
Marginalization vs. Profiling
Marginal distribution for signal s, eliminating backgrond b:

p(s|D,M) ∝ p(s|M)Lm(s)

with Lm(s) the marginal likelihood for s,

Lm(s) ≡
∫

db p(b|s)L(s, b)

For insight: Suppose for a fixed s, we can accurately estimate b

with max likelihood b̂s , with small uncertainty δbs .

Lm(s) ≡
∫

db p(b|s)L(s, b)

≈ p(b̂s |s) L(s, b̂s) δbs

best b given s

b uncertainty given s

Profile likelihood Lp(s) ≡ L(s, b̂s) gets weighted by a parameter

space volume factor.
Slides for Banff Discovery Workshop, July 2010 — Tom Loredo, Dept. of Astronomy, Cornell University
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Lm(s) ≈ p(b̂s |s) L(s, b̂s) δbs

best b given s

b uncertainty given s

Methods for handling nuisance parameters aim to account for
nuisance parameter uncertainty.

Profiling takes into account variation of the best-fit value of b with

s. This will typically be the most important effect of b uncertainty.
It accounts for correlation between s and b that is ignored if one
just fixes b = b̂.

Marginalization implicitly does this, and additionally accounts for

the uncertainty in b̂s . When δbs varies with s, one typically finds
the marginal is wider than the profile; the profile ignores important
uncertainty.

2 / 15



Bivariate normals: Lm ∝ Lp
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δbs is const. vs. s

⇒ Lm ∝ Lp
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Flared/skewed/bannana-shaped: Lm and Lp differ

Lp(s) Lm(s)

s

b

b̂s

s

b

b̂s

Lp(s) Lm(s)

General result: For a linear (in params) model sampled with Gaussian
noise, and flat priors, Lm ∝ Lp .

In asymptotically normal regime, Lm ∝ Lp. Otherwise, they will likely
differ.

In “measurement error problems” the difference can have dramatic
consequences.
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Astrophysics Example: SN 1987A mν Limits

Marginal PDF and profile
likelihood for mν̄e

based on
SN 1987A neutrino energies
and arrival times; two SN ν
emission models.

Prompt explosion

Delayed explosion
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Discrete Example: Basu’s Problem∗

Urn contains 1000 colored red (“1”) and green (“−1”) balls:

• 980 have color θ, uniquely numbered from S = {1, 2, . . . , 980}
• 20 have color −θ, all with the same (unknown) number φ ∈ S

What is the color of the majority, θ?

Color data only
Draw a ball; observe only its color, x .

Sampling distribution: Knowing φ does not help you predict
the color → the sampling dist’n does not depend on φ:

p(x |θ, φ) =

{

0.98 for x = θ

0.02 for x = −θ

Maximum likelihood guess is θ = x .
This will be correct with long-run frequency 0.98.

∗D. Basu (1975) “Statistical information and likelihood,” Sankhya, A37, 1–71
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Color & number data
Draw a ball; observe its color, x , and number, n.

Sampling distribution:

p(x , n|θ, φ) = p(x |θ, φ)p(n|x , θ, φ)

=











0.98 × 1
980 = 0.001 for θ = x , any φ

0.02 × 1 = 0.02 for θ = −x , n = φ

0.02 × 0 = 0 for θ = −x , n 6= φ

Profile likelihood: Plug in φ̂(θ):

Lp(θ) ≡ p(x , n|θ, φ̂(θ))

=

{

0.001 if θ = x

0.02 if θ = −x

Maximum profile likelihood guess is θ = −x .
This will be correct with long-run frequency 0.02.
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Marginal likelihood: Use flat prior over S for φ:

Lm(θ) ≡
980
∑

φ=1

1

980
p(x , n|θ, φ)

=

{

0.98/980 for θ = x

0.02/980 for θ = −x

Maximum marginal likelihood guess is θ = x .

Example: Draw a red ticket numbered 42.

The one hypothesis with (θ = Green, φ = 42) has larger likelihood
and posterior probability than any hypothesis with θ = Red.

But there are so many hypotheses with θ = Red that it is more
plausible (probable!) that one of them is true, than that
θ = Green.

We must somehow account for the size of the plausible φ space.
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Continuous Example: The Neyman-Scott problem

Calibrating a noise level
Need to measure several sources with signal amplitudes µi ,
with an “uncalibrated” instrument that adds Gaussian noise
with unknown but constant σ.

Ideally, either:

• Measure calibration sources of known amplitudes; the
scatter of the measurements from the known values
allows easy inference of σ.

• Measure one source many times; from many samples we
can easily learn both µi and σ.
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Neyman-Scott problem (1948): Calibrate as-you-go

• No calibration sources are available.

• We have to measure N sources with finite resources, so
only a few measurements of each source are available.

The multiple measurements of a single source yield a noisy
estimate of σ.

→ Pool all the data to more precisely estimate σ.

Pairs of measurements
Make 2 measurements (xi , yi ) for each of the N quantities µi .

Likelihood:

L({µi}, σ) =
∏

i

exp
[

− (xi−µi )
2

2σ2

]

σ
√

2π
×

exp
[

− (yi−µi )
2

2σ2

]

σ
√

2π

Profile likelihood Lp(σ) = max{µi}L({µi}, σ)

Plugs in µ̂i = 1
2(xi + yi )
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Joint & Marginal Results for σ = 1

The marginal p(σ|D) and Lp(σ) differ dramatically!
Profile likelihood estimate converges to σ/

√
2.

The total # of parameters grows with the # of data.
⇒ Volumes along µi do not vanish as N → ∞.
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Astro Example—Distribution of Source Magnitudes

Measure mi of sources following a “rolling power law” flux dist’n (i.e., a
“rolling exponential” magnitude dist’n; inspired by TNOs)

Σ(m) ∝ 10[α(m−23)+α
′(m−23)2]

m

(m)

23

α

Simulate 100 surveys of populations drawn from the same dist’n.
Simulate data for photon-counting instrument, fixed count threshold.
Measurements have uncertainties 1% (bright) to ≈ 30% (dim).

Analyze simulated data with maximum (“profile”) likelihood and Bayes.
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Parameter estimates from Bayes (circles) and profile likelihood (crosses):

Uncertainties don’t average out!

This failure of profile likelihood has been (re)discovered several times in
various astronomical sub-disciplines.
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A Generalized Wilks Theorem∗

Setting
Test H0 : θ = θ0 vs. H1 : θ 6= θ0

Log likelihood ratio:

λ(θ) = logL(θ̂) − logL(θ)

Test using maximum log likelihood ratio, λ0 = λ(θ0).
What is the asymptotic distribution for λ0?

Conditions (crudely summarize!)• The MLE converges to the true value, but in a weaker
sense than requiring asymptotic normality

• Likelihood contours are “fan-shaped” (i.e., scaled
versions of a single shape)

• The size of the contours grows like a power of λ

∗Fan, Hung, & Wong (2000) “Geometric understanding of likelihood ratio statistics,” JASA 95, 451
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Result

Theorem: λ0 ∼ Gamma(rp) for p parameters, and r = power for
how contour size grows with λ.

Examples given:

• Multivariate exponential, where contours are hypertriangles
and MLE is exponentially distributed; 2λ ∼ χ2

2p

• Multivariate uniform

• Nonlinear normal, N(θ3, Ip); MLE ∼ cube root of a normal;
contours are ellipses; here r = 1/2

• Different asymptotic behavior in different directions

• Nuisance parameters
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