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Terminology and Notation (1)

Testing problems are ubiquitous in high-energy physics, from validating a
detector simulation to quantifying the significance of a new observation.
Formally, we have a sample of data x = (x1, . . . , xn) whose pdf f(x | θ) is
known apart from a parameter θ, and we are interested in a particular value θ0

of θ.

There are many possible testing situations:

Simple vs. simple: H0 : θ = θ0 vs. H1 : θ = θ1

Simple vs. composite, two-sided point null: H0 : θ = θ0 vs. H1 : θ 6= θ0

Simple vs. composite, one-sided point null: H0 : θ = θ0 vs. H1 : θ > θ0

Composite vs. composite, one-sided: H0 : θ ≤ θ0 vs. H1 : θ > θ0

Of course θ may be multidimensional, and there may be nuisance parameters
present, in which case simple hypotheses turn into composite ones.
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Terminology and Notation (2)

A general approach to the study of testing situations is to find a test statistic
T (X) such that large values of tobs ≡ T (xobs) are evidence against the null
hypothesis H0.

A standard way to calibrate this evidence is then to calculate the probability
for observing T = tobs or a larger value under the null hypothesis; this tail
probability is known as the p value of the test:

p = IPr(T ≥ tobs |H0). (1)

Thus, small p values are evidence against H0, in the somewhat indirect sense
that the distribution of p under H1 peaks at zero. Note however that the
distribution of p under H0 (when simple) is uniform: it does not peak at one.

When H0 is simple, it is clear that the probability in equation (1) should be
calculated with respect to f(t | θ0). Things become more interesting when H0

is composite. . .
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Frequentist Uses of p Values

Frequentists are mainly concerned about error probabilities, either incorrectly
rejecting the null hypothesis H0 (Type I error), or incorrectly accepting it (Type
II error). The standard frequentist test procedure is to select a Type I error α
in advance, and once the data have been collected, to calculate the p value and
reject H0 if p ≤ α. The usefulness of this procedure then depends on whether
the relevant p value is exact, conservative, or liberal:

p exact ⇔ IPr(p ≤ α |H0) = α,
p conservative ⇔ IPr(p ≤ α |H0) < α,
p liberal ⇔ IPr(p ≤ α |H0) > α.

In a large number of independent tests using the same α and for which H0 is
true and the p value exact, the fraction of tests that reject H0 will tend to α
as the number of tests increases. In this case the p value can be interpreted
as being equal to the smallest Type-I error rate for which H0 would be rejected.
However, the p value itself is not an error rate.

Another way of saying this is that “the p value is the greatest lower bound
on the set of values α such that the hypothesis could be rejected at level α”
(Schervish, 1994).
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Bayesian Uses of p Values

• To bash frequentists (cfr. Jeffreys: “. . . a hypothesis which may be true may
be rejected because it has not predicted observable results which have not

occurred. This seems a remarkable procedure.”)

• As an index of surprise, to be taken with a (large) grain of salt.

Bayesians are of course primarily interested in directly evaluating hypothesis
probabilities. In many situations p values tend to underestimate hypothesis
probabilities, leading to conflict with Bayesian inference. However, pragmatic
Bayesians are willing to consider p values as “measures of surprise,” capable of
indicating that a given hypothesis may provide an inadequate description of the
data and that more plausible alternatives should be investigated.

From a Bayesian point of view, the main issue with p values is one of
conditioning, since the evidence they provide is based not only on the data
observed, but also on more extreme data that were not observed.

Bayesian methods of dealing with nuisance parameters are sometimes useful to
frequentists.
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Properties and Interpretation of p Values

• P values versus Bayesian measures of evidence;

• P values versus frequentist measures of evidence;

• Dependence of p values on sample size;

– Sampling to a foregone conclusion;
– Jeffreys’ paradox;
– Admissibility constraints;
– Practical versus statistical significance.

• Incoherence of p values as measures of support;

– The problem of regions paradox.

• Calibration of p values;

• Alternatives to p values.
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P Values versus Bayesian Measures of Evidence

A popular misunderstanding of p values is that they somehow represent the
probability of H0. What can we actually say about the relationship between p
and IPr(H0 |xobs)? Unfortunately the answer depends on the choice of prior.

Idea: compare p to the smallest IPr(H0 |xobs) obtained by varying the prior
within some large, plausible class of distributions (G. Casella and R. Berger,
JASA 82, 106 (1987); J. Berger and T. Sellke, JASA 82, 112 (1987)).

It is useful to study separately two cases:

1. H0 : θ ≤ θ0 versus H1 : θ > θ0;

2. H0 : θ = θ0 versus H1 : θ 6= θ0.
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P versus Bayes: the One-Sided Case

Casella and Berger consider the test H0 : θ ≤ 0 versus H1 : θ > 0, based on
observing X = x, where X has a location density f(x − θ). f is assumed to
be symmetric about zero and to have monotone likelihood ratio. The following
classes of priors are used:

• ΓS = {all distributions symmetric about 0};
• ΓUS = {all unimodal distributions symmetric about 0};
• Γσ(g) = {πσ : πσ(θ) = g(θ/σ)/σ, σ > 0, g(θ) bounded, symm., unimodal}.

The following theorems are then proved (all assume x > 0):

inf
π∈ΓUS

IPr(H0 |xobs) = p(x) (2)

inf
πσ∈Γσ(g)

IPr(H0 |xobs) = p(x) (3)

inf
π∈ΓS

IPr(H0 |xobs) ≤ p(x) (4)
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P versus Bayes: the Two-Sided Case

Berger and Sellke consider the test H0 : θ = θ0 versus H1 : θ 6= θ0, based on
observing X = (X1, . . . ,Xn), where the Xi are iid N (θ, σ2), σ2 known; the
usual test statistic is T (X) =

√
n|X̄ − θ0|/σ.

The prior is of the form π(θ) = π0 if θ = θ0, and π(θ) = (1−π0) g(θ) if θ 6= θ0,
where g(θ) belongs to one of the classes:

• GA = {all distributions};
• GS = {all distributions symmetric about θ0};
• GUS = {all unimodal distributions symmetric about θ0}.
The following theorems are then proved:

For tobs > 1.68 and π0 =
1

2
: inf

g∈GA

IPr(H0 |xobs)

p tobs
>

√

π

2
∼= 1.253 (5)

For tobs > 2.28 and π0 =
1

2
: inf

g∈GS

IPr(H0 |xobs)

p tobs
>

√
2 π ∼= 2.507 (6)

For tobs > 0 and π0 =
1

2
: inf

g∈GUS

IPr(H0 |xobs)

p t2obs

> 1 (7)
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P Values versus Frequentist Measures of Evidence

P values by themselves are not really frequentist quantities since they are not

error rates.

Consider for example the “ensemble” of all hypotheses ever tested in the physics
literature, and for which it was eventually found out whether or not they are
true. Suppose that half of these hypotheses are true and half are false. It can
then be shown that, of all tested hypotheses with a p value close to 1%, at least
7% will have turned out to be true. Hence, if the rejection threshold was set at
5%, these hypotheses would be rejected with a much higher Type-I error rate
than suggested by the p value.

Another way of seeing that p values are not error probabilities is to note that,
by construction:

E [p(X) |H0 is rejected] =
α

2
. (8)

In high energy physics, it is typically the case that the rejection threshold is set
somewhere around 5.7 × 10−7 (5σ), so that inferences based on p values are
presumably (?) reliable in spite of the above inflationary correction factor.
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Dependence of P Values on Sample Size

There are many aspects to this dependence:

1. Purely mathematical consequences of the Law of the Iterated Logarithm
(LIL);

2. Comparison with other measures of evidence;

3. Admissibility constraints;

4. “Practical” versus “Statistical” significance.

As a consequence of the LIL, if H0 is true and we keep testing on a larger and
larger sample, we will eventually be able to reject H0, with probability 1 and
regardless of the chosen significance level α.

This points to the importance of choosing a stopping rule before starting the
experiment, and adjusting intermediate rejection thresholds so as to obtain the
desired overall significance level (see Phystat2003 for an example).

When does this effect really become important for high-energy physicists, who
use 5σ significance levels?
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Consequences of the Law of the Iterated Logarithm (1)

Figure 1: P value versus sample size.
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Consequences of the Law of the Iterated Logarithm (2)

Figure 2: Absorption probability versus sample size.
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Comparison with other measures of evidence (1)

The simplest comparison one can make is with a likelihood ratio. Suppose
X ∼ N (µ, σ2), σ2 known, and we wish to test H0 : µ = µ0 versus H1 : µ = µ1,
µ1 > µ0. Compare the p value and likelihood ratio approaches to this problem
as a function of the sample size n ≡ dim(X):

P value approach in test of size α.
It is convenient to work with the variable

Z ≡ √
n

(

X̄ − µ0

σ

)

∼ N (0, 1). (9)

The UMP test of size α then rejects H0 if

zobs ≥
√

2 erf−1(1 − 2α). (10)
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Comparison with other measures of evidence (2)

Likelihood ratio approach.
The likelihood ratio is given by:

λ ≡ N (x̄obs; µ0, σ
2/n)

N (x̄obs; µ1, σ2/n)
= exp

(

−
√

n δ zobs

σ
+

n δ2

2 σ2

)

, (11)

where δ ≡ µ1−µ0. Assume we wish to reject H0 when λ ≤ c for some constant
c. This is equivalent to rejecting H0 whenever:

zobs ≥
√

n δ

2 σ
− σ ln c√

n δ
. (12)

For the likelihood ratio and p value approaches to agree, one must have (for
large n):

α ≈
√

2

π

e−n δ2/8

δ
√

n
. (13)
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Comparison with other measures of evidence (3)

Summary of p value versus likelihood ratio comparison:

• As n keeps increasing, it could happen that a situation is reached where the
p value test rejects H0 whereas the likelihood ratio favors H0 (i.e. λ > 1).

• For a reasonable test, increasing the sample size implies decreasing the test
size.

• Intuitively, with increasing sample size, both Type-I and Type-II error rates
should tend to zero against a fixed alternative, since X̄ converges to the true
value of µ.

Strictly speaking, this is a Bayesian argument (the likelihood ratio being equal
to a Bayes factor in this simple versus simple setting). However it should appeal
to everyone, regardless of philosophical leanings, because it does not require a
choice of prior.

A similar argument can be made for simple versus composite tests, although
that case requires a choice of prior. The result is that for reasonable tests α
must decrease with sample size. However, the rate of decrease is not as strong
as for simple versus simple tests.
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Admissibility Constraints

Sample sizes in high energy physics are typically random, and the significance
level is chosen regardless of sample size. It can be shown that this is an
inadmissible procedure (S. Berry and K. Viele, http://www.ms.uky.edu/

~viele/stat630u02/randn4/randn4.html).

To fix ideas, return to the normal, simple versus simple testing situation
considered previously, and suppose further that with probability q we observe a
sample size n1 and with probability 1− q a sample size n2. Let the significance
level depend on n: α = α(n).

When considering the overall testing procedure, the probability of a Type-
I error is q α(n1) + (1 − q) α(n2) and the probability of a Type-II error is
q β(n1, α(n1)) + (1 − q) β(n2, α(n2)).

A pair (α(n1), α(n2)) is defined to be inadmissible if there exists another pair
(α′(n1), α

′(n2)) for which the probabilities of both errors are equal or reduced,
and at least one of the errors is strictly reduced.

It can be shown that the above test is inadmissible unless α is allowed to
vary with n in a very specific way (actually in the same way as derived by the
Bayesian argument).
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“Practical” versus “Statistical” Significance

17



Incoherence of P Values as Measures of Support (1)

If we wish to use p values as measures of support, there are some properties we
will need them to have. Think of the simple problem of testing the mean of a
normal density by using the average of several measurements. Then:

1. The farther the data is from the hypothesis to be tested, the smaller the p
value should be.

2. The farther the hypothesis is from the observed data, the smaller the p value
should be.

3. If H implies H ′, then anything that supports H should a fortiori support H ′.

It is easy to see that p values satisfy the first two of these requirements.
However, they do not always satisfy the third. For example, consider the
following two test situations:

H1 : µ = µ0 versus A1 : µ 6= µ0

H2 : µ ≤ µ0 versus A2 : µ > µ0

Then if x > µ0 one has pH2(x) = 0.5pH1(x) even though H1 implies H2.

18



Incoherence of P Values as Measures of Support (2)

Schervish (1994) has generalized this to testing situations of the form:

H3 : µ ∈ [a, b] versus A3 : µ 6∈ [a, b]. (14)

He has also looked at distributions other than the normal, in particular the
exponential, the binomial, and the uniform. There are incoherences in all cases.

Note that P values for one-sided tests are generally coherent with each other.
However, one-sided tests are just a particular case of the more general “interval”
p values defined above, and the latter are not coherent.
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The Problem of Regions Paradox
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Calibration of P Values

To avoid problems with sampling size dependence (sampling to a foregone
conclusion), I.J. Good proposed to “standardize” p values to a sample size of
100:

pstd = min{
√

n

10
p,

1

2
} (15)
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Alternatives to P Values

Bayesians usually test with hypothesis probabilities, but they have also proposed
other alternatives to p values; a couple of examples:

• The observed relative surprise (M. Evans);

ΠT

(

πT (t |xobs)

πT (t)
>

πT (tobs |xobs)

πT (tobs)

∣

∣

∣

∣

xobs

)

(16)

• The Bayesian reference criterion (J. Bernardo).

These proposals are noteworthy because they avoid Lindley’s paradox and enjoy
some nice invariance properties.

An interesting question is whether any of these alternatives would allow us to
confidently claim a discovery “earlier” than with p values, where “earlier” stands
for “with smaller sample size,” “with larger systematics,” etc.
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Incorporating systematic uncertainties

When looking at various methods for incorporating systematic uncertainties,
what properties would we like such a method to have?

1. The method should preserve coverage as exactly as possible regardless of
sample size (exact methods are usually not available);

2. Asymptotically, the method should cover exactly;

3. When several reasonable methods are available, they should all agree
(asymptotically);

4. Systematic uncertainties should decrease the significance of null rejections.

We will be looking at seven different methods: prior-predictive, posterior-
predictive, plug-in, adjusted plug-in, likelihood ratio, confidence interval, and
generalized inference (fiducial).
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Bayes-frequentism consistency

In a frequentist setup, information about unknown parameters comes from
auxiliary measurements and can be described by a likelihood function Laux..

In a Bayesian setup, information about unknown parameters is modeled by a
prior distribution π. In high energy physics, this prior is often proper, and
is formed by combining in a somewhat subjective fashion various sources of
information (subsidiary measurements, simulations, theoretical prejudices, etc.)

In order to allow a meaningful comparison between Bayesian and frequentist
methods, we will impose a consistency condition on Laux. and π, requiring that
the latter be obtainable via Bayes’ theorem as a posterior distribution from the
former and some suitable, possibly improper, hyperprior.

This is simply a way of ensuring that the Bayesian and frequentist methods
considered use the same information.
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Benchmark Problem

Consider a Poisson process with mean consisting of a background with strength
ν superimposed on a signal with strength µ:

f(n | ν + µ) =
(ν + µ)n

n!
e−ν−µ. (17)

We wish to test:

H0 : µ = 0 versus H1 : µ > 0.

We will study two numerical examples, inspired from recent high-energy physics
literature:

1. Top quark evidence (1994): n = 12, ν = 5.7 ± 0.47.
This is a good small-sample example for studying coverage properties.

2. X(3872) resonance observation (2003): n = 3893, ν = 3234±??.
A large-sample problem good for studying asymptotic behavior.
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The prior-predictive method

The idea is that science progresses as a “two-phase engine”, alternating between
a model estimation phase and a model testing phase. From a Bayesian point of
view we can consider the joint probability density of data and parameters:

p(x, θ |A) = p(θ |x, A) p(x |A) (18)

When actual data are substituted for x, then the first factor on the right is the
posterior density for θ and can be used for model estimation. The second factor
on the right can be computed before any data become available and is the
prior-predictive distribution (G. Box, J. R. Statist. Assoc. A143, 383 (1980)):

p(x |A) =

∫

p(x | θ,A) p(θ |A) dθ (19)

Tail areas of this distribution can be used as p values. This is actually a very
common method in high energy physics.
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Pprior for the Poisson Problem (1)

For a Poisson process with a Gaussian uncertainty on the mean, the prior-
predictive p value is:

pprior =

∫ +∞

0

e
−1

2

“

ν−ν0
∆ν

”2

√
2π ∆ν 1

2

[

1 + erf
(

ν0√
2∆ν

)]







+∞
∑

n=n0

νn

n!
e−ν







dν. (20)

A Laplace approximation to the integral yields:

pprior
∼= K

+∞
∑

n=n0

e
−1

2

“

ν̂n−ν0
∆ν

”2

√

ν̂2
n + n ∆ν2

(ν̂n)
n+1

e−ν̂n

n!
, (21)

where K is (numerically) determined by the requirement that pprior = 1 for
n0 = 0, and:

ν̂n =
ν0 − ∆ν2

2
+

√

(

ν0 − ∆ν2

2

)2

+ n ∆ν2. (22)
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Pprior for the Poisson Problem (2)

A further approximation can be obtained by replacing the sum by an integral
and making an asymptotic expansion. This gives:

pprior
∼= 1

2

∫ +∞

y(n0)

e−
1
2 y

√
2πy

dy, (23)

with

y(n) = 2

(

n ln
n

ν̂n
+ ν̂n − n

)

+

(

ν̂n − ν0

∆ν

)2

. (24)

This last approximation is in fact a simple χ2 tail probability (remember this
when we study the likelihood ratio method).
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Pprior for the Poisson Problem (3)

Exact calculation Approximations
∆ν pprior No. of σ Laplace Chisquared

0 1.64 × 10−29 11.28
10 1.23 × 10−28 11.10 1.23 × 10−28 1.16 × 10−28

20 2.40 × 10−26 10.62 2.40 × 10−26 2.29 × 10−26

40 2.95 × 10−20 9.22 2.95 × 10−20 2.87 × 10−20

60 5.53 × 10−15 7.81 5.53 × 10−15 5.45 × 10−15

80 2.96 × 10−11 6.65 2.96 × 10−11 2.93 × 10−11

100 9.85 × 10−9 5.73 9.85 × 10−9 9.81 × 10−9

120 5.19 × 10−7 5.02 5.19 × 10−7 5.18 × 10−7

140 8.32 × 10−6 4.46 8.32 × 10−6 8.31 × 10−6

Table 1: Calculation of the prior-predictive p value for the X(3872) analysis, for
several values of the uncertainty ∆ν on the background ν. We used ν0 = 3234
and n0 = 3893 in all calculations. For each p value we list the number of σ of
a standard normal density that enclose a total probability of 1 − pprior, as well
as the Laplace and chisquared approximations.
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Pprior for the Poisson Problem (4)

Exact Approximations
n0 pprior Laplace Chisquared Exact/Lapl. Exact/chisq.

3893 9.85 × 10−9 9.85 × 10−9 9.81 × 10−9 1.00 1.00
4000 3.85 × 10−11 3.85 × 10−11 3.83 × 10−11 1.00 1.00
4100 1.11 × 10−13 1.11 × 10−13 1.10 × 10−13 1.00 1.01
4200 1.69 × 10−16 1.69 × 10−16 1.68 × 10−16 1.00 1.00
4300 1.30 × 10−19 1.37 × 10−19 1.36 × 10−19 0.94 0.95
4400 3.67 × 10−23 5.98 × 10−23 5.94 × 10−23 0.61 0.62
4500 2.25 × 10−27 1.41 × 10−26 1.40 × 10−26 0.16 0.16
4600 2.10 × 10−32 1.82 × 10−30 1.81 × 10−30 0.012 0.012
4700 2.64 × 10−38 1.29 × 10−34 1.28 × 10−34 0.00020 0.00021

Table 2: Calculation of the prior-predictive p value for ν0 = 3234, ∆ν = 100,
and various values of n0. The first line (n0 = 3893) corresponds to the X(3872)
observation. For each shown value of n0, the exact prior-predictive p value is
given, as well as the Laplace and chisquared approximations and the ratios of
the former to the latter.
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Pprior for the Poisson Problem: Robustness Study

Truncated Gaussian Gamma Log-Normal
∆ν pprior No. of σ pprior No. of σ pprior No. of σ

10 1.23 × 10−28 11.10 1.24 × 10−28 11.10 1.24 × 10−28 11.10
20 2.40 × 10−26 10.62 2.63 × 10−26 10.61 2.77 × 10−26 10.61
40 2.95 × 10−20 9.22 5.34 × 10−20 9.16 7.33 × 10−20 9.12
60 5.53 × 10−15 7.81 1.55 × 10−14 7.68 2.66 × 10−14 7.61
80 2.96 × 10−11 6.65 9.31 × 10−11 6.48 1.67 × 10−10 6.39
100 9.85 × 10−9 5.73 2.89 × 10−8 5.55 4.95 × 10−8 5.45
120 5.19 × 10−7 5.02 1.33 × 10−6 4.83 2.11 × 10−6 4.74
140 8.32 × 10−6 4.46 1.86 × 10−5 4.28 2.73 × 10−5 4.19

Table 3: Calculation of the prior-predictive p value for the X(3872) analysis as
a function of the uncertainty ∆ν on the background ν, for three choices of
background prior: truncated Gaussian, gamma, and log-normal. All numbers are
for a mean background of ν̄ = 3234 and an observation of n0 = 3893 events.
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Coverage of pprior for Poisson Example (1)

Figure 3: Solid lines: Pr(pprior ≤ α) versus α; dotted lines: exact coverage.
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Coverage of pprior for Poisson Example (2)

Figure 4: Solid lines: Pr(pprior ≤ α) versus α; dotted lines: exact coverage.
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The posterior-predictive method

The posterior-predictive p value estimates the probability that a future

observation will be at least as extreme as the current observation if the null
hypothesis is true. Applying the definition of conditional probability densities:

p(xrep, ν |xobs, µ) = p(xrep |µ, ν) p(ν |xobs, µ), (25)

where we used the fact that xrep and xobs are independent given (µ, ν). For
the null hypothesis H0 : µ = µ0, the posterior predictive density of xrep under
H0 is obtained by setting µ = µ0 in the above equation and integrating over ν:

p(xrep |xobs, H0) =

∫

p(xrep |µ0, ν) p(ν |xobs, µ0) dν. (26)

Tail areas of this distribution can be used as p values. Note the double use of
the data in the posterior-predictive p value: once to calculate the ν posterior,
and then again to calculate the p value. To avoid this problem, J. Berger has
proposed the use of a partial posterior-predictive density, which can be obtained
by replacing p(ν |xobs, µ0) in the above equation by p(ν |xobs\tobs, µ0) ≡
p(ν |xobs, µ0)/p(tobs | ν, µ0), where tobs is the observed value of the statistic

34



T = T (X) used to test H0. For our benchmark example, T = X and the
partial posterior-predictive p value reduces to the prior-predictive one.

A noteworthy advantage of posterior-predictive p values over prior-predictive
ones, is that the former can usually be defined even with improper priors.
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Ppost for the Poisson Problem

∆ν ppost No. of σ

0 1.64 × 10−29 11.28
10 5.27 × 10−27 10.76
20 2.08 × 10−21 9.50
40 2.93 × 10−11 6.65
55 5.47 × 10−7 5.01
60 4.79 × 10−6 4.57
80 1.06 × 10−3 3.27

100 1.35 × 10−2 2.47
120 4.95 × 10−2 1.96
140 1.02 × 10−1 1.63

Table 4: Calculation of the posterior-predictive p value for the X(3872) analysis,
for several values of the uncertainty ∆ν on the background ν. We used
ν0 = 3234 and n = 3893 in all calculations. For each p value we list the number
of σ of a standard normal density that enclose a total probability of 1 − ppost.
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Coverage of ppost for the Poisson Example (1)

Figure 5: Solid lines: Pr(ppost ≤ α) versus α; dotted lines: exact coverage.
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Coverage of ppost for the Poisson Example (2)

Figure 6: Solid lines: Pr(ppost ≤ α) versus α; dotted lines: exact coverage.
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Further Comments on Predictive P Values

• An alternative interpretation of predictive p values is that they are averages
of the classical p value with respect to a reference distribution.

• A benefit of this alternative interpretation is that these p values can be
calculated for a discrepancy variable rather than a test statistic.

• Rather than simply reporting the p value, it may be more informative to
plot the observed value of the test statistic against the appropriate reference
distribution.

• As the sample size goes to infinity, the posterior distribution will concentrate
at the maximum likelihood estimate of the parameter(s), so that the posterior-
predictive distribution will essentially equal the pdf of the data, i.e. the
frequentist distribution commonly used to calculate a p value. In general, the
posterior-predictive p value is much more heavily influenced by the likelihood
than by the prior, which gives it a less naturally Bayesian interpretation than
the prior-predictive p value.
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The Plug-In Method

This method gets rid of unknown parameters by estimating them, using for
example a maximum-likelihood method, and then by substituting the estimate
in the calculation of the p value. For our example of a Poisson observation
n with a Gaussian measurement x of the background rate ν, the likelihood
function is:

L(µ, ν |x, n) =
(µ + ν)n e−µ−ν

n!

e
−1

2

“

x−ν
∆ν

”2

√
2π ∆ν

, (27)

where µ is the signal rate, which is zero under the null hypothesis H0. The
maximum-likelihood estimate of ν under H0 is obtained by setting µ = 0 and
solving ∂ lnL/∂ν = 0 for ν. This yields:

ν̂(x, n) =
x − ∆ν2

2
+

√

(

x − ∆ν2

2

)2

+ n ∆ν2. (28)

The plug-in p value is then:

pplug(x, n) ≡
+∞
∑

k=n

ν̂(x, n)k e−ν̂(x,n)

k!
. (29)
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The Adjusted Plug-In Method

Like the posterior-predictive method, the plug-in method makes double use of
the observed data. The adjusted plug-in method is an attempt to overcome this
problem.

Suppose we knew the exact cumulative distribution function Fplug of plug-in
p values under the null hypothesis of a particular testing problem. Then the
quantity Fplug(pplug) would be an exact p value since its distribution is uniform
by construction. In general however, Fplug depends on one or more unknown
parameters and can therefore not be used in this way. The next best thing
we can try is to substitute estimates for the unknown parameters in Fplug.
Accordingly, we define the adjusted plug-in p value corresponding to pplug by:

pplug,adj ≡ Fplug(pplug | θ̂), (30)

where θ̂ is an estimate for the unknown parameters collectively labeled by θ.

This adjustment algorithm is known as a double parametric bootstrap and can
also be implemented in Monte Carlo form.
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Pplug and Pplug,adj for the Poisson Problem

Plug-in Adjusted plug-in
∆ν pplug No. of σ pplug,adj No. of σ

0 1.64 × 10−29 11.28 1.64 × 10−29 11.28
10 8.62 × 10−28 10.93 1.13 × 10−28 11.11
20 1.43 × 10−23 10.01 2.23 × 10−26 10.63
40 3.10 × 10−14 7.59 2.85 × 10−20 9.22
60 3.24 × 10−8 5.53 5.49 × 10−15 7.82
80 4.53 × 10−5 4.08 2.96 × 10−11 6.65

100 1.86 × 10−3 3.11 9.90 × 10−9 5.73
120 1.37 × 10−2 2.47 5.22 × 10−7 5.02
140 4.27 × 10−2 2.03 8.35 × 10−6 4.46

Table 5: Calculation of the plug-in and adjusted plug-in p values for the X(3872)
analysis, for several values of the uncertainty ∆ν on the background ν. We used
x = 3234 and n = 3893 in all calculations. For each p value we list the number
of σ of a standard normal density that enclose a total probability of 1 − p.
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Coverage of pplug and pplug,adj for the Poisson Example (1)

Figure 7: Solid lines: Pr(pplug,adj ≤ α) versus α; dashed lines: Pr(pplug ≤ α)
versus α; dotted lines: exact coverage.
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Coverage of pplug and pplug,adj for the Poisson Example (2)

Figure 8: Solid lines: Pr(pplug,adj ≤ α) versus α; dashed lines: Pr(pplug ≤ α)
versus α; dotted lines: exact coverage.
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The Likelihood Ratio Method

Here one assumes that the background information comes from a genuine
measurement, so that a joint likelihood can be defined:

L(ν, µ | y, x) =
(ν + µ)y e−ν−µ

y!

e−
1
2(

x−ν
∆ν )

2

√
2π ∆ν

.

The likelihood ratio statistic is:

λ =

sup ν≥0

µ=0

L(ν, µ | y, x)

sup ν≥0

µ≥0

L(ν, µ | y, x)
.

It can be shown that for large values of ν, the quantity −2 lnλ is distributed
as 1

2χ
2
0 + 1

2χ
2
1. For small ν however, the distribution of −2 lnλ depends on ν.

In that case, a general way of eliminating the ν dependence while maintaining
frequentist coverage is to calculate the supremum p-value:

psup = sup
ν≥0

IPr(λ ≤ λ0 |µ = 0)

If −2 ln λ is stochastically increasing with ν, then psup = limν→∞ p. We will
assume that this is true in the following.
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Pl.r. for the Poisson Problem

∆ν ν̂ −2 ln λ p value No. of σ

0 3234.0 125.99 1.54 × 10−29 11.29
10 3253.7 121.99 1.16 × 10−28 11.11
20 3305.1 111.51 2.29 × 10−26 10.62
40 3443.1 83.71 2.87 × 10−20 9.22
60 3565.1 59.73 5.45 × 10−15 7.82
80 3653.5 42.86 2.93 × 10−11 6.65

100 3714.5 31.53 9.81 × 10−9 5.73
120 3756.7 23.86 5.18 × 10−7 5.02
140 3786.3 18.54 8.31 × 10−6 4.46

Table 6: Calculation of the asymptotic likelihood ratio p value for the X(3872)
analysis, for several values of the uncertainty ∆ν on the background ν. We
used ν0 = 3234 and n0 = 3893 in all calculations. ν̂ is the maximum-likelihood
estimate of ν under the null hypothesis and λ is the likelihood ratio. For each p
value we list the number of σ of a standard normal density that enclose a total
probability of 1 − p.
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Coverage of plr for the Poisson Example (1)

Figure 9: Solid lines: Pr(plr ≤ α) versus α; dotted lines: exact coverage.
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Coverage of plr for the Poisson Example (2)

Figure 10: Solid lines: Pr(plr ≤ α) versus α; dotted lines: exact coverage.
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The Confidence Interval Method (1)

The simplest frequentist way to incorporate a nuisance parameter ν into a p
value calculation is to maximize the p value over the entire nuisance parameter
space. For the simple case of a Poisson p value with a Gaussian uncertainty on
the mean ν, this does not yield a meaningful result:

psup = sup
ν>0

+∞
∑

n=nobs

νn

n!
e−ν = 1 (31)

One way around this is to maximize over a 1 − β confidence set Cβ for ν, and
then to correct the p value for the fact that β is not zero:

pβ = sup
ν∈Cβ

p(ν) + β. (32)

This time the supremum is restricted to all values of ν that lie in the confidence
set Cβ. It can be shown that pβ, like psup, is conservative:

Pr(pβ ≤ α) ≤ α for all α ∈ [0, 1]. (33)
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The Confidence Interval Method (2)

For this method to work properly over the long run, β must be chosen before

looking at the data. Note that pβ is never smaller than β, so β should be
chosen suitably low. If we are interested in a 5σ discovery for example, that
would correspond to a test size of 5.7 × 10−7, and it would be reasonable
to take a 6σ confidence interval for the nuisance parameter, corresponding to
β = 1.97 × 10−9.

In principle, the confidence interval method can be used with any test statistic
and any confidence interval. For the Poisson problem with Gaussian uncertainty
on the mean, we chose the maximum likelihood estimate of the number of
signal events as test statistic, and the Feldman-Cousins procedure to calculate
a confidence interval on the background mean.
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Pci for the Poisson Problem

∆ν Cβ supCβ
p(ν) pβ Nσ

10 [3174, 3294] 2.28×10−28 1.97×10−9 6.00
20 [3114, 3354] 4.67×10−26 1.97×10−9 6.00
40 [2994, 3474] 3.77×10−20 1.97×10−9 6.00
60 [2874, 3594] 6.20×10−15 1.97×10−9 6.00
80 [2754, 3714] 3.35×10−11 2.01×10−9 6.00

100 [2634, 3834] 1.13×10−8 1.33×10−8 5.68
120 [2514, 3954] 5.92×10−7 5.94×10−7 4.99
140 [2394, 4074] 9.35×10−6 9.36×10−6 4.43

Table 7: Confidence interval p values for the X(3872) analysis, for several values
of the uncertainty ∆ν on the background ν. All calculations use ν0 = 3234,
n0 = 3893, and a 6σ interval Cβ for ν (β = 1.97 × 10−9). For purposes of
illustration, column 3 provides the p value before its correction for the choice
of β. Column 4 gives the corrected p value and column 5 the corresponding
number of σ’s for a standard normal density.
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Coverage of pci for the Poisson Example (1)

Figure 11: Solid lines: Pr(pci ≤ α) versus α for a 6σ confidence interval on ν;
dotted lines: exact coverage.
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Coverage of pci for the Poisson Example (2)

Figure 12: Solid lines: Pr(pci ≤ α) versus α for a 6σ confidence interval on ν;
dotted lines: exact coverage.
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Coverage of pci for the Poisson Example (3)

Figure 13: Pr(pci ≤ α) versus α for 6σ (solid lines) and 3σ (dashed lines)
confidence intervals on ν; dotted lines: exact coverage.
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Generalized p-Values (1)

Let X be a random variable with density f(x | θ, ν), where θ is the parameter
of interest and ν is a nuisance parameter. We are interested in testing:

H0 : θ ≤ θ0 versus H1 : θ > θ0.

Recall the usual definition of a p-value:

p = IPr
[

T (X) ≥ T (x) |H0

]

,

where x is the observed value of X and T (X) is a test statistic, i.e. a function
of the data X with the following properties:

1. T (X) does not depend on unknown parameters;

2. The distribution of T (X) does not depend on unknown nuisance parameters;

3. The probability IPr(T (X) ≥ t | θ) increases with θ.

A small p-value indicates that the observed x does not support H0.
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Generalized p-Values (2)

p-Values are generalized by extending the definition of test statistic:

A generalized test variable T (X,x, θ, ν) is a function of the random
variable X, its observed value x, and the parameters θ and ν, such that
the following requirements are satisfied:

1. T (x, x, θ, ν) does not depend on θ or ν;

2. The distribution of T (X,x, θ0, ν) under H0 is free of ν;

3. Given x and ν, IPr
[

T (X,x, θ, ν) ≥ t | θ
]

is a monotonic function of θ.

The generalized p-value based on T (X,x, θ, ν) is now defined in the usual way:

p = IPr
[

T (X,x, θ, ν) ≥ T (x, x, θ, ν) |H0

]

.

Because of the way T (X,x, θ, ν) is defined, this p-value is free of unknown
parameters and allows the desired interpretation that small p corresponds to
lack of support for H0. However, although p is based on an exact probability
statement, the coverage probability IPr(p ≤ α) itself may depend on nuisance
parameters and needs to be checked explicitly.
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The Substitution Method for Generalized p-Values
Generalized p-values were introduced in 1989, but for a long time the
construction of generalized test variables relied on intuition and guesswork.
A general recipe was introduced in 2002.

Assumptions:

1. There is a set of observable statistics (X1,X2, . . . ,Xk) with known
distributions, that is equal in number to the number of unknown parameters
of the problem, say (α1, α2, . . . , αk); In many applications a set of minimal
sufficient statistics will serve this purpose;

2. Through a set of random variables (V1, V2, . . . , Vk) having distributions free of
unknown parameters, the statistics Xi are related to the unknown parameters.

Recipe:

1. By writing the parameter of interest, θ, in terms of the parameters αi, express
θ in terms of the sufficient statistics Xi and the random variables Vi.

2. Replace the statistics Xi by their observed values xi and subtract the result
from θ.
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Example of the Substitution Method

• Let {Y1, Y2, . . . , Yn} be a sample drawn from a Gaussian distribution with
mean µ and width σ. We are interested in θ ≡ σ/µ.

• The sample mean and variance, Ȳ and S2 respectively, are a set of minimal
sufficient statistics for µ and σ; they correspond to the Xi in the recipe.

• The random variables

Z ≡ Ȳ − µ

σ/
√

n
and U ≡ n S2

σ2

relate the statistics Ȳ and S2 to the parameters µ and σ, and have
distributions free of unknown parameters:

Z ∼ N(0, 1) and U ∼ χ2
n−1.

They correspond to the Vi in the recipe.
• Finally, the recipe says (1) to write θ in terms of Z, U , Ȳ , and S2, (2) to

replace Ȳ , S by their observed values, and (3) to subtract the result from θ:

θ ≡ σ

µ
=

√
n S/

√
U

Ȳ − S Z/
√

U
−→ T ≡ θ −

√
n s/

√
U

ȳ − s Z/
√

U
= θ − σ

ȳS/s + µ − Ȳ
.
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Generalized Inference with Discrete Distributions

One of the assumptions of the substitution method is the existence of pivotal
quantities, i.e. random variables that depend on unknown parameters but
whose distribution does not. For continuous distributions this is usually not a
problem, as the cumulative distribution function (cdf) is itself an exact pivot,
with a uniform distribution. For discrete distributions however, the cdf is not
an exact pivot. This is unfortunate in HEP, where we often deal with Poisson
and binomial statistics. To solve this problem we have adopted the following
procedure:

1. Randomize the observed, discrete data. For example, when observing a
discrete number of events from a Poisson distribution, we add or subtract a
uniform random number between 0 and 1.

2. Apply the generalized frequentist method to the randomized observation and
its distribution.

3. When interpreting or checking the properties of the result, “ignore” the
components related to the randomization.

This is in line with our intent to use generalized frequentist methods as a mere
toolbox for deriving useful frequentist results.
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Randomizing Poisson Statistics (1)

Let N and U be two random variables with the following distributions:

N ∼ Poisson(µ)

U ∼ U[0,1[

One way to generate a continuous statistic from N is to work with Y + ≡ N+U ,
whose distribution is given by:

FY +(y |µ) =

byc−1
∑

i=0

µi e−µ

i!
+

(

y − byc
) µbyc e−µ

byc! ,

where byc is the largest integer smaller than or equal to y. Alternatively, one
could work with Y − ≡ N − U , whose distribution is:

FY −(y |µ) =

dye
∑

i=0

µi e−µ

i!
−

(

dye − y
) µdye e−µ

dye! ,

where dye is the smallest integer larger than or equal to y.
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Randomizing Poisson Statistics (2)

In the remainder of this talk it will be more convenient to use the notation:

G(+)
y (µ) ≡ FY +(y |µ)

G(−)
y (µ) ≡ FY −(y |µ).

Then, if y is a positive integer and V a uniform random number between 0 and
1, one has the interesting property that:

G(+)−1
y (V ) ∼ Gamma(y, 1) (y ≥ 1)

G(−)−1
y (V ) ∼ Gamma(y + 1, 1) (y ≥ 0)
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Poisson Signal Significance (1)

Consider a Poisson process consisting of a background with strength b
superimposed on a signal with unknown strength s:

fN(n) =
(b + s)n

n!
e−b−s,

where the background rate b is determined from a Gaussian measurement x:

fX(x) =
e−

1
2(

x−b
∆b )

2

√
2π ∆b

.

It is assumed that b ≥ 0 but that, due to resolution effects, x can take both
positive and negative values. We are interested in testing:

H0 : s = 0 vs. H1 : s > 0.

The background strength b is a nuisance parameter.

62



Poisson Signal Significance (2)

This problem has two parameters, b and s, two statistics, N and X, and after
randomizing N with Y ≡ N + U , two pivots:

V = G(+)

Y (b + s) ∼ U[0,1],

W =
X − b

∆b
∼ N(0, 1).

The generalized test variable is then:

T = s +
(

x − W ∆b
)

− G(+)−1
y (V ),

and the p-value is:
p = IPr(T ≥ 0 | s = 0).

For integer y this is the probability for the difference between an N(x, ∆b) and
a Gamma(y, 1) random variable to be positive. Analytically it corresponds to
the tail area of a convolution between these random variables:

p =

∫ +∞

0

dt
ty−1 e−t

Γ(y)

1

2

[

1 + erf

(

x − t√
2∆b

)]

.
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Coverage of pgf for the Poisson Example (1)

Figure 14: Solid lines: Pr(pgf ≤ α) versus α; dotted lines: exact coverage.

64



Coverage of pgf for the Poisson Example (2)

Figure 15: Solid lines: Pr(pgf ≤ α) versus α; dotted lines: exact coverage.
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Power Studies (1)

Figure 16: Power versus signal strength
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Power Studies (2)

Figure 17: Power versus signal strength
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Summary of Nuisance Parameter Study

We have looked at seven methods for incorporating systematic uncertainties
in p value calculations: prior-predictive, posterior-predictive, plug-in, adjusted
plug-in, likelihood ratio, confidence interval, and generalized inference. Here are
some trends:

• All the p values tend to increase as the uncertainty on the background rate
increases.

• Asymptotically, the prior-predictive, adjusted plug-in, likelihood ratio, and
generalized inference p values seem to converge.

• There is quite a variation in coverage properties, with the generalized inference
p value showing remarkably good coverage, followed closely by the adjusted
plug-in and likelihood ratio p values.

• Some methods are more general than others...
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Summary of Nuisance Parameter Study (cntn’d)

Method Prior Test Statistic P Value No. of σ

Prior-predictive Gauss n 2.84 × 10−3 2.98
Gamma n 2.86 × 10−3 2.98
Log-normal n 2.86 × 10−3 2.98
Gauss 1/p(n) 2.84 × 10−3 2.98

Posterior-predictive Gauss n 4.24 × 10−3 2.86
Plug-in n/a n 3.60 × 10−3 2.91
Adjusted plug-in n/a n 1.90 × 10−3 3.11
Likelihood ratio n/a λ 2.18 × 10−3 3.07
Confidence interval n/a n 5.22 × 10−2 1.94

n/a n − x 5.75 × 10−3 2.76
Generalized frequentist n/a n 2.84 × 10−3 2.98

Table 8: P values obtained from several methods for a Poisson observation of
n = 14 events and an expected rate of x = 5.7±0.47 events. For the confidence
interval p value, a 6σ interval was constructed for the nuisance parameter; λ is
the likelihood ratio statistic and p(n) is the prior-predictive density evaluated at
the data point.
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