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INTRODUCTION
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What Do We Mean by Testing?

Two very different philosophies to address two very different problems:

1. We wish to decide between two hypotheses, in such a way that if we repeat
the same testing procedure many times, the rate of wrong decisions will be fully
controlled in the long run.
Example: in selecting good electron candidates for a measurement of the mass
of the W boson, we need to maximize purity for a given desired efficiency.

2. We wish to characterize the evidence provided by the data against a given
hypothesis.
Example: in searching for new phenomena, we need to establish that an observed
enhancement of a given background spectrum is evidence against the background-
only hypothesis, and we need to quantify that evidence.

Traditionally, the first problem is solved by Neyman-Pearson theory and the second
one by the use of p values, likelihood ratios, or Bayes factors. This talk focuses on
p values.
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What are p Values?

Suppose we collect some data X and wish to test a hypothesis H0 about the
distribution f(x | θ) of the underlying population. A general approach is to find a
test statistic T (X) such that large values of tobs ≡ T (xobs) are evidence against the
null hypothesis H0.

A way to calibrate this evidence is to calculate the probability for observing T = tobs

or a larger value under H0; this tail probability is known as the p value of the test:

p = IPr(T ≥ tobs |H0).

Thus, small p values are evidence against H0.

How should we calculate IPr in the above definition?
When H0 is simple, H0 : θ = θ0, it is universally accepted that this distribution
should be f(x | θ0). Things become more interesting when H0 is composite. . .
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Using p Values to Calibrate Evidence

The usefulness of p values for calibrating evidence against a null hypothesis H0

depends on their null distribution being known to the experimenter and being the
same in all problems considered.

This is the reason for requiring the null distribution of p values to be uniform. In
practice however, it is often difficult to fulfill this requirement, either because the
test statistic is discrete or because of the presence of nuisance parameters. The
following terminology characterizes the null distribution of p values:

p exact ⇔ IPr(p ≤ α |H0) = α,

p conservative ⇔ IPr(p ≤ α |H0) < α,

p liberal ⇔ IPr(p ≤ α |H0) > α.

Compared to an exact p value, a conservative p value tends to understate the
evidence against H0, whereas a liberal p value tends to overstate it.
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Caveats

The correct interpretation of p values is notoriously subtle. In fact, p values
themselves are controversial. Here is partial list of caveats:

1. P values are neither frequentist error rates nor confidence levels.

2. P values are not hypothesis probabilities.

3. Equal p values do not represent equal amounts of evidence.

Because of these and other caveats, it is better to treat p values as nothing more
than useful “exploratory tools,” or “measures of surprise.”

In any search for new physics, a small p value should only be seen as a first step
in the interpretation of the data, to be followed by a serious investigation of an
alternative hypothesis. Only by showing that the latter provides a better explanation
of the observations than the null hypothesis can one make a convincing case for
discovery.
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The 5σ Discovery Threshold

A small p value has little intuitive appeal, so it is conventional to map it into the
number Nσ of standard deviations a normal variate is from zero when the probability
outside ±Nσ equals p:

p = 2

∫ +∞

Nσ

dx
e−x2/2

√
2 π

= 1 − erf(Nσ/
√

2).

The threshold α for discovery is typically set at 5σ for the following reasons:

1. The null hypothesis is almost never exactly true, even in the absence of new
physics. However, systematic effects are not always easy to identify, let alone to
model and quantify.

2. When compared with Bayesian measures of evidence, p values tend to over-reject
the null hypothesis.

3. The screening effect: when looking for new physics in a large numbers of channels,
the posterior error rate can only be kept reasonable if α is much smaller than the
fraction of these channels that do contain new physics.
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INCORPORATING SYSTEMATIC UNCERTAINTIES

INTO P VALUES
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Desiderata for Incorporating Systematic Uncertainties

When looking at a method for incorporating systematic uncertainties in p values,
what properties would we like this method to have?

1. Uniformity: The method should preserve the uniformity of the null distribution of
p values. If exact uniformity is not achievable in finite samples, then asymptotic
uniformity should be aimed for.

2. Monotonicity: For a fixed value of the observation, systematic uncertainties
should decrease the significance of null rejections.

3. Generality: The method should not depend on the testing problem having a
special structure, but should be applicable to as wide a range of problems as
possible.

4. Power: All other things being equal, more power is better.

5. Unbiasedness: This may be desirable, depending on what prior information one
has about the parameter of interest, and on the possible consequences of wrong
decisions.
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Methods for Incorporating Systematic Uncertainties

We will be looking at seven methods:

1. Conditioning;

2. Supremum;

3. Confidence Interval;

4. Bootstrap;

5. Fiducial;

6. Prior-predictive;

7. Posterior-predictive.
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How Can We Compare Bayesian and Frequentist Methods?

Methods for incorporating a systematic uncertainty depend on the type of information
that is available about the corresponding nuisance parameter ν:

1. Frequentist information: auxiliary measurement results constrain ν and are
described by a likelihood function Laux.(ν).

2. Bayesian information: there is a prior density π(ν). In high energy physics this
prior is often proper, and formed by combining various sources of information
(subsidiary measurements, simulations, theoretical beliefs, etc.)

Note that frequentist information can be turned into Bayesian information by
multiplying the likelihood by a (possibly noninformative) prior. The resulting
auxiliary measurement posterior can then be used as a prior for analyzing the
primary observation.

By using this little trick we will be able to compare frequentist and Bayesian methods
on the same benchmark problem.
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A Benchmark Problem

Our benchmark problem will be based on an observation from a Poisson distribution
whose mean is the sum of a background with unknown strength ν and a signal with
strength µ:

f(n | ν + µ) =
(ν + µ)n

n!
e−ν−µ.

We wish to test:

H0 : µ = 0 versus H1 : µ > 0.

When solving this problem, we will consider three possible auxiliary measurements
of the background strength ν . . .
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1. Auxiliary pdf = Gaussian with known width

• The likelihood is:

Laux.(ν) =
e−

1
2(

ν−x
∆ν )

2

√
2π ∆ν

.

Although the true value of ν must be positive since it represents a physical
background rate, the measured value x will be allowed to take on negative values
due to resolution effects in the auxiliary measurement.

• The Jeffreys prior for ν is a step function:

πaux.(ν) =

{

1 if ν ≥ 0,

0 if ν < 0.

• Applying Bayes’ theorem to the above likelihood and prior yields the posterior

πaux.(ν |x) =
e−

1
2(

ν−x
∆ν )

2

√
2π ∆ν 1

2

[

1 + erf
(

x√
2 ∆ν

)] ≡ π(ν).

We will use this π(ν) as a prior in any Bayesian method that is to be compared
to a frequentist method based on the likelihood Laux.(ν).
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2. Auxiliary pdf = Gaussian with known coefficient of variation

• The likelihood is:

Laux.(ν) =

√

2

π

e−
1
2(

ν τ − x
ν τ δ )

2

ν τ δ
[

1 + erf
(

1√
2 δ

)].

Here we assume that both ν and x are positive.

• The Jeffreys prior for ν is:

πaux.(ν) ∝ 1

ν
.

• Applying Bayes’ theorem yields now:

πaux.(ν |x) =

√

2

π

x e−
1
2(

ν τ − x
ν τ δ )

2

ν2 τ δ
[

1 + erf
(

1√
2 δ

)] ≡ π(ν).

Note that if we had chosen a constant prior for the auxiliary measurement,
πaux.(ν) ∝ 1, the posterior πaux.(ν |x) would have been improper and therefore
unusable.

13



3. Auxiliary pdf = Poisson

• The likelihood is:

Laux.(ν) =
(τ ν)m

m!
e−τ ν,

where m is the result of the auxiliary measurement.

• For the ν prior we take:
πaux.(ν) ∝ ν−α.

Jeffreys’ prior corresponds to α = 1/2, a flat prior to α = 0.

• The auxiliary posterior again follows from Bayes’ theorem:

πaux.(ν |m) =
τ (τ ν)m−α e−τ ν

Γ(m + 1 − α)
≡ π(ν).

This is a gamma distribution.
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The Conditioning Method

This is a frequentist method: suppose that we have some data X and that there
exists a statistic A = A(X) such that the distribution of X given A is independent
of the nuisance parameter(s). Then we can use that conditional distribution to
calculate p values.

Our benchmark problem can be solved by this method only if the auxiliary
measurement has a Poisson pmf:

N ∼ Poisson(µ + ν) M ∼ Poisson(τν) H0 : µ = 0,

where τ is a known constant. The p value corresponding to observing N = n0 given
N + M = n0 + m0 is binomial:

pcond =

n0+m0
∑

n=n0

(

n0 + m0

n

) (

1

1 + τ

)n (

1 − 1

1 + τ

)n0+m0−n

= I 1
1+τ

(n0,m0 + 1).
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Null Distribution of pcond for Benchmark Problem 3
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The Supremum Method (1)

The conditioning method has limited applicability due to its requirement of the
existence of a conditioning statistic. A much more general technique consists in
maximizing the p value with respect to the nuisance parameter(s):

psup = sup
ν

p(ν).

Note however that this is no longer a tail probability. Psup is guaranteed to be
conservative, but may yield the trivial result psup = 1 if one is unlucky or not careful
in the choice of test statistic. In general the likelihood ratio is a good choice, so we
will use that for the benchmark problem. Assuming that the background information
comes from a Gaussian measurement, the joint likelihood is:

L(ν, µ |n, x) =
(ν + µ)n e−ν−µ

n!

e−
1
2(

x−ν
∆ν )

2

√
2π ∆ν

.

The likelihood ratio statistic is:

λ =

sup ν≥0

µ=0

L(ν, µ |n, x)

sup ν≥0

µ≥0

L(ν, µ |n, x)
.
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The Supremum Method (2)

It can be shown that for large values of ν, the quantity −2 ln λ is distributed as
1
2χ

2
0 + 1

2χ
2
1. For small ν however, the distribution of −2 ln λ depends on ν and is

a good candidate for the supremum method. Here the supremum p value can be
rewritten as:

psup = sup
ν≥0

IPr(λ ≤ λ0 |µ = 0)

A great simplification occurs when −2 ln λ is stochastically increasing with ν,
because then psup = p∞ ≡ limν→∞ p(ν). Unfortunately this is not generally true,
and is often difficult to check. When psup 6= p∞, then p∞ will tend to be liberal.
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Null Distribution of p∞ for Benchmark Problem 1
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Counter-Example to the Stochastic Monotonicity of λ

Benchmark with Poisson subsidiary measurement (n0 = 10, m0 = 7,τ = 16.5):
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The Confidence Interval Method

The supremum method has two important drawbacks:

1. Computationally, it is often difficult to locate the global maximum of the relevant
tail probability over the entire range of the nuisance parameter ν.

2. Conceptually, the very data one is analyzing often contain information about the
true value of ν, so that it makes little sense to maximize over all values of ν.

A simple way around these drawbacks is to maximize over a 1 − β confidence set
Cβ for ν, and then to correct the p value for the fact that β is not zero:

pβ = sup
ν∈Cβ

p(ν) + β.

This time the supremum is restricted to all values of ν that lie in the confidence set
Cβ. It can be shown that pβ, like psup, is conservative:

Pr(pβ ≤ α) ≤ α for all α ∈ [0, 1].

21



Bootstrap Methods: the Plug-In

This method gets rid of unknown parameters by estimating them, using for example
a maximum-likelihood estimate, and then substituting the estimate in the calculation
of the p value. For our benchmark problem with a Gaussian measurement x of the
background rate ν, the likelihood function is:

L(µ, ν |x, n) =
(µ + ν)n e−µ−ν

n!

e
−1

2

“

x−ν
∆ν

”2

√
2π ∆ν

,

where µ is the signal rate, which is zero under the null hypothesis H0. The
maximum-likelihood estimate of ν under H0 is obtained by setting µ = 0 and
solving ∂ lnL/∂ν = 0 for ν. This yields:

ν̂(x, n) =
x − ∆ν2

2
+

√

(

x − ∆ν2

2

)2

+ n ∆ν2.

The plug-in p value is then:

pplug(x, n) ≡
+∞
∑

k=n

ν̂(x, n)k e−ν̂(x,n)

k!
.
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Bootstrap Methods: the Adjusted Plug-In

In principle two criticisms can be leveled at the plug-in method. Firstly, it makes
double use of the data, once to estimate the nuisance parameters under H0, and
then again to calculate a p value. Secondly, it does not take into account the
uncertainty on the parameter estimates. The net effect is that plug-in p values tend
to be too conservative. The adjusted plug-in method attempts to overcome this.

If we knew the exact cumulative distribution function Fplug of plug-in p values under
H0, then the quantity Fplug(pplug) would be an exact p value since its distribution
is uniform by construction. In general however, Fplug depends on one or more
unknown parameters and can therefore not be used in this way. The next best
thing we can try is to substitute estimates for the unknown parameters in Fplug.
Accordingly, one defines the adjusted plug-in p value by:

pplug,adj ≡ Fplug(pplug | θ̂),

where θ̂ is an estimate for the unknown parameters collectively labeled by θ.

This adjustment algorithm is known as a double parametric bootstrap and can also
be implemented in Monte Carlo form.
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Null Distribution of pplug and pplug,adj for Benchmark 1
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Fiducial Distributions

If X is a continuous random variable with cdf F (x | θ), then the quantity

U = F (X | θ)

is uniform between 0 and 1, regardless of θ.

Suppose now that we observe X = xobs. If we keep X fixed at its observed value,
the above equation defines a relationship between U and θ. If this relationship is
one-to-one, then the uniform distribution of U induces a distribution for θ: this is
the fiducial distribution of θ.

This definition can be generalized to the case where X is not continuous and/or the
relationship between U and θ is not one-to-one. In general fiducial distributions are
not uniquely determined.
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Fiducial p Values

Definition: Q is a weak fiducial quantity for parameter of interest θ iff Q is a random
variable whose probability distribution is a fiducial distribution for θ.

Eliminating nuisance parameters in the fiducial framework is straightforward. In our
benchmark problem we have a primary measurement n0 of the Poisson mean µ + ν
and a subsidiary measurement x0 of the Gaussian mean ν. Next:

• Use the primary measurement cdf to get a weak fiducial quantity Q1 for µ + ν.

• Use the subsidiary measurement cdf to get a weak fiducial quantity Q2 for ν.

• Then Q3 ≡ Q1 − Q2 is a weak fiducial quantity for the parameter of interest µ.

Fiducial p values can be obtained by integrating the fiducial distribution of the
parameter of interest over the null hypothesis. A fiducial p value for our benchmark
problem is:

pfid =

∫ +∞

0

dt
1

2

[

1 + erf
( x0 − t√

2∆ν

)] tn0−1 e−t

(n0 − 1)!
,

where ∆ν is the known standard deviation of the subsidiary Gaussian measurement.
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Null Distribution of pfid for Benchmark Problem 1
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The prior-predictive method

The prior-predictive distribution of a test statistic T is the predicted distribution of
T before the measurement:

mprior(t |A) =

∫

dθ p(t | θ,A) p(θ |A)

After having observed T = t0 we can quantify how surprising this observation is by
referring t0 to mprior, e.g. by calculating the prior-predictive p value:

pprior = IPrmprior
(T ≥ t0 |H0) =

∫ ∞

t0

dt mprior(t |A)

=

∫

dθ p(θ |A)

[
∫ ∞

t0

dt p(t | θ,A)

]

For benchmark problem 3 (Poisson auxiliary measurement with flat auxiliary prior),
pprior coincides exactly with pcond.
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Null Distribution of pprior for Benchmark Problem 1
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Null Distribution of pprior for Benchmark Problem 2
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The posterior-predictive method

The posterior-predictive distribution of a test statistic T is the predicted distribution
of T after measuring T = t0:

mpost(t | t0, A) =

∫

dθ p(t | θ,A) p(θ | t0, A)

The posterior-predictive p value estimates the probability that a future observation
will be at least as extreme as the current observation if the null hypothesis is true:

ppost = IPrmpost(T ≥ t0 |H0) =

∫ ∞

t0

dt mpost(t | t0, A)

=

∫

dθ p(θ | t0, A)

[
∫ ∞

t0

dt p(t | θ,A)

]

Note the double use of the observation t0.

In contrast with prior-predictive p values, posterior-predictive p values can usually
be defined even with improper priors.
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Null Distribution of ppost for Benchmark Problem 1
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Further Comments on Predictive P Values

• Since predictive p values are averages of the classical p value with respect to
a reference distribution (prior or posterior), one can also calculate a standard
deviation to get an idea of the uncertainty due to the spread of that reference
distribution.

• Posterior-predictive p values can be calculated for discrepancy variables (i.e.
functions of data and parameters) in addition to test statistics.

• Rather than simply reporting the p value, it may be more informative to plot the
observed value of the test statistic against the appropriate predictive distribution.

• There are other types of predictive p values, which avoid some of the problems
of the prior- and posterior-predictive p values.
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Study of P Value Power for Benchmark Problem 1
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Asymptotic limit of P Values for Benchmark Problem 1

Method ∆ν = 10 ∆ν = 100
P value Nσ P value Nσ

Supremum 1.16 × 10−28 11.11 9.81 × 10−9 5.73
Confidence Interval 1.97 × 10−9 6.00 1.18 × 10−8 5.70
Plug-In 8.92 × 10−28 10.92 1.86 × 10−3 3.11
Adjusted Plug-In 1.13 × 10−28 11.11 9.90 × 10−9 5.73
Fiducial 1.23 × 10−28 11.10 9.85 × 10−9 5.73
Prior-Predictive 1.23 × 10−28 11.10 9.85 × 10−9 5.73
Posterior-Predictive 5.27 × 10−27 10.76 1.35 × 10−2 2.47

P values for a Poisson observation of n0 = 3893 events over an estimated background
of x0 = 3234±∆ν events. For the confidence interval p value a 6σ upper limit was
constructed for the nuisance parameter.
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Summary of P Value Study

We have looked at seven methods for incorporating systematic uncertainties in p
value calculations: conditioning, supremum, confidence interval, bootstrap (plug-in
and adjusted plug-in), fiducial, prior-predictive, and posterior-predictive. Here are
some trends:

• For a fixed observation, all the p values tend to increase as the uncertainty on
the background rate increases.

• Asymptotically, the supremum, adjusted plug-in, fiducial, and prior-predictive p
values seem to converge.

• There is quite a variation in uniformity properties under the null hypothesis, with
the fiducial p value showing remarkably good uniformity, followed closely by the
adjusted plug-in and supremum p values.

• Among the methods with the best uniformity properties, there is not much
difference in power. Only the prior-predictive p value seems to loose power faster
than the other p values at high ∆ν.

• Some methods are more general than others...
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SEARCHING FOR A RESONANCE

ON TOP OF A SMOOTH BACKGROUND
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The Delta-Chisquared Test Statistic

Suppose we measure a binned spectrum {y1, . . . , yn}, with Poisson statistics in each
bin:

Yi ∼ Poisson(µi),

where the means µi = µ(xi) are smooth functions of the bin locations xi and
depend on s unknown parameters pj, j = 1, . . . , s. We are interested in testing the
null hypothesis that s − r of these parameters are zero (0 < r < s):

H0 : pr+1 = pr+2 = . . . = ps = 0,

versus the alternative:

H1 : pi 6= 0 for at least one i ∈ {r + 1, . . . , s}.

Asymptotically, in the Gaussian limit of Poisson statistics, the likelihood ratio
statistic for this test is equivalent to a “delta-chisquared” statistic:

δX2 = min X2
∣

∣

H0
− min X2, where X2 =

n
∑

i=1

(yi − µi)
2

µi

is Pearson’s chisquared.
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Asymptotic Distribution of δX2

It is frequently assumed that the above likelihood ratio statistic is asymptotically
distributed as a χ2

s−r variate. However, there are some necessary conditions for this
to be true:

1. Parameter estimates that are substituted in the likelihood ratio must be consistent
under H0.

2. Parameter values in the null hypothesis must be interior points of the maintained
hypothesis (H0

⋃

H1).

3. There should be no nuisance parameters that are identified under the alternative
hypothesis but not under the null.

If for example condition 2 is violated, so that some null parameter values lie on
the boundary of the maintained hypothesis, then the asymptotic likelihood ratio
distribution will generally be a mixture of χ2

k distributions. Things can get much
worse if the other conditions are violated, in the sense that the resulting asymptotic
distribution of the likelihood ratio statistic may not be expressible in closed form.
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Searching for a Resonance

Consider now the problem of measuring a binned spectrum in which the expected
bin contents have the following form:

µ(x) = p1 + p2 x + p3 x2 + p4 G(x; p5, σ),

where G(x; p5, σ) is a Gaussian with mean p5 and known width σ. We wish to test

H0 : p4 = 0 versus H1 : p4 6= 0.

Note that p5 is a free parameter under both hypotheses.

What is the distribution of δX2 under H0?
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Example Spectrum
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Distribution of δX2 in a Resonance Search
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Nuisance Parameters Not Identified under the Null

What went wrong in the previous problem is that one of the fit parameters,
the Gaussian mean p5, is undefined under the null hypothesis that the Gaussian
amplitude p4 is zero. Although the experiments in the reference ensemble are
all generated under the null hypothesis, the fit to the alternative hypothesis still
produces an estimate for that mean, but it is not a consistent estimate. A parameter
such as p5 is often called “a nuisance parameter that is only present under the
alternative.”

There are several ways to solve this problem:

1. Lack-of-fit test

2. Full-fledged, finite-sample Monte Carlo calculation

3. Asymptotic Monte Carlo calculation

4. Semi-analytical upper bound on significance
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Choice of Test Statistic

The first question we need to address is the choice of test statistic for this non-
standard problem. Suppose ν is a nuisance parameter that is bounded between L
and U , and that is only present under the alternative. Let δX2(ν) be the likelihood
ratio statistic for fixed ν. Here are three possible ways to form test statistics that
are independent of ν:

1. SupLR ≡ sup
L≤ν≤U

δX2(ν),

2. AveLR ≡
∫ U

L

dν w(ν) δX2(ν),

3. ExpLR ≡ ln

∫ U

L

dν w(ν) exp
[

1
2 δX2(ν)

]

,

where w(ν) is a weight function that depends on the problem at hand and should
be chosen to optimize power against alternatives of interest. For the problem of
searching for a Gaussian resonance on top of a smooth spectrum these are two-sided
statistics; one-sided versions can be similarly defined.
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Monte Carlo Simulations

In order to calculate p values and power functions we need the distributions of these
statistics under H0 and H1. This can be done by generating large ensembles of
pseudo-experiments, fitting each pseudo-experiment to H0 and H1, calculating the
chisquared difference as a function of ν, and then integrating or maximizing over
ν. Needless to say, this is very CPU time consuming, not to mention the challenge
of coding a fitting routine that successfully deals with hundreds of thousands of
random datasets.

An alternative is to work with the asymptotic distributions of the test statistics
(just as is done with standard χ2 problems!) Although these distributions are not
known in closed form, they can be simulated much faster. It can be shown that,
asymptotically:

δX2(ν) ∼
[

n
∑

i=1

Di(ν)Zi

]2

where n is the number of bins in the spectrum, the Di are calculable functions of
ν, and the Zi are normal random numbers. This expression for δX2(ν) can then be
plugged into the definition of the desired statistic, SupLR, AveLR, or ExpLR.
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Power Functions of SupLR, ExpLR, AveLR

Example of power functions:
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Semi-Analytical Bounds on SupLR Tail Probabilities

Some semi-analytical bounds on the distribution of SupLR are available, e.g.:

IPr
{

SupLR1s > u
∣

∣

∣
H0

}

≤ 1

2

[

1 − erf

(
√

u

2

)]

+
K

2 π
e−u/2.
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EFFECT OF TESTING ON SUBSEQUENT INFERENCE
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Effect of Testing on Subsequent Inference

Suppose that new physics will manifest itself by some parameter µ being different
from zero, and we wish to test H0 : µ = 0. A standard procedure among
experimenters is the following:

(1) Test the null hypothesis H0 at the α0 = 5.7 × 10−7 significance level (5σ);

(2a) If H0 is not rejected, report an α1 = 95% confidence level upper limit on µ;

(2b) If H0 is rejected, report an α2 = 68% confidence level two-sided central
interval for µ.

Assuming that the upper limit and two-sided interval are computed by standard
frequentist methods, what is their coverage? The following plots show this for the
case where µ is the positive mean of a Gaussian population.
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Unconditional Coverage of the Standard Procedure
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Conditional Coverage of the Standard Procedure
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A Correct Conditional Procedure

It is impossible to save the unconditional coverage of the standard procedure.
However, correct conditional coverage is achievable. The hypothesis test can be
viewed as a partition of sample space into a critical region and its complement.
Therefore:

• Since we only compute a two-sided interval when the observation falls in the
critical region, the critical region is the whole sample space for the purpose of
computing the two-sided interval.

• Since we only compute an upper limit when the observation falls in the
complement of the critical region, that complement is the whole sample space
for the purpose of computing the upper limit.

The corresponding Neyman construction for a positive Gaussian mean is illustrated
on the following slide.
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Neyman Construction for the Conditional Procedure
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