THE AUTOMATED PHYSICIST EXPERIMENTAL PARTICLE PHYSICS IN THE ERA OF Al

Harrison B. Prosper Florida State University

Colloquium
Michigan State University, February 8, 2018

Outline

- A Very Brief History of ML/AI
- The State of the Art
- The Large Hadron Collider
- The Automated Physicist

A VERY BRIEF HISTORY OF ML/Al

Aristotle in the The School of Athens Raphael, 1509 Wikimedia Commons

384 B.C. to 322 B.C

Example:

$\mathbf{A}=$ She is a physicist $\quad \mathbf{B}=$ She is smart Major premise: If A is TRUE, then B is TRUE Minor premise: She is a physicist is TRUE
Conclusion: Therefore, She is smart is TRUE

Note, however, according to Aristotle, we cannot conclude that if She is smart is TRUE, She is a physicist is TRUE!

$$
A B=A, \quad A=1 \rightarrow B=1, \text { but } B=1 \rightarrow A=1
$$

Moveable type (Gutenberg Bible, 1456)

By NYC Wanderer (Kevin Eng) - originally posted to Flickr as Gutenberg Bible
$17^{\text {th }}$ century
Many philosophical ideas about knowledge, reason, and the nature of Man.
$18^{\text {th }}$ century

- 1763 - Thomas Bayes publishes important theorem.

$$
P(\boldsymbol{H} \mid \text { Data })=\frac{P(D \mid \boldsymbol{H}) P(\boldsymbol{H})}{P(\text { Data })}
$$

19th century
1801 - Joseph-Marie Jacquard invents first programmable machine.

A LA MEMOIRE DE J. M. JACQUARD.
Wikimedia commons

$19^{\text {th }}$ century

1832 - Charles Babbage designs first programmable calculator.

- 1854 - George Boole invents algebra of logic.

1890 US Census

Wikimedia commons

A Very Brief History

20 ${ }^{\text {th }}$ century ($1900-1950$)
1936 - Alan Turing proposes a universal computing machine.

- 1943 - Warren McCulloch and Walter Pitts invent neural networks (NN).
- 1950 - Turing Test, an operational definition of an artificially intelligent agent.

A Very Brief History

$20^{\text {th }}$ century (1950 - 2000)

Many important developments:
First industrial robot (George Devol's Unimate).
2. Development of specialized computer languages.
3. First robot able visually to locate and assemble objects (Edinburgh University).
4. Werbos invents backpropagation algorithm.
5. First autonomous robot rover on Mars (Sojourner, NASA, July 1997).

1997 World chess champion Gary Kasparov defeated by IBM's Deep Blue

Stan Honda/AFP/Getty Images

Computer Wins on 'Jeopardy!': Trivial, It's Not New York Times, Feb. 17, 2011

Carol Kaelson/Jeopardy Productions Inc., via Associated Press
Ken Jennings: "I felt obsolete"
TED Talk

Machine 4, Human 1

2016 - Google's DeepMind AlphaGo program beats Go champion Lee Sodol.

Photograph: Yonhap/Reuters

A Very Brief History of ML/AI

"Michigan State professors protest their replacement by iPhone 9000s"

New York Times, Feb. 8, 2078

MACHINE LEARNING: THE STATE OF THE ART

"That is positively the dopiest idea I have heard."
Richard Feynman, Thinking Machines Corporation, summer 1983.

The State of the Art

REVIEW

Deep learning

Yann LeCun ${ }^{1,2}$, Yoshua Bengio ${ }^{3}$ \& Geoffrey Hinton ${ }^{4,5}$

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

$$
f_{k}(x, w)=a_{k}+\sum_{j=1}^{H} b_{k j} h\left(c_{j}+\sum_{i=1}^{I} d_{j i} x_{i}\right)
$$

Deep Neural Networks

A deep neural network (DNN) with two "hidden" layers.

Deep Awakening

In 2006, University of Toronto researchers Hinton, Osindero, and Teh* developed a sophisticated practical method to train deep neural networks.

Geoffrey Hinton

* Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets, Neural Computation 18, 1527-1554.

But, it turns out that sophistication may be overrated*!

*Cirȩsan DC, Meier U, Gambardella LM, Schmidhuber J. ,
Deep, big, simple neural nets for handwritten digit recognition.
Neural Comput. 2010 Dec. 22 (12): 3207-20.

$(784,2500,2000,1500,1000,500,10)$

$\sqrt{1}$	7_{71}^{1}	$q_{98}^{8} g_{59}^{9}$	q_{79}^{9}	S_{35}^{5}	
49	3_{35}^{5}	$C_{97}^{4} e_{49}^{9}$	4_{94}^{4}		35
L_{16}^{6}	9_{94}^{4}	6006	86	η_{70}^{1}	71
	50		79	17	61
27	88 58	78	6_{65}^{5}	94	σ_{60}^{0}

Upper right: correct answer; lower left answer of highest DNN output; lower right answer of next highest DNN output.

Deep Neural Networks

Many of the breakthroughs in tasks such as face recognition use a DNN called a convolutional neural network (CNN).

Source: https://www.clarifai.com/technology http://yann.lecun.com/

Follow the Yellow Brick Road!

Giusti et al. treat the problem of trail navigation as a classification problem!

Data: 8 hours of 1920×1080 30fps video using 3 GoPro cameras.

IEEE Robotics and Automation Letters (Volume: 1, Issue: 2, July 2016)

ARTICLE

Mastering the game of Go without human knowledge

David Silver ${ }^{1 *}$, Julian Schrittwieser ${ }^{1 *}$, Karen Simonyan ${ }^{1 *}$, Ioannis Antonoglou ${ }^{1}$, Aja Huang ${ }^{1}$, Arthur Guez ${ }^{1}$, Thomas Hubert ${ }^{1}$, Lucas Baker ${ }^{1}$, Matthew Lai ${ }^{1}$, Adrian Bolton ${ }^{1}$, Yutian Chen ${ }^{1}$, Timothy Lillicrap ${ }^{1}$, Fan Hui ${ }^{1}$, Laurent Sifre ${ }^{1}$, George van den Driessche ${ }^{1}$, Thore Graepel ${ }^{1} \&$ Demis Hassabis ${ }^{1}$

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo's own move selections and also the winner of AlphaGo's games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

356 | NATURE | VOL 550 | 19 OCTOBER 2017

Generative Adversarial Networks

"Generative Adversarial Networks is the most interesting idea in the last ten years in machine learning"
Yann LeCun,
Chief Al Scientist, Facebook

Cumulative number of named GAN papers by month

Ian Goodfellow
OpenAI

MACHINE LEARNING: THE LARGE HADRON COLLIDER
"There are, therefore, agents in nature able to make the particles of bodies stick together by very strong attractions. And it is the business of experimental philosophy to find them out"

Sir Isaac Newton

Collision energy 13 TeV

Total stored energy 720 MJ

Collision rate 1 GHz
slength
26.7 km

The Large Hadron Collider

The Standard Model - 2018

Parameters of the Standard Model

Symbol	Description	Renormalization	Value
m_{e}	Electron mass		511 keV
m_{μ}	Muon mass		105.7 MeV
$m_{\text {T }}$	Tau mass		1.78 GeV
m_{u}	Up quark mass	$\mu_{\text {MS }}=2 \mathrm{GeV}$	1.9 MeV
$m_{\text {d }}$	Down quark mass	$\mu_{\text {Ms }}=2 \mathrm{GeV}$	4.4 MeV
$m_{\text {s }}$	Strange quark mass	$\mu_{\text {MS }}=2 \mathrm{GeV}$	87 MeV
$m_{\text {c }}$	Charm quark mass	$\mu_{\text {MS }}=m_{\mathrm{c}}$	1.32 GeV
$m_{\text {b }}$	Bottom quark mass	$\mu_{\text {Ms }}=m_{\mathrm{b}}$	4.24 GeV
$\underline{m}_{\mathrm{t}}$	Top quark mass	On-shell scheme	172.7 GeV
θ_{12}	CKM 12-mixing angle		$13.1{ }^{\circ}$
θ_{23}	CKM 23-mixing angle		$2.4{ }^{\circ}$
θ_{13}	CKM 13-mixing angle		0.2°
δ	CKM CP-violating Phase		0.995
g_{1} or g^{\prime}	$\mathrm{U}(1)$ gauge coupling	$\mu_{\mathrm{MS}}=m_{\mathrm{Z}}$	0.357
g_{2} or g	SU(2) gauge coupling	$\mu_{\mathrm{MS}}=m_{\mathrm{Z}}$	0.652
g_{3} or g_{s}	SU(3) gauge coupling	$\mu_{\mathrm{MS}}=m_{\mathrm{Z}}$	1.221
$\theta_{\text {QCD }}$	QCD vacuum angle		~ 0
v	Higgs VEV		246 GeV
$m_{\text {H }}$	Higgs mass		125 GeV

$21^{\text {st }}$ Century Physics

- Are the 19 parameters of the Standard Model random numbers, or can they be explained?
- What makes a top quark a top quark, an electron and electron, and a neutrino a neutrino?

Chris Quigg

- What is dark matter?
- What is dark energy?

THE AUTOMATED PHYSICIST

Machine Learning in Particle Physics

Evolution of the use of machine learning in physics:

- traditional: classification \& regression
- emerging: inference \& generation

Kyle Cranmer, ACAT 2017

Machine Learning in HEP, The Early Days

- 1988

Denby, Comp. Phys. Comm.49:429 (1988)

- 1990

Bhat, Lönnblad, Meier, Sugano, Snowmass; Lönnblad, Peterson, Rögnvaldsson, Phys. Rev. Lett. 65:1321 (1990)

- 1992 Peterson, CHEP 92, Denby, FERMILAB-CONF-92-269-E (1992)
- 1994 Bhat PC (for the DØ Collaboration), APS Meeting, Albuquerque, NM
- 1997 Moneti (CLEO Collaboration) Nuclear Physics B (Proc. Suppl.) 59:17 (1997)

Top Quark Mass (DØ, 1997)

mass $\quad=173.5 \pm 4.5 \mathrm{GeV}(172.4 \pm 0.5 \mathrm{GeV})$
signal $\quad=33 \pm 8$ events
background $=50.8 \pm 8.3$ events Pushpalatha Bhat, HBP

Observation of Single Top-Quark Production

V. M. Abazov, ${ }^{36}$ B. Abbott, ${ }^{74}$ M. Abolins, ${ }^{64}$ B.S. Acharya, ${ }^{29}$ M. Adams, ${ }^{50}$ T. Adams, ${ }^{48}$ E. Aguilo, ${ }^{6}$ M. Ahsan, ${ }^{58}$ G. D. Alexeev, ${ }^{36}$ G. Alkhazov, ${ }^{40}$ A. Alton, ${ }^{64, *}$ G. Alverson, ${ }^{62}$ G. A. Alves, ${ }^{2}$ L. S. Ancu, ${ }^{35}$ T. Andeen, ${ }^{52}$ M. S. Anzelc, ${ }^{52}$ M. Aoki, ${ }^{49}$ Y. Arnoud, ${ }^{14}$ M. Arov, ${ }^{59}$ M. Arthaud, ${ }^{18}$ A. Askew, ${ }^{48, \dagger}$ B. Asman, ${ }^{41}$ O. Atramentov, ${ }^{48, \dagger}$ C. Avila, ${ }^{8}$

CMS-PHO-EVENTS-2012-006

The Automated Physicist

- Automatically construct an algorithm to identify the particles from the main collision point.
- Automatically compress particle data (p_{T}, η, ϕ and identity) into a smaller set of numbers for further analysis.
- Automatically search for and characterize deviations between simulated and real data.
- Automatically construct summary reports.

McKinsey\&Company

MCKINSEY GLOBAL INSTITUTE

A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY

JANUARY 2017

EXECUTIVE SUMMARY
"Almost half the activities people are paid almost $\$ 16$ trillion in wages to do in the global economy have the potential to be automated by adapting currently demonstrated technology, according to our analysis of more than 2,000 work activities across 800 occupations."

McKinsey \& Company, A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY Executive Summary January 2017

