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Background

• Objective Bayesian methods have priors defined by the model (or

model structure).

• In models with a single unknown parameter, the acclaimed objective

prior is the Jeffreys-rule prior (more generally, the reference prior).

• In multiparameter models, the optimal objective (e.g., reference or

matching) prior depends on the quantity of interest, e.g., the parameter

concerning which inference is being performed.

• But often one needs a single overall prior

– for prediction

– for decision analysis

– when the user might consider non-standard quantities of interest

– for computational simplicity

– for sociological reasons
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Example: Bivariate Normal Distribution, with mean parameters µ1 and µ2,

standard deviations σ1 and σ2, and correlation ρ.

Berger and Sun (AOS2008) studied priors that had been considered for 21

quantities of interest (original parameters and derived ones such as µ1/σ1).

• An optimal prior for each quantity of interest was suggested.

• An overall prior was also suggested:

– The primary criterion used to judge candidate overall priors was

reasonable frequentist coverage properties of resulting credible

intervals for the most important quantities of interest.

– The prior (from Lindley and Bayarri)

πO(µ1, µ2, σ1, σ2, ρ) =
1

σ1σ2(1− ρ2)

was the suggested overall prior.
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Previous Approaches to Development of an Overall Prior

• I. Group-invariance priors

• II. Constant or vague proper priors

• III. The Jeffreys-rule prior

Notation:

Data: x

Unknown model parameters: θ

Data density: p(x | θ)

Prior density: π(θ)

Marginal (predictive) density: p(x) =
∫
p(x | θ)π(θ) dθ

Posterior density: π(θ | x) = p(x | θ) π(θ)/p(x)
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I. Group-invariance priors: If p(x |θ) has a group invariance structure,

then the recommended objective prior is typically the right-Haar prior.

• Often works well for all parameters that define the invariance structure.

Example: If the sampling model is N(xi | µ, σ), the right-Haar prior is

π(µ, σ) = 1/σ, and this is fine for either µ or σ (yielding the usual

objective posteriors).

• But it may be poor for other parameters.

Example: For the bivariate normal problem, one right-Haar prior is

π1(µ1, µ2, σ1, σ2, ρ) = 1/[σ2
1(1− ρ2)], which is fine for µ1, σ1 and ρ, but

leads to problematical posteriors for µ2 and σ2 (Berger and Sun, 2008).

• And it may not be unique.

Example: For the bivariate normal problem, another right-Haar prior is

π2(µ1, µ2, σ1, σ2, ρ) = 1/[σ2
2(1− ρ2)].
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• The situation can be even worse if the right-Haar prior is used for

derived parameters.

Example: Multi-normal means: Let xi be independent normal with

mean µi and variance 1, for i = 1 · · · ,m.

– The right-Haar (actually Haar) prior for µ = (µ1, . . . , µm) is π(µ) = 1.

– It results in a sensible N(µi | xi, 1) posterior for each individual µi.

– But it is terrible for θ = 1
m |µ|2 = 1

m

∑m
i=1 µ

2
i (Stein).

∗ The posterior mean of θ is [1 + 1
m

∑m
i=1 x

2
i ];

∗ this converges to [θ + 2] as m → ∞;

∗ indeed, the posterior concentrates sharply around [θ + 2] and so is

badly inconsistent.
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II. Constant or vague proper priors are often used as the overall prior.

• The problems of a constant prior are well-documented, including

– lack of invariance to transformation (the original problem with

Laplace’s ‘inverse probability’),

– frequent posterior impropriety (as in the first full Bayesian analyses

of Gaussian spatial models with an exponential correlation

structure, when constant priors were used for the range parameter),

– and possible terrible performance (as in the previous example).

• Vague proper priors (such as a constant prior over a large compact set)

– are at best equivalent to use of a constant prior (and so inherit the

flaws of a constant prior);

– can be worse, in that they can hide problems such as a lack of

posterior propriety.
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III. The Jeffreys-rule prior: If the data model density is p(x | θ) the
Jeffeys-rule prior for the unknown θ = {θ1, . . . , θk} has the form

|I(θ)|1/2dθ1 . . . dθk

where I(θ) is the k × k Fisher information matrix with (i, j) element

I(θ)ij = Ex | θ

[
− ∂2

∂θi∂θj
log p(x |θ)

]
.

This is the optimal objective prior (from many perspectives) for (regular)

one-parameter models, but has problems for multi-parameter models:

• The right-Haar prior in the earlier multi-normal mean problem is also

the Jeffreys-rule prior there, and yielded inconsistent estimators. (It

also yields inconsistent estimators in the Neyman-Scott problem.)

• For the N(xi | µ, σ) model, the Jeffreys-rule prior is π(µ, σ) = 1/σ2,

which results in posterior inferences for µ and σ that have ‘degrees of

freedom’ equal to n, not the correct n− 1.
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• For the bivariate normal example, the Jeffreys-rule prior is

1/[σ2
1σ

2
2(1− ρ2)2];

– it yields the natural marginal posteriors for the means and standard

deviations,

– but results in quite inferior objective posteriors for ρ and various

derived parameters (Berger and Sun, 2008)).

• in p-variate normal problems, the Jeffreys-rule prior for a covariance

matrix can be very bad (Stein, Yang and Berger, 1992).

• It can overwhelm the data:

Example: Multinomial distribution: Suppose x = (x1, . . . , xm) is

multinomial Mu(x |n; θ1, . . . , θm), where
∑m

i=1 θi = 1. If the sample size n

is small relative to the number of classes m, we have a large sparse table.

The Jeffreys-rule prior, π(θ1, . . . , θm) ∝
∏m

i=1 θ
−1/2
i is a proper prior that

can overwhelm the data.
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• Suppose n = 3 and m = 1000, with x240 = 2, x876 = 1, other xi = 0.

• The posterior means resulting from the Jeffreys prior are

E[θi |x] =
xi + 1/2∑m

i=1(xi + 1/2)
=

xi + 1/2

n+m/2
=

xi + 1/2

503
,

so E[θ240 |x] = 2.5
503 , E[θ876 |x] =

1.5
503 , E[θi |x] =

0.5
503 otherwise.

• Thus cells 240 and 876 only have total posterior probability
4

503 = 0.008, even though all 3 observations are in these cells.

• The problem is that the Jeffreys-rule prior added 1/2 to all the zero

cells, making them much more important than the cells with data!

• Note that the uniform prior on the simplex is even worse, since it adds

1 to each cell. The prior
∏

i θ
−1
i adds zero to each cell, but the

posterior is improper unless all cells have nonzero entries.

For specific problems there have been improvements such as the

“independence Jeffreys-rule prior,” but such prescriptions have been adhoc

and have not lead to a general alternative definition.
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New Approaches to Development of an Overall Prior

• A. The reference distance approach

• B. The hierarchical approach

– B1. Prior averaging

– B2. Prior modeling approach
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A. The Reference Distance Approach: Choose a prior that yields

marginal posteriors for all parameters that are close to the reference

posteriors for the parameters in an average distance sense (to be specified).

Example: Multinomial example (continued):

• The reference prior, when θi is of interest, differs for each θi.

• It results in a Beta reference posterior Be(θi |xi +
1
2
, n− xi +

1
2
).

• Goal: identify a single joint prior for θ whose marginal posteriors could

be expected to be close to each of the reference posteriors just

described, in some average sense.

• Consider, as an overall prior, the Dirichlet Di(θ | a, . . . , a) distribution,
having density proportional to

∏
i θ

(a−1)
i .

– The marginal posterior for θi is then

Be(θi |xi + a, n− xi + (m− 1)a).

– The goal is to choose a so these are, in any average sense, close to

the reference posteriors Be(θi |xi +
1
2
, n− xi +

1
2
).
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– The recommended choice is (approximately) a = 1/m:

∗ This prior adds only 1/m = 0.001 to each cell in the earlier

example;

∗ Thus

E[θi |x] =
xi + 1/m∑m

i=1(xi + 1/m)
=

xi + 1/m

n+ 1
=

xi + 0.001

4
,

so that E[θ240 |x] ≈ 0.5, E[θ876 |x] ≈ 0.25, and E[θi |x] ≈ 1
4000

otherwise, all sensible (recall x240 = 2, x876 = 1, other xi = 0).
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A. The Hierarchical approach: Utilize hierarchical modeling to transfer

the reference prior problem to a ‘higher level’.

A1. Prior Averaging: Starting with a collection of reference (or other)

priors {πi(θ), i = 1, . . . , k} for differing parameters or quantities of interest,

use the average prior, such as

π(θ) =
k∑

i=1

πi(θ) .

This is hierarchical as it coincides with giving each prior an equal prior

probability of being correct, and averaging out over this hyperprior.

15



Recent advances in statistical inference: theory and case studies Padua, March 21-23, 2013'

&

$

%

Example: Bivariate Normal example (continued): Faced with the two

right-Haar priors, a natural prior to consider is their average, given by

π(µ1, µ2, σ1, σ2, ρ) =
1

2σ2
1(1− ρ2)

+
1

2σ2
2(1− ρ2)

.

• It is shown in Sun and Berger (2007) that this prior is worse than

either right-Haar prior alone, suggesting that averaging improper priors

is not a good idea.

• Interestingly, the geometric average of these two priors is the

recommended overall prior for the bivariate normal

πO(µ1, µ2, σ1, σ2, ρ) = 1/[σ1σ2(1− ρ2)], but justification for geometric

averaging is currently lacking.
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Another problem with prior averaging is that there can be too many

reference priors to average.

Example: Multinomial example (continued): The reference prior πi(θ),

when θi is the parameter of interest, depends on the parameter ordering

chosen in the derivation (e.g. {θi, θ1, θ2, . . . , θm}).

• All choices lead to the same marginal reference posterior

Be(θi |xi +
1
2
, n− xi +

1
2
).

• In constructing an overall prior by prior averaging, each of the

orderings would have to be considered.

• There are m! reference priors to be averaged.

Conclusion: For the reasons indicated above, we do not recommend the

prior averaging approach.
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A2. Prior Modeling Approach: In this approach one

• Chooses a class of proper priors π(θ | a) that reflects the desired

structure of the problem.

• Forms the marginal likelihood p(x | a) =
∫
p(x | a)π(θ | a) dθ.

• Finds the reference prior, πR(a), for a in this marginal model.

• Thus the overall prior becomes

πO(θ) =

∫
π(θ | a)πR(a)da ,

although computation is typically easier in the hierarchical formulation.
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Example: Multinomial (continued):

• The Dirichlet Di(θ | a, . . . , a) class of priors is natural, reflecting the

desire to treat all the θi similarly.

• The marginal model is then

p(x | a) =

∫ (
n

x1 . . . xm

)( m∏
i=1

θxi
i

)
Γ(ma)

Γ(a)m

m∏
i=1

θa−1
i dθ

=

(
n

x1 . . . xm

)
Γ(ma)

Γ(a)m

∏m
i=1 Γ(xi + a)

Γ(n+ma)
.

• The reference prior for πR(a) would just be the Jeffreys-rule prior for

this marginal model, and is given later.

• The overall prior for θ is

π(θ) =

∫
Di(θ | a, . . . , a)πR(a)da .
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Specifics of the Reference Distance Approach

20



Recent advances in statistical inference: theory and case studies Padua, March 21-23, 2013'

&

$

%

Defining a distance (divergence): Intrinsic discrepancy (Bernardo and

Rueda, 2002; Bernardo, 2005, 2001)

Definition 1 The intrinsic discrepancy δ{p1, p2} between two

probability distributions for the random vector ψ with densities p1(ψ) ∈ Ψ1

and p2(ψ) ∈ Ψ2 is

δ{p1, p2} = min

{∫
Ψ1

p1(ψ) log
p1(ψ)

p2(ψ)
dψ,

∫
Ψ2

p2(x) log
p2(ψ)

p1(ψ)
dψ

}
assuming that at least one of the integrals exists.

The (non-symmetric) (Kullback-Leibler) logarithmic divergence, in

scenarios where there is a ‘true’ distribution p2(ψ),

κ{p1 | p2} =

∫
Ψ2

p2(x) log
p2(ψ)

p1(ψ)
dψ,

is another reasonable choice (and is usually equivalent to the intrinsic

discrepancy).
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The exact solution scenario: If a prior πO(θ) yields marginal posteriors

that are equal to the reference posteriors for each of the quantities of

interest, then the resulting intrinsic discrepancies are zero and πO(θ) is a

natural choice for the overall prior.

Example: Univariate normal distribution: For the N(xi | µ, σ) distribution,

• suppose µ and σ are the quantities of interest;

• πO(µ, σ) = σ−1 is the reference prior when either µ or σ is the quantity

of interest;

• hence πO is an optimal overall prior.

Suppose, in addition to µ and σ, the centrality parameter θ = µ/σ is also a

quantity of interest.

• The reference prior for θ is (Bernardo, 1979)

πθ(θ, σ) = (1 + 1
2
θ2)−1/2σ−1;

• this yields different marginal posteriors than does πO(µ, σ) = σ−1;

• hence we would not have an exact solution.
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General (Proper) Situation:

• Suppose the model is p(x | ω) and the quantities of interest are

{θ1, . . . , θm}, with proper reference priors {πR
i (ω)}mi=1.

– {πR
i (θi |x)}mi=1 are the corresponding marginal reference posteriors.

– pRi (x) =
∫
Ω
p(x |ω)πR

i (ω) dω are the corresponding (proper)

marginal densities or prior predictives.

• {wi}mi=1 are weights giving the importance of each quantity of interest.

• A family of priors F = {π(ω |a),a ∈ A} is considered.

The best overall prior within F is defined to be that which minimizes, over

a ∈ A, the average expected intrinsic loss

d(a) =
m∑
i=1

wi

∫
X
δ{πR

i (· |x), πi(· |x,a)} pRi (x) dx .

Big Issue: When the reference priors are not proper (the usual case), there

is no assurance that d(a) is finite. There is no clear way to proceed

otherwise, so we are studying if d(a) is often finite in the improper case.
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Example: Multinomial model: Consider the multinomial model with m cells

and parameters {θ1, . . . , θm}, with
∑m

i=1 θi = 1. We seek to find the

Di(θ | a, . . . , a) prior that minimizes the average expected intrinsic loss.

• The reference posterior for each of the θi’s is Be(θi |xi + 1
2
, n− xi +

1
2
).

• The marginal posterior of θi for the Dirchlet prior is

Be(θi |xi + a, n− xi + (m− 1)a).

• The intrinsic discrepancy between these marginal posteriors is

δi{a |x,m, n} = δBe{xi + 1
2
, n− xi +

1
2
, xi + a, n− xi + (m− 1)a} ,

δBe{a1, β1, a2, β2} = min[κBe{a2, β2 | a1, β1}, κBe{a1, β1 | a2, β2} , ]

κBe{a2, β2 | a1, β1} =

∫ 1

0

Be(θi | a1, β1) log
[Be(θi | a1, β1)
Be(θi | a2, β2)

]
dθi

= log

[
Γ(a1 + β1)

Γ(a2 + β2)

Γ(a2)

Γ(a1)

Γ(β2)

Γ(β1)

]
+ (a1 − a2)ψ(a1) + (β1 − β2)ψ(β1)− ((a1 + β1)− (a2 + β2))ψ(a1 + β1),

and ψ(·) is the digamma function.
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• The discrepancy δi{a |xi,m, n} between the two posteriors of θi only

depends on the data through xi and the reference predictive for xi is

p(xi |n) =
∫ 1

0

Bi(xi |n, θi) Be(θi | 1/2, 1/2) dθi =
1

π

Γ(xi +
1
2
) Γ(n− xi +

1
2
)

Γ(xi + 1)Γ(n− xi + 1)
,

– because the sampling distribution of xi is Bi(xi |n, θi),

– and the marginal reference prior for θi is πi(θi) = Be(θi | 1/2, 1/2).

• Noting that each θi yields the same expected loss, the average expected

intrinsic loss is

d(a |m,n) =

n∑
x=0

δ{a |x,m, n} p(x |n) .
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Figure 1: Expected intrinsic losses, of using a Dirichlet prior with parameter

{a, . . . , a} in a multinomial model with m cells, for sample sizes 5, 10, 25, 100

and 500. Left panel, m = 10; right panel, m = 100. In both cases, the

optimal value for all sample sizes is a∗ ≈ 1/m. Exact values for n = 25 are

0.091 and 0.0085.)
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Specifics of the Prior Modeling Approach

• Multinomial Example

• Bivariate Normal Example
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Example: Multinomial (continued):

• The Dirichlet Di(θ | a, . . . , a) class of priors is natural, reflecting the

desire to treat all the θi similarly.

• The marginal model is then

p(x | a) =

∫ (
n

x1 . . . xm

)( m∏
i=1

θxi
i

)
Γ(ma)

Γ(a)m

m∏
i=1

θa−1
i dθ

=

(
n

x1 . . . xm

)
Γ(ma)

Γ(a)m

∏m
i=1 Γ(xi + a)

Γ(n+ma)
.

• The reference prior for πR(a) would just be the Jeffreys-rule prior for

this marginal model, and is given later.

• The overall prior for θ is

π(θ) =

∫
Di(θ | a, . . . , a)πR(a)da .
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Derivation of πR(a): p(x | a) is a regular one-parameter model, so the

reference prior is the Jeffreys-rule prior.

• The marginal (predictive) density of any of the xi’s is

p1(xi | a,m, n) =

(
n

xi

)
Γ(xi + a) Γ(n− xi + (m− 1)a) Γ(ma)

Γ(a) Γ((m− 1)a) Γ(n+ma)
.

• Computation yields

πR(a |m,n) ∝

n−1∑
j=0

(
Q(j | a,m, n)

(a+ j)2
− m

(ma+ j)2

)1/2

,

where Q(j | a,m, n) =
∑n

l=j+1 p1(l | a,m, n), j = 0, . . . , n− 1.
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• πR(a) can be shown to be a proper prior. Why did that happen?

It can be shown that

p(x | a) =


O(ar−1), as a → 0,(
n
x

)
m−n, as a → ∞,

where r is the number of nonzero xi. Thus the likelihood is constant at

∞, so the prior must be proper at infinity for the posterior to exist.

• It can be shown that, for sparse tables, where m/n is relatively large,

the reference prior is well approximated by the proper prior

π∗(a |m,n) =
1

2

n

m
a−1/2

(
a+

n

m

)−3/2

.
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Figure 2: Reference priors πR(a |m,n) (solid lines) and its approximations (dotted

lines) for (m = 150, n = 10) (upper curve) and for (m = 500, n = 10) (lower curve)
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Computation with the hierarchical reference prior:

1. The obvious MCMC sampler is:

Step 1. Use a Metropolis Hastings move to sample from the marginal

posterior πR(a |x) ∝ πR(a) p(x | a).

Step 2. Given a, sample from the usual beta posterior π(θ | a,x).

2. The empirical Bayes approximation is to fix a at it’s posterior mode âR,

which exists and is nonzero if r ≥ 2.

Using the ordinary empirical Bayes estimate from maximizing p(x | a) is
problematical, since the likelihood does not go to zero at ∞. For instance,

if all xi = 1, p(x | a) has a likelihood increasing in a.
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Asymptotic posterior mode as m and n go to ∞, but n/m → 0:

â =


(r−1.5)
m logn if r

n → 0,

c∗n
m if r

n → c < 1,

n2

2m(n−r) if r
n → 1 and (n−r)2

n → ∞.

,

where r is the number of nonzero xi and c∗ is the solution to

c∗ log(1 + 1
c∗ ) = c.

• While â is of O( 1
m ), it also depends on r and n.

• For instance, suppose r = n/2 (i.e., there are n/2 nonzero entries);

then â = 0.40n/m.
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Example: Bivariate Normal (continued): There are actually a continuum of

right-Haar priors given as follows.

• For the orthogonal matrix Γ =

 cos(β) − sin(β)

sin(β) cos(β)

, −π/2 < β ≤ π/2,

• the right-Haar prior based on the transformed data ΓX is

π(µ1, µ2, σ1, σ2, ρ | β) = sin2(β)σ2
1 + cos2(β)σ2

2 + 2 sin(β) cos(β)ρσ1σ2

σ2
1σ

2
2(1− ρ2)

.

• We thus have a class of priors indexed by a hyperparameter β.

• The natural prior distribution on β is the (proper) uniform distribution

(being uniform over the set of rotations is natural.)

• The resulting prior is

πO(µ1, µ2, σ1, σ2, ρ) =
1

π

∫ π/2

−π/2

π(µ1, µ2, σ1, σ2, ρ | β)dβ ∝
(

1

σ2
1

+
1

σ2
2

)
1

(1− ρ2)

the same bad prior as the average of the original two right-Haar priors.
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Empirical hierarchical approach: Find the empirical Bayes estimate β̂

and use π(µ1, µ2, σ1, σ2, ρ | β̂) as the overall prior.

This was shown in Sun and Berger (2007) to result in a terrible overall

prior, much worse than either the individual reference priors or even the

bad prior average.
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Summary

• There is an important need for overall objective priors for models.

• The reference distance approach is natural, and seems to work well

when reference priors are proper.

• It is unclear if the reference distance approach can be used when the

reference priors are improper.

• The prior averaging approach is not recommended when the reference

priors are improper and can be computationally difficult even when

they are proper.

• The prior modeling approach seems excellent (as usual), and is

recommended if one can find a natural class of proper priors to initiate

the hierarchical analysis.

• The failure of the hierarchical approach for the right-Haar priors in the

bivariate normal example was dramatic, suggesting that using

improper priors are the bottom level of a hierarchy is a bad idea.
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Thanks!
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