari-
ous frequentist and Bayesian-inspired ways, again typically (though not always) fairly
robust to the choice.

To the extent that we integrate out the nuisance parameters, or to the extent that
profiling obtains the same results, then our use of λ as a test statistic for a frequentist
p-value recalls Bayesian-frequentist hybrids in the statistics literature (Good, 1992,
Section 1), including the prior-predictive p-value of Box (1980). Within HEP this mix
of paradigms has been both advocated (Cousins and Highland, 1992) and questioned,
as it has been in the statistics literature, but found to give reasonable results in a
variety of circumstances.

4.3 Are we biased against the null in HEP?

Practitioners in other disciplines are sometimes accused of being biased against ac-
cepting nulls, to the point that experiments are set up with an artificial null just to
be able to “reject the null”. Allegedly the researchers might feel that they need to
reject the null in order to publish their results, etc. I do not know to what extent
these characterizations might be valid in other fields. But, in HEP it is often the
case that we do have significant prior belief in both the model and the point null
(within ε0), notwithstanding some statisticians’ opinions about competent scientists,
etc., that I quote in Section 3. In many searches in HEP there is certainly a hope
to reject the Standard-Model point null and make a major discovery of beyond-the-
Standard-Model (BSM) physics in which the Standard Model is nested. But there
is still high (or certainly non-negligible) prior belief in the null. This is especially
the case since such a vast number of precise observations have turned out to be so
compatible with predictions of the Standard Model.. There have been hundreds of
experimental searches for BSM physics that have not rejected the null of the Standard
Model.

Fortunately for the careers of practitioners of HEP, in our field we encourage
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publishing results that advance exploration of the frontiers even if they do not re-
ject the null. Our literature, including the most prestigious journals, has numerous
papers beginning with “Search for. . . ” that report that no significant evidence for
the searched-for BSM physics was found. Many of these papers have some use in
quantitatively constraining theoretical speculation, and providing some guidance for
future searches.

Some statisticians have wrongly assumed that scientists would not conduct so
many experiments in which the null is not rejected. On a related point, sometimes θ
is a quantity that is physically non-negative (for example a mass) with θ0 = 0, and
we find that about half the experiments result in an unbiased estimate of θ that is
in the unphysical negative region. Some statisticians have thus suggested that our
measurement model must be wrong. But our explanation is that our null hypotheses
have tended to be true, or almost so, in which case an unbiased estimator would
indeed have estimates in the unphysical region about half the time. As we have
not recently found BSM physics in HEP, one could perhaps question our choices of
experiments, but they are largely constrained by resources and by what nature has
put there (or not) for us to discover. The huge experiments such as CMS and ATLAS
are multiple-purpose experiments that, for any given process, may or may not be
close to the ideal apparatus. Within resource constraints and loosely prioritized by
speculation about where the BSM physics may be (not always pointing in fruitful
directions, of course), we try to look wherever we have some capability, wherever that
may be.

The main case in which we place little prior belief on the null is an artificial case
in which the null hypothesis is the Standard Model with a missing piece! This is the
situation in which one is looking for the “first observation” of a phenomenon that
is predicted by the Standard Model, but hitherto not observed. In that case, we
invent a null hypothesis that is everything in the Standard Model except the as-yet-
unobserved phenomenon. Then the alternative hypothesis is equal to the complete
Standard Model (including the searched-for phenomenon), but usually with a twist.
One could naturally imagine the alternative as the complete Standard Model along
with its precise (non-zero) prediction, θ = θ1, for the new observation. Then, for the
core physics, this would be a test of simple-vs-simple as in Section 2.2. Instead, the
results are usually reported in two pieces. The simple-vs-composite test is performed,
reporting the p-value under the null. In addition, one or more confidence intervals for
θ are also reported, which can be then compared to θ1. This allows for more flexibility
in interpretation, including rejection of the null but with a surprising value of θ̂ that
points to an alternative other than θ1.

An example a few years ago at Fermilab was the search for production of single
top quarks via the weak force in proton-antiproton collisions, a search made well
after the weak force was well characterized, and well after pairs of top quarks had
been discovered via their production by the strong force. The search for single top
production was experimentally difficult, and the precise effect size could have been
different than expectation, even indicating BSM physics. But I do not think that
anyone gave much credence to the technical null hypothesis that was used to analyze
the data and eventually rejected at more than 5σ, namely that single top production
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did not exist at all.
Another, more recent example, is the search for a particular decay of certain

particles containing bottom and strange quarks. The Standard Model prediction is
that a few out of 109 decays yield two muons (heavy versions of electrons) as decay
products. This difficult, delicate measurement had significant potential for discovering
BSM physics that might enhance (or even reduce) the probability for this decay. The
experimental search used the null hypothesis that the decay to two muons had zero
probability, a null that was only recently rejected at the 5σ level. As with single
top, the real physics interest was in the measured confidence interval(s), as there was
negligible prior belief in the artificial null of exactly zero probability for the decay.
Of course, a prerequisite for measuring the effect sizes was high confidence that these
processes exist, so the observation at high significance by each of two experiments
was one of the highlights of this year’s results from the LHC.

As the Higgs boson is an integral part of the Standard Model, the null hypothesis
used in the search for it was similarly taken to be an artificial model that had all of
the Standard Model except the Higgs boson, with no BSM physics to take the place
of the Higgs boson. Analogous to the previous two examples, the alternative was the
complete Standard Model with a composite θ for the strength of the Higgs boson
signal. However, the mass of the Higgs boson is a free parameter in the Standard
Model that had been only partially constrained by various prior measurements and
theoretical arguments. This complicated the search significantly, as the probabilities
of various decay modes of the Higgs boson vary dramatically as a function of the
mass. Unlike the examples of single top production and the rare decay to two muons
just described, the null hypothesis of “no Higgs boson” probably carried some prior
belief in physicists’ minds, not so much in the artificial way it was posed, but in the
sense that it was certainly possible that some BSM physics would be found, rather
than the Standard Model’s minimalist Higgs boson. (In fact, this was the hope of
many.)

By July 4, 2012, this null was definitively rejected, so that observation of a new
boson was announced by both ATLAS and CMS. The confidence intervals for θ (in
various sub-classes) were in fairly encouraging agreement with predictions for the
Standard Model Higgs boson, but not with great precision. Thus, a lot of the focus
shifted to effect sizes of all sorts describing different production and decay mech-
anisms. For these measurements of effect sizes, the null has reverted back to the
Standard Model Higgs boson and the tests use the frequentist duality between in-
terval estimation and testing: one constructs confidence intervals and regions for
parameters controlling various distributions, and checks whether or not the predicted
values for the Standard Model Higgs boson are within the confidence regions.

5 What sets the scale τ?

The source of the scale τ (the range of values of θ over which the prior g(θ) is relatively
large) is a significant issue, as discussed by Jeffreys (1961, p. 251) and re-emphasized
by Bartlett (1957). Fundamentally it would seem to be personal and subjective, as
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is the more detailed specification of g(θ). Berger and Delampady (1987a) state that
“the precise null testing situation is a prime example in which objective procedures
do not exist.” They note that τ has a “dramatic effect” on the BF and posterior
probability of H0, and “furthermore, letting τ 2 →∞ so that g becomes ‘noninforma-
tive’ is ridiculous, since then P (H0|x) → 1. Thus, a Bayesian must, at a minimum,
subjectively specify τ 2, and there is no default value that ‘lets the data speak for
itself’ ”. In their Rejoinder to comments, they emphasize again, “Testing a precise
hypothesis is a situation in which there is clearly no objective Bayesian analysis and,
by implication, no sensible objective analysis whatsoever.” (Berger and Delampady,
1987b).

These comments notwithstanding, Berger and others have attempted to formu-
late principles for specifying some default value of τ for scientific communication.
The notion seems to be that, even if τ is fundamentally subjective, maybe there is
some value that is useful for communicating scientific results (and “vastly superior to
automatic use of p-values”), even if it should not be used for real decision-making.

I was rather startled to see that Bartlett (1957) suggests that τ might scale as
1/
√
n, thus canceling the sample-size scaling in σtot and making the Bayes factor

independent of n. David Cox (2006, p. 106) suggests this as well, on the grounds that
“. . . in most, if not all, specific applications in which a test of such a hypothesis [θ = θ0]
is thought worth doing, the only serious possibilities needing consideration are that
either the null hypothesis is (very nearly) true or that some alternative within a range
fairly close to θ0 is true.” This avoids the situation that he finds unrealistic, in which
“the corresponding answer depends explicitly on n because, typically unrealistically,
large portions of prior probability are in regions remote from the null hypothesis
relative to the information in the data.”

Although Andrews (1994) also explores the consequences of τ shrinking with sam-
ple size, I am not aware of a trend to follow this approach, even though part of Cox’s
argument was already given by Jeffreys (1961, p. 251), “. . . the mere fact that it has
been suggested that [θ] is zero corresponds to some presumption that [θ] is small.”
Leamer (1978, p. 114) makes a similar point, “. . . a prior that allocates positive proba-
bility to subspaces of the parameter space but is otherwise diffuse represents a peculiar
and unlikely blend of knowledge and ignorance”. (As Section 4.1 discusses, this “pe-
culiar and unlikely blend” is common in HEP.) Robert (1993) considered π1 that
increased with τ , but this seems not to have been pursued further.

Most of the attempts at a default τ that I have seen in the Bayesian literature lead
to a scale τ (and certainly π0) that does not depend on n, and hence does not remove
the sample-size dependence of the Ockham factor. In the desperate search for any
non-subjective sample-size-independent scale that even exists, the only option readily
at hand is σ =

√
nσtot, i.e., the scale of the measurement uncertainty when n = 1.

This was suggested by Jeffreys (1961, p. 268), on the grounds that there is nothing
else in the problem to set the scale, and followed for example in generalizations by
Zellner and Siow (1980).

Kass and Wasserman (1995) do the same, which “has the interpretation of ‘the
amount of information in the prior on ψ is equal to the amount of information about
ψ contained in one observation’ ”. They refer to this as “unit information priors”.
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citing Smith and Spiegelhalter (1980) as also using this “appealing interpretation of
the prior.”

Raftery (1995a, pp. 132, 135) also takes a prior for which, “roughly speaking, the
prior distribution contains the same amount of information as would, on average,
one observation”. He is among the few to note the obvious problem in practice:
the “important ambiguity. . . the definition of [n], the sample size.” He gives several
examples for which he has a recommendation.

Thus far, I do not understand why this “unit information” approach is “appeal-
ing”, or how it could lead to useful, universally cross-calibrated Bayes factors in HEP.
As discussed in Section 4.2 our detector may also have some intrinsic σtot for which
there is no obviously sensible n to consider.

Berger and Pericchi (2001, with commentary) review more general possibilities
based on use of the information in a small subset of the data, in particular various
versions of “intrinsic Bayes factors” (IBF) that use priors generated in a bootstrap
fashion from either subsets of the data or simulated data. They claim, “. . . the IBF can
also be thought of as the long sought device for generation of good conventional priors
for model selection in nested scenarios”. They recommend the median intrinsic Bayes
factor (MIBF) “for those who desire at least one simple default model selection tool,”
but later say that for nested models, the arithmetic intrinsic Bayes factor (AIBF) is
preferred. “Note that this is the first general approach to the construction of conven-
tional priors in nested models.” Berger (2008, 2011) applied an intrinsic prior to a
pedagogical example and its generalization from high energy physics. Unfortunately,
I am not aware of anyone in HEP who has pursued these suggestions. Meanwhile, re-
cently Bayarri, Berger, Forte, and Garca-Donato (2012) have re-considered the issue
and formulated principles resulting “. . . in a new model selection objective prior with
a number of compelling properties.”

5.1 Comments on non-subjective priors for estimation and
model selection

For estimation, Jeffreys (1961) has two very different approaches for obtaining a prior
for a physically non-negative quantity such as the magnitude of the charge q of the
electron. Both involve invariance concepts. The first approach (pp. 120-123) involves
thinking about the parameter being measured. In this example, one person might
think that the charge is the fundamental parameter, while another might think that
the charge-squared (or some other power) is the fundamental quantity. Faced with
arbitrariness in the power m of q, everyone will arrive at the same posterior density
if they each take the prior to be 1/qm with their personal choice for m, since all
expressions d(qm)/qm) differ only by a proportionality constant. (Equivalently, they
all take the prior to be uniform in ln qm ,i.e., uniform in ln q).

Jeffreys’s second approach, much better known, and leading to his eponymous
Rule and “Jeffreys’s priors”, is based on the likelihood function and some averages
over the sample space. Statisticians say it is based on “the model”. But as an
experimenter, one day I realized that what they meant is that “Jeffreys’s prior” is
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derived not by thinking about the parameter being measured, but rather by thinking
about the measuring apparatus. At first (or even second) sight this might appear
strange. The Jeffreys prior for a Gaussian (normal) measurement apparatus is uniform
in the measured value. So taking this approach, if the measuring apparatus has
Gaussian response in q, the prior is uniform in q. If the measuring apparatus has
Gaussian response in q2, then the prior is uniform in q2. If the physical parameter
is measured with Gaussian resolution and is physically non-negative, as in this case,
then the functional form of the prior remains the same (uniform) and is set to zero
in the unphysical region (Berger, 1985, p. 89).

Berger and Bernardo refer to the “non-subjective” priors such as Jeffreys’s prior
as “objective” priors. To me, this is rather like referring to “non-cubical” volumes
as “spherical” volumes, which is to say, one is giving a new meaning to the word.
Bernardo (2011b) defends the use of the word as follows. “No statistical analysis
is really objective, since both the experimental design and the model assumed have
very strong subjective inputs. However, frequentist procedures are often branded as
‘objective’ just because their conclusions are only conditional on the model assumed
and the data obtained. Bayesian methods where the prior function is directly derived
from the assumed model are objective is this limited, but precise sense.”

Whether or not one accepts this explanation, there are many claims for the prac-
tical usefulness for estimation of so-called “objective” priors. And there seems to be a
deep (frequentist) reason for their potential appeal: Because the priors are derived by
using knowledge of the properties of the measuring apparatus, it is at least conceiv-
able that Bayesian credible intervals based on them might have better-than-typical
frequentist coverage properties when they are interpreted as approximate frequentist
confidence intervals. As Welch and Peers (1963) showed, for Jeffreys’s priors this is
indeed the case for one parameter; under suitable regularity conditions, the approx-
imate coverage of the resulting Bayesian credible intervals is uniquely good to order
1/n, compared to the slower convergence, good only to order 1/

√
n, for other priors.

So except at very small n, by using “objective” priors, one can (at least approxi-
mately) obey the Likelihood Principle and get decent frequentist coverage, which for
some is a preferred “compromise”. Reasonable coverage is also claimed to be the
experience for Reference Priors with more than one parameter. This all works, in
spite of the fact that the objective priors are improper for many prototype problems,
because the ill-defined normalization constant cancels out in the calculation of the
posterior. (Or equivalently, if a cut-off parameter is introduced to make the prior
proper, the dependence on the cut-off parameter vanishes as the cut-off increases
without bound.)

For model selection, Jeffreys proposed a third approach to priors. As discussed
above, from the point of view of the larger model, the prior is irregular, having
probability mass (a Dirac delta function to physicists) on the null value θ0 that has
measure zero. For g(θ) on the rest of Θ, for the Gaussian measurement model Jeffreys
argued for a Cauchy density (“Lorentzian” to atomic physicists and “Breit-Wigner”
to nuclear and high energy physicists).

Apart from the many subtleties that led Jeffreys to choose the Cauchy form for g,
there is the major issue of the scale τ of g, as discussed in Section 5. Here again, the
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assumption of the objective Bayesians is that, basically by definition, the only “ob-
jective” τ is one that is derived from the measuring apparatus. And then, under the
assumption that σ2

tot comes from n measurements with an apparatus having variance
σ2, as in Eqn. 1, they invoke σ as the scale of the prior g.

At this point, I have some sympathy with Lindley’s repeated criticisms (e.g., in
commenting on Bernardo (2011b)) that objective Bayesians can get lost in the Greek
letters and lose contact with the actual context. After arguing that the Ockham’s
factor is a crucial feature of Bayesian logic that is absent from frequentist reasoning,
I find it remarkable that this factor would be chosen based on the measurement
apparatus, and on a concept of sample size n that can be very difficult to define.
The textbook by Lee (2004, p. 130) appears to agree that this is without compelling
foundation: “Although it seems reasonable that [τ ] should be chosen proportional to
[σ], there does not seem to be any convincing argument for choosing this to have any
particular value. . . ”.

In order for the concept of “objective” choice of τ to be useful in scientific com-
munication, it seems to me that some features need to be demonstrated as to how it
truly provides for useful cross-calibration across experiments with different σtot when
n is not well-defined. Otherwise I would agree with Jim Berger’s first instinct (or at
least the first half of it): “Testing a precise hypothesis is a situation in which there
is clearly no objective Bayesian analysis and, by implication, no sensible objective
analysis whatsoever” (Berger and Delampady, 1987b).

Another voice emphasizing the practical problem is Robert Kass (2009), saying
that Bayes factors for hypothesis testing “remain sensitive—to first order—to the
choice of the prior on the parameter being tested.” The results are thus “contaminated
by a constant that does not go away asymptotically.” Thus he says that this approach
is “essentially nonexistent” in neuroscience.

6 The reference analysis approach of José Bernardo

Among the well-known Bayesian statisticians whose papers I have tried to understand,
José Bernardo has a singularly different point of view. A proper discussion of his
approach would require (at least) a full paper devoted to it, so here I just try to
capture the flavor and the contrast with other Bayesians. Bernardo (1999) (with
critical discussion by Lindley and others) defines hypothesis testing in terms very
different from calculating the posterior probability of H0: θ = θ0. Rather, he proposes
to judge whether or not H0 is compatible (his italics) with the data.

“Any Bayesian solution to the problem posed will obviously require a prior distri-
bution p(θ) over Θ, and the result may well be very sensitive to the particular choice
of such prior; note that, in principle, there is no reason to assume that the prior
should necessarily be concentrated around a particular θ0; indeed, for a judgement on
the compatibility of a particular parameter value with the observed data to be useful
for scientific communication, this should only depend on the assumed model and the
observed data, and this requires some form of non-subjective prior specification for
θ which could be argued to be ‘neutral’; a sharply concentrated prior around a par-
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ticular θ0 would hardly qualify.” He later continues, “In this paper, it is argued that
nested hypothesis testing problems are better described as specific decision problems
about the choice of a useful model and that, when formulated within the framework
of decision theory, they do have a natural, fully Bayesian, coherent solution.”

Unlike Jeffreys, Bernardo advocates using the same non-subjective priors (even
when improper) for testing as for estimation. He defines a discrepancy measure d
whose scaling properties can be complicated for small n, but which asymptotically
can be much more akin to those of p-values than to those of Bayes factors. In fact, if
the posterior becomes asymptotically normal, then d approaches (1+z2)/2 (Bernardo,
2011a,b). Thus, a fixed cutoff for his d (which he considers to be the objective
approach), like a fixed cutoff for z, is inconsistent in that it does not accept H0 when
it is true with probability 1 as the sample size increases without bound.

Bernardo and Rueda (2002) elaborate this approach further, emphasizing that the
Bayes factor approach, when viewed from Bernardo’s decision theory framework, cor-
responds to a “zero-one” loss-difference function, which they refer to as “simplistic”.
They prefer continuous loss functions (such as quadratic loss) that do not require
the use of non-regular priors. A sharply spiked prior on θ0 “assumes important prior
knowledge . . . very strong prior beliefs,” and hence “Bayes factors should not be used
to test the compatibility of the data with H0, for they inextricably combine what the
data have to say with (typically subjective) strong beliefs about the value of θ.” This
contrasts strongly with the common notion, following Jeffreys (1961, p. 246) that, “To
say that we have no information initially as to whether the new parameter is needed
or not we must take” π0 = π1 = 1/2. Bernardo and Rueda reiterate Bernardo’s rec-
ommendation, mentioned above, for applying the discrepancy measure, (expressed in
“natural” units of information) according to “an absolute scale which is independent
of the problem considered”.

Bernardo (2011b) gives a major review, also with extensive commentary, refer-
ring unapprovingly to point nulls in an “objective” framework: “However, since the
pioneering book by Jeffreys (1961), Bayesian methods have often made use of two
radically different types of priors, some for estimation and some for hypothesis test-
ing. We argue that this is certainly not necessary, and probably not convenient, and
describe a particular form of doing this within the framework of Bayesian decision
theory.” He clarifies his view of testing, that it is a decision whether or not “to act
as if H0 were true”, based on the expected posterior loss of using the simpler model
rather than the alternative (full model) in which it is nested, which “is true by as-
sumption”. (There are a number of subtleties that I did not quite follow, but I think
that these quotes capture the flavor.)

In his rejoinder, he states that the Jeffreys-Lindley paradox “clearly poses a very
serious problem to Bayes factors, in that, under certain conditions, they may lead
to misleading answers. Whether you call this a paradox or a disagreement, the fact
that the Bayes factor for the null may be arbitrarily large for sufficiently large n,
however relatively unlikely the data may be under H0 is, to say the least, deeply
disturbing. . . the Bayes factor analysis may be completely misleading, in that it would
suggest accepting the null, even if the likelihood ratio for the m.l.e. against the null
is very large.” This is quite a notable statement on the Ockham factor in Eqn. 13.
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At a recent PhyStat workshop, Bernardo (2011a) summarized this approach for
an HEP audience. High energy physicist Luc Demortier (2011) also discussed this
approach to testing, considering it appropriate when point null is just a convenient
simplification if the loss in using it is low, rather than a point having significant prior
probability. He noted (as did Bernardo) that the formalism can in fact allow for point
nulls if the analyst so desires.

7 Effect size in HEP

Practitioners in other disciplines are sometimes criticized for focusing on p-values to
the neglect of effect size, i.e., the point estimate θ̂ (and associated interval estimates).
High energy physicists are practically always quite mindful of effect sizes, though we
use other nomenclature for them. It is intrinsic to HEP and its precursors (atomic
and nuclear physics) to compare quantitatively the predictions of theory (based on
quantum mechanics and field theory) to experimental results. Point estimates and
confidence intervals for parameters in the models are the basic results of most ex-
periments. For experiments in which one beam scatters off of (or interacts with) a
fixed target or other beam, the parametric meeting point for comparison of theory
and experiment is frequently a probability of interaction normalized in a conventional
way and called a “cross section”. (The name is based on an analogy that can be made
between geometrical sizes of objects and quantum-mechanical probabilities of inter-
acting. Cross sections are measured in units of area; a low cross section expresses a
low probability of interacting, as if the particle were small and thus hard to hit.)

For particles that are produced in interactions and then later observed to decay,
the parametric meeting point for comparison of theory and experiment is typically
the decay rate Γ = −(dN(t)/dt)/N(t), where N(t) is the number of particles not
yet decayed at time t after creation. For many processes, Γ is a constant unique to
that process (given by “Fermi’s Golden Rule” of quantum mechanics), so that N(t)
decays exponentially with mean lifetime 1/Γ, i.e., N(t) = N(t=0) exp(−Γt). Both
cross section measurements and lifetime measurements are subdivided into various
subprocesses, as functions of both continuous parameters (such as angles) and discrete
parameters (such as the probabilities known as “branching fractions” for decay into
differing sets of decay products). Other type of parameters in the theory are also
measured, for example masses of particles.

In the example of the Higgs-like boson discovery, the effect size was quantified
with confidence intervals on the production cross section times branching fraction for
several sets of decay products. These confidence intervals were exciting indications
that the new boson was indeed Higgs-like, as described in the highly publicized dis-
covery talks (Incandela and Gianotti, July 4, 2012) and the subsequent ATLAS and
CMS publications (Aad et al, 2012; Chatrchyan et al, 2012). However, the precision
at that time was rather limited, with both ATLAS and CMS concluding that more
data were needed to determine more precisely the nature of the new boson. By spring
2013, more data had been analyzed and it seemed clear to both collaborations that
the boson was at least “a” Higgs boson. Some of the key figures are reproduced and

25



described in the information accompanying the announcement of the recent Nobel
Prize in Physics (Swedish Academy, 2013, e.g., Figures 6 and 7).

7.1 No effect size is too small in core models of HEP

Some of the literature in other disciplines makes the point that one must distinguish
between mathematical statistical significance and practical significance: if there is 5σ
evidence for an extremely small departure from the null, then that may have little
practical significance. Furthermore, since “all models are wrong”, a tiny effect on
a parameter in a Gaussian model in psychology, which is conditional on the model
being true, is likely to be properly disregarded as uninteresting. In contrast, our core
models in physics are what are colloquially known as “laws of physics”. It is big news
if they can be shown to be wrong at any level.

In HEP, tests of our core physics models also benefit from what we believe to be
the world’s most perfect random-sampling mechanism: quantum mechanics. In each
of many repetitions of a given initial state, nature randomly picks out a final state
according to the weights given by the (true, not completely known) laws of physics
and quantum mechanics. Furthermore, the most perfect incarnation of “identical”
is achieved through the fundamental quantum mechanical property that elementary
particles of the same type are literally indistinguishable. Thus the underlying model
is nearly always akin to Bernoulli trials and their generalizations and approximations,
quite frequently the Poisson distribution.

The nature of frontier physics research is to make inferences about the laws
of physics from observations in certain domains (speeds, temperatures, densities,
strength of fields, numbers of particles, etc.) that are limited by our capabilities
at a given time; and then to extrapolate and test these laws outside the domains
in which they are first formulated. The most direct tests of the extrapolations are,
of course, to extend the experimentally accessible domains. However, the first hints
that the extrapolations might fail (signaling “new physics”) can come from very pre-
cise measurements in the original limited domains. As described in the next section,
in high energy physics, we can push this approach further, and use the nature of
quantum mechanics to glimpse the effect of very massive particles well before the
technology exists to make them.

7.2 In HEP, smaller effect size can correspond to new parti-
cles at higher energy

In the modern view, for every force there is a quantum field that permeates all space.
As suggested in 1905 by Einstein for the electromagnetic (EM) field, associated with
every such field is an “energy quantum” (called the photon for the EM field) that is
absorbed or emitted (“exchanged”) by other particles interacting via that field. While
(as noted above) the mass of the photon is presumed to be exactly zero, the masses
of the quanta of some other fields are non-zero. The nominal mass m, the energy
E, and momentum p, are related by Einstein’s classical equation, m2 = E2 − p2.
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(For unstable particles, exactly what I mean by “nominal mass” becomes somewhat
technical, but there are agreed-on conventions.)

Much of high energy physics is possible because energy quanta can be exchanged
even when the energy ∆E and momentum ∆p being transferred in the interaction do
not correspond to the nominal mass of the quantum being exchanged. With quantity
q2 (unrelated to symbol for the charge q of the electron) defined in a process by
q2 = (∆E)2− (∆p)2, quantum mechanics reduces the probability of the reaction as q2

departs from m2 of the exchanged particle. In many processes, the reduction factor
is at leading order proportional to

1

(m2 − q2)2
. (16)

(As q2 can be negative, the relative sign of q2 and m2 depends on details of the process.
The singularity of m2 = q2 is softened to be finite by higher-order corrections.) What
q2 is accessible depends on the technology available; in general, higher q2 requires
higher-energy particle beams and thus more costly accelerators.

For the photon, m = 0 and the interaction probability goes as 1/q4. On the
other hand, if the mass m of the quantum of a force is very much higher than the q2

attainable with existing technology, the probability for an interaction to occur due
to the exchange of such a quantum is not zero, but proportional to 1/m4. Thus,
by looking for interactions or decays having very low probability, we are probing
the existence of very high-mass quanta, beyond the energies directly attainable with
concurrent technology.

An illustrative example, studied by the historian of science Peter Galison (1983),
is the accumulation of evidence for the existence of the Z boson (with mass mZ), an
electrically neutral quantum of the weak force hypothesized in the 1960’s. Difficult
experiments were performed in the late 1960’s and early 1970’s using intense beams
of neutrinos scattering off targets of ordinary matter. The available q2 was much less
than m2

Z , resulting in a small reaction probability in the presence of other processes
obscuring the signal. CERN staked the initial claim (Hasert et al, 1973), and after a
period of confusion, both experimental teams agreed that they had observed interac-
tions mediated by Z bosons even though no Z bosons were directly detected, as the
energies involved (and hence |q|) were well below mZ).

In a second type of experiment probing the Z boson, conducted at SLAC in the
late 1970’s (Prescott et al, 1978), specially prepared electrons were scattered off nuclei
to look for a very subtle left-right asymmetry in the scattered electrons due to the
combined action of the electromagnetic and weak forces. In an exquisite experiment
widely praised both for its conception and its execution, an asymmetry of about 1 part
in 104 was measured to about 10% statistical precision with an estimated systematic
uncertainty also about 10%. The experiment was essentially Bernoulli trials with
the ability to measure departures from unity of twice the binomial parameter with an
uncertainty of about 10−5. I.e., the sample size of scattered electrons was of order 1010.
This is a precision in a binomial parameter finer than that in an ESP example that
has already generated a lively discussion in the statistics literature on the Jeffreys-
Lindley paradox Bernardo (2011b, pp. 19, 26, and cited references, and comments
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and rejoinder). More recent experiments measure this scattering asymmetry even
more precisely. The results of Prescott et al. confirmed predictions of the model of
electroweak interactions put forward by Glashow, Weinberg, and Salam, clearing the
way for these three to receive the Nobel Prize in 1979.

Finally, in 1982, the technology for creating interactions with q2 = m2
Z was at-

tained at CERN (and later at Fermilab). And in 1989, “Z factories” turned on
at SLAC and CERN, colliding electrons and positrons at beam energies tuned to
q2 = M2

Z . At this q2, the singularity in Eqn. 16 causes the tiny effect size in the
previous experiments to become a huge bump in a plot of cross section, a factor of
1000 increase in scattering cross section compared to the null hypothesis of “no Z
boson”. (The instability of the Z boson to decay leads to a finite peak height.)

This sequence of events in the experimental pursuit of the Z boson is somewhat
of a prototype for what many of us hope will happen multiple times in the future
of high energy physics. A given process (scattering or decay) has probability zero
(or immeasurably small ε0) according to the Standard Model. If, however, there is
a new boson X with mass mX much higher than accessible with current technology,
then the boson may give a non-zero probability, proportional to 1/m4

X , for the given
process. The null hypothesis is that X does not exist and the probability for the
process is immeasurably small. As mX is unknown, the possible probabilities for
the process if X does exist are a continuum, including probabilities arbitrarily close
to zero. But these tiny numbers in the continuum map onto possibilities for real,
discrete, modifications to the laws of nature – new forces!

The searches for rare decays described in Section 4.1 are examples of this approach.
In the example of rare decays of the K0

L, a non-zero effect at the 10−11 level would
have indicated a new mass scale about a 1000 times greater than the mass of the Z
boson, more than a factor of 10 above currently accessible q2 even with the LHC.
The observation of proton decay with a decay rate at the level probed by current
experiments would spectacularly indicate a new mass scale over 1013 times greater
than the mass of the Z boson, i.e., new force-carrying particles having a mass over
1015 times greater than the mass of the proton.

Alas, none of these latter searches has observed the searched-for decays that would
constitute BSM physics. In the intervening years, there have however been major
discoveries in neutrino physics that redefined and extended the Standard Model.
These discoveries established that the mass of the neutrino, while tiny, is not equal
to zero. A reasonable inference from these discoveries is that there is a new mass
scale, very high and perhaps approaching the scale probed by proton decay (Wilczek,
2004).

As another example of the incredible precision that is sometimes possible in HEP,
I mention that the difference in the mass of the K0

L and the mass of a closely related
particle, the short-lived neutral kaon (K0

S) has been measured. In the units we use
for these masses (MeV), the mass of one of these particles has been measured to be
497.614±0.024 MeV (about half the mass of a proton), already an impressively precise
absolute measurement for particles that have a mean lifetime of a few billionths of
a second. But incredibly, the difference in mass between the K0

L and K0
S has been

measured to be (3.484± 0.006)× 10−12 MeV (Particle Data Group et al, 2012), i.e., a
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part in 1014 relative to their masses. This mass difference is due to high-order terms
in the weak interaction, and is in agreement with the Standard Model prediction.
It is extremely sensitive to some classes of BSM physics speculation, which it thus
tightly constrains.

Finally, I mention one measurement currently published with a tantalizing dis-
crepancy from the Standard Model. A muon (unstable heavy version of an electron)
is a tiny magnet whose strength is predicted by the Standard Model, but can be
modified in various BSM physics scenarios. In the natural metric, the strength is
about a part per mil larger than 1 unit, more precisely 1.001659. But the theoretical
prediction and experimental results don’t stop at that precision. Currently there is
a discrepancy between theory and experiment at the level of 2.87 × 10−9, with an
estimated uncertainty of 0.8 × 10−9 (Miller et al, 2012). This discrepancy, greater
than 3σ, is much discussed; only time will tell if it holds up as a potential major
discovery of BSM physics.

8 Neyman-Pearson testing and the choice of

Type I error probability α

In HEP, our confidence intervals typically have conventional confidence levels (68%,
95%, etc.), so by the duality with hypothesis tests mentioned in Section 3, whether or
not θ0 is in a confidence interval corresponds to the dual test. Thus if experimenters
report a p-value, consumers can each invoke the Neyman-Pearson (N-P) accept/reject
paradigm by comparing the p-value to one’s own unique (pre-test) value of α. From
a mathematical point of view, one can define the post-data p-value as the smallest
significance level α at which the null hypothesis would be rejected, had that α been
specified in advance. (Rice, 2007, p. 335). This offends some adherents of Fisher
who point out that Fisher did not think about it this way when he introduced the
term, but these protests do not negate the trivially true mathematical identity with
Fisher’s p-value, even though the differing interpretations should be kept distinct.

In any case, regardless of the steps by which one learns whether or not the test
statistic λ is in the rejection region for a particular value of θ, much has been written
about how to choose its size α, the Type I error probability of rejecting H0 when it
is true. N-P introduced the alternate hypothesis H1 and the Type II error β, the
probability under H1 that H0 is not rejected when it is false. As they noted (Neyman
and Pearson, 1933a, p. 296) “These two sources of error can rarely be eliminated
completely; in some cases it will be more important to avoid the first, in others the
second. . . . The use of these statistical tools in any given case, in determining just
how the balance should be struck, must be left to the investigator.”

Lehmann and Romero (2005, p. 57, and earlier editions by Lehmann) echo this
point in terms of the power of the test, defined as 1−β: “The choice of a level of signif-
icance α is usually somewhat arbitrary. . . the choice should also take in consideration
the power that the test will achieve against the alternatives of interest. . . ”

For the case of simple vs simple discussed in Section 2.2, such considerations can be
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well-defined since the power 1−β is well-defined. Neyman and Pearson (1933b, p. 497)
discuss how one might balance the two types of errors, for example by considering
their total. It is well-known today that such an approach, including minimizing a
weighted sum, can go a long way toward removing some of the most unpleasant
aspects of fixed-α testing, such as inconsistency. But Neyman and Pearson (1933b,
p. 496) realized of course that this solution becomes ill-defined for a test of simple vs
composite when the composite hypothesis has values of θ arbitrarily close to θ0, since
the limiting value of β is 0.5, independent of α. Robert (2013) echoes these concerns:
“In the Neyman–Pearson referential, there is a fundamental difficulty in finding a
proper balance (or imbalance) between Type I and Type II errors, since such balance
is not provided by the theory, which settles for the sub-optimal selection of a fixed
Type I error. In addition, the whole notion of power, while central to this referential,
has arguable foundations in that this is a function that inevitably depends on the
unknown parameter θ. In particular, the power decreases to the Type I error at the
boundary between the null and the alternative hypotheses in the parameter set.”

Unless one picks out a value of θ among those in the composite hypothesis as
being of special enough interest to use it for power considerations, there is no well-
defined procedure. A Bayesian, of course, will in effect perform the optimization by
weighting the values of θ under H1 by the prior g(θ). As Raftery (1995a, p. 142)
put it, “Bayes factors can be viewed as a precise way of implementing the advice of
[Neyman and Pearson (1933a)] that power and significance be balanced when setting
the significance level. . . there is a conflict between Bayes factors and significance test-
ing at predetermined levels such as .05 or .01.” Remarkably, Neyman and Pearson
(1933b, p. 502) suggest this possibility if multiple θi under the alternative are gen-
uinely sampled from probabilities Φi: “. . . if the Φi’s were known, a test of greater
resultant power could almost certainly be found.”

“Kendall and Stuart” and successors (Stuart, Ord, and Arnold, 1999, Section
20.29) view the choice of α in terms of costs: “. . . unless we have supplemental infor-
mation in the form of the costs (in money or other common terms) of the two types
of error, and costs of observations, we cannot obtain an optimal combination of α, β,
and n for any given problem.” But of course a Bayesian (or good scientist) will also
insist that prior belief must play a role, and Lehmann and Romero (2005, p. 58) (and
earlier editions by Lehmann) agree: “Another consideration that may enter into the
specification of a significance level is the attitude toward the hypothesis before the
experiment is performed. If one firmly believes the hypothesis to be true, extremely
convincing evidence will be required before one is willing to give up this belief, and
the significance level will accordingly be set very low.”

Of course, none of these vague statements about choosing α comes close to formal
decision theory, which is however not visibly practiced in HEP. For the case of simple
vs composite relevant to the Jeffreys-Lindley paradox, I think that HEP physicists
do informally take into account prior belief, the effect size (confidence interval), and
relative costs of errors, contrary to myths about 5σ. But as I discuss in Section 4.2,
the concept of sample size can be ill-defined in some of our measurements where we
essentially just have the net σtot.
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8.1 5σ mythology

Nowadays one often reads that 5σ is the criterion for a discovery in high energy
physics. Notwithstanding that a fixed one-size-fits-all level of significance violates
one of the most basic tenets of science — that the more extraordinary the claim, the
more extraordinary must be the evidence — I suspect that some people in the field
may take the fixed threshold more seriously than it merits.

The (quite sensible) historical roots of the 5σ were in a specific context, namely
searches in the 1960’s for new “elementary particles”, now known to be composite
particles with different configurations of quarks. A plethora of histograms were made,
and presumed new particles known as “resonances” showed up as localized excesses
(“bumps”) spanning a few histogram bins. Upon finding an excess and defining those
bins to be the “signal region”, one could estimate what is now called the “local p-
value”. First one uses nearby bins in the histogram (“sidebands”) to formulate the
null hypothesis corresponding to the expected number of events in the signal region
in the absence of a new particle. Then one could calculate the probability of seeing a
bump as large as that seen, or larger, under the null hypothesis, and express the result
in terms of “σ” by analogy to a one-sided test of a normal model. The problem was
that the location of the resonance was typically not known in advance, so that the
local significance did not include the fact that “pure chance” has lots of opportunities
(lots of histograms and their bins) to have an unlikely occurrence.

Over time many of the alleged new resonances were not confirmed in repeat exper-
iments. In the group led by Luis Alvarez at Berkeley, “5σ” became a useful threshold
for predicting which resonances would be confirmed. The story is mentioned in Al-
varez’s Nobel Prize acceptance speech in 1968. An article by Arthur Rosenfeld (1968,
p. 465) describes computer simulations and a rough hand calculation of the number of
trials, and concludes, “To the theorist or phenomenologist the moral is simple: wait
for nearly 5σ effects. For the experimental group who have spent a year of their time
and perhaps a million dollars, the problem is harder. . . go ahead and publish. . . but
they should realize that any bump less than about 5σ calls only for a repeat of the
experiment.”

Thus the original concept of “5σ” in HEP was mainly motivated as a (fairly
crude) way to account for a multiple trials factor, known these days in HEP as the
“Look Elsewhere Effect”. It had at least one other motivation, however, namely that
spurious claimed discoveries are sometimes in retrospect attributed to mistakes in
modeling the detector or other so-called “systematic effects” that were either unknown
or not properly taken into account. Thus “5σ” also builds in a crude robustness
against such mistakes.

Unfortunately, as time goes by many practitioners in HEP are unaware of the
original motivations for “5σ”, and some may apply it without much thought. For
example, it is sometimes used as a threshold when a trials-factor correction has already
been applied (as in Section 9.1 below), or when there is no trials factor from multiple
bins or histograms because one is performing a one-off measurement. (In this case,
there is still the ill-posed question of whether to account for the trials in all the other
experiments in HEP, or for that matter in all of science.)
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Further thoughts on 5σ are in a recent note by Louis Lyons (2013).

9 Can p-values be calibrated as a data summary?

If augmented by confidence interval(s) for θ?

Generally in HEP we believe that the primary goal is to communicate the method
and results of the experiment in a manner that allows the reader to draw his or her
own conclusions, supplemented by an interpretation section in the paper. Confidence
intervals and p-values are often intended to perform this function. While in some
cases providing a more extensive description of the likelihood function, the writer is
often implicitly assuming that confidence intervals (sometimes given for more than
one confidence level) and p-values (often expressed as equivalent z) are sufficient input
into inferences or even decisions to be made by readers.

Thus one can ask (as in the statistics literature) what is the result of taking
the p-value as the “observed data” that is then the input for a full (subjective)
Bayesian calculation of the posterior probability of H0. One could even attempt to
go further and formulate a decision on whether or not to claim publicly that H0 is
false, using a (highly subjective) loss function describing one’s personal costs of falsely
declaring a discovery versus waiting and getting scooped in a real discovery. In fact,
I think that high energy physicists frequently base decisions on informal attempts
to combine observed p-values, prior belief, and the cost/benefit of doing more work
before presenting their work.

From Eqn. 9, clearly z alone is not sufficient to recover the Bayes factor and pro-
ceed as a Bayesian. This point is repeatedly emphasized in articles already cited.
(Even worse is to try to recover the BF using only the binary inputs as to whether or
not the p-value was above or below pre-data fixed thresholds (Dickey, 1977; Berger
and Mortera, 1991; Johnstone and Lindley, 1995).) The oft-repeated argument (e.g.,
Raftery (1995a, p. 143)) is that there is no justification for the step in the derivation
of the p-value where one replaces “probability density for data as extreme as that
observed” with “probability for data as extreme, or more extreme”. Jeffreys (1961,
p. 385) still seems to be unsurpassed in his ironic way of saying this (italics in origi-
nal), “What the use of [the p-value] implies, therefore, is that a hypothesis that may
be true may be rejected because it has not predicted observable results that have not oc-
curred.” Berger and Delampady (1987a) conclude, “. . . it becomes ridiculous to argue
that we can intuitively learn to properly calibrate P-values. . . First and foremost,
when testing precise hypotheses, formal use of P-values should be abandoned,” a con-
clusion of course not unanimously concurred with in the Comments. Hinkley (1997)
says it more mildly, “Unfortunately, p-values are not generally comparable from one
experiment to another. . . there is no universal inferential scale to which p-values can
be judged. . . the usual p-value cannot be interpreted fully without reference to the
relevant information available. . . ”

Good (1992) found that, “The real objection to [p-values] is not that they usually
are utter nonsense, but rather that they can be highly misleading, especially if the
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value of [n] is not also taken into account and is large.” He suggested a rule of thumb
for taking n into account by standardizing the p-value to an effective size of n = 100,
but this seems not to have attracted a following.

Meanwhile, a confidence interval for θ (as invariably reported in HEP publications,
at a minimum for 68% CL and sometimes for additional CLs) does give one a good
sense of the magnitude of σtot (though this might be misleading in some special
cases). And one has one’s subjective prior and hence τ . Thus, at least crudely, it
seems that one has the required inputs to recover the result from something like Eqn. 9.
It is perhaps doubtful that a typical physicist would use them to arrive at the same
Ockham factor as one who consciously calculated a BF from the original likelihood.
On the other hand, a BF based on an arbitrary (“objective”) τ does not seem to me
an obviously better way to communicate.

While the “5σ” criterion in HEP gets a lot of press (Section 8.1), when a decision
needs to be made, I think that physicists intuitively and informally adjust their
decision-making based on the confidence interval, their prior belief in H0 and g(θ),
and on how high the stakes are in getting it right.

Mayo and Spanos (2006) argue that confidence intervals do not solve the problem,
and that Mayo’s concept of “severe testing” is the key to scientific inference. Spanos
(2013) argues this specifically in the context of the Jeffreys-Lindley paradox. I am
not aware of widespread application of this approach, and do not yet understand it
well enough to see how it would improve scientific communication in HEP if adopted
as the standard.

9.1 Trials factors for nuisance parameters not eliminated

In HEP, the situation may arise where there is a nuisance parameter ψ that we
choose not to eliminate by profiling, marginalization, or other means. Rather, we
communicate the results (p-value and confidence interval for θ) as a function of ψ.
The search for the Higgs boson was a typical example, in which ψ is the mass of
the boson, while θ is the Poisson mean (relative to that expected for a Higgs boson)
of any putative excess of events at mass ψ. That is, for each mass, we reported a
p-value for the departure from H0 as if that mass had been fixed in advance, as well
as a confidence interval for θ, given that ψ. We refer to this p-value as the “local”
p-value, the probability for a deviation as extreme as that seen, or larger, at that
particular mass. (Local p-values are correlated with those of nearby masses within
the experimental uncertainties on the mass measurement.)

We then scan all masses in a specified range and find the smallest local p-value,
pmin. Obviously the probability of having a local p-value as small or smaller than
pmin anywhere in a specified mass range is greater than pmin, by a factor that we
refer to as the “Look Elsewhere Effect” (LEE), essentially a multiple trials effect.
When feasible, we use Monte Carlo simulations to calculate the p-value that takes
the LEE into account, which we refer to as a “global” p-value for the specified mass
range. When this is too computationally demanding, we estimate the effect using the
method advocated by high energy physicists Gross and Vitells (2010), which is based
on that of statistician Davies (1987).
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To emphasize that the range of masses used for the LEE is arbitrary or subjective,
and to indicate the sensitivity to the range, we try to give the global p-value for at
least two ranges of mass. Some obvious possibilities are the range of masses for which
the Standard Model Higgs boson has not previously been ruled out at high confidence;
or the range of masses for which the experiment is able to search with some reasonable
sensitivity for the Standard Model Higgs; or the range of masses for which we have
data and could search for any new boson.

10 Conclusions

More than a half century after Lindley drew attention to the difference in sample size
scaling between p-values and Bayes factors (already described two decades earlier by
Jeffreys), there is still no consensus in the statistics literature on how best to com-
municate scientific results; and the argument continues internally within the broader
Bayesian community on a number of points. While there is a large and always-growing
literature criticizing p-values and praising the “logical” approach of Bayes factors, in
my opinion much of this literature (especially the secondary literature by scientists)
has still not come to terms with the fact that the Ockham factor σtot/τ is either
arbitrary or personal, even (especially) asymptotically.

It has always been important in estimation problems for the analyst to describe
the sensitivity of results to choices of prior probability, especially as the dimensionality
grows. In testing, sensitivity analysis is clearly mandatory. I am not so concerned
with the difference in numerical value of p-values and Bayes factors (or posterior
probabilities), as one must commit the error of probability inversion (“error of the
third kind”) to equate the two. Rather, the issue is whether a summary of the data,
with say two or three numbers, can (even in principle) be interpreted by consumers in
a manner cross-calibrated across different experiments. The difference in sample-size
scaling (or more generally, the difference in scaling with σtot/τ) between the BF and λ
is already apparent in Eqn. 13 and hence cannot be entirely blamed on the additional
issue of tail probabilities pithily derided by Jeffreys.

For us high energy physicists, I think that it is important to gain a lot more ex-
perience with Bayes factors, and also with Bernardo’s proposals (which I find quite
intriguing). For statisticians, I hope that this discussion of the issues in high en-
ergy physics provides “existence proofs” of situations where one cannot ignore the
Jeffreys-Lindley paradox, and renews some attempts to improve methods of scientific
communication.

As for the Higgs boson discovery, I think that our message was very well discussed
and understood internally, and in general well-communicated externally, both to fel-
low high energy physicists and to the general public. Probably we could have done
with less talk about a fixed 5σ threshold and more discussion about why something
around that level was useful for the Higgs boson, not so much because the prior on
“no Higgs boson” was high, but because there was a potentially large (and avoid-
able) cost to a premature announcement before we approached that level. We met
the ideal scientific standard of the two largely independent “observations” of CMS
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and ATLAS (which both inflicted interocular trauma on many of us) before CERN
declared a “discovery”. That was the right decision in my opinion.

Given our detailed presentations of effect sizes, I am not sure how Bayes factors
would have helped, especially given the lack of tradition of Bayes factors in HEP and
thus context for interpreting them. (The latter is of course a circular justification
that can be repaired in the future. In that respect, a retrospective attempt at Bayes
factors would be illuminating and provide a calibrated example.) All of us at the LHC
look forward to the next data sets beginning in 2015, when the energy and intensity
of the beams will both be increased, and we resume the search for physics beyond the
Standard Model. That is one relevant time scale during which new statistical tools
can certainly be considered.
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