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A VERY BRIEF HISTORY OF
ML/AI



Aristotle in the
The School of Athens
Raphael, 1509

Wikimedia Commons

. m::‘;;_-w
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Example:

A = She is a physicist B = She is smart
Major premise: If Ais TRUE, then B is TRUE
Minor premise: She is a physicist is TRUE
Conclusion: Therefore, She is smart is TRUE

Note, however, according to Aristotle, we cannot conclude
that if She is smart is TRUE, She is a physicist is TRUE!

AB = A, A=1->B=1butB=1»A=1



oveable type (Gutenberg Bible, 1456
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By NYC Wanderer (Kevin Eng) - originally posted to Flickr as Gutenberg Bible



17t century

Many philosophical ideas about knowledge, reason,
and the nature of Man.

18t century

1763 — Thomas Bayes publishes important theorem.
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19t century

1801 — Joseph-Marie
Jacquard invents first
programmable machine.

Wikimedia commons



19t century

1832 — Charles Babbage designs first programmable
calculator.

1854 — George Boole invents algebra
of logic.

1875 -1864



Herman Hollerith
(1860 — 1929)

1890 US Census
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A Very Brief History

20t century (1900 — 1950)

1936 — Alan Turing proposes a universal computing
machine.

1943 — Warren McCulloch and Walter Pitts invent
neural networks (NN).

1950 — Turing Test, an operational definition of an
artificially intelligent agent.



A Very Brief History

20t century (1950 — 2000)
Many important developments:

First industrial robot (George Devol's Unimate).
Development of specialized computer languages.

First robot able visually to locate and assemble
objects (Edinburgh University).

Werbos invents backpropagation algorithm.

First autonomous robot rover on Mars (Sojourner,
NASA, July 1997).



1997 World chess champion Gary Kasparov defeated
by IBM’s Deep Blue

Stan Honda/AFP/Getty Images
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Computer Wins on ‘Jeopardy!’: Trivial, It's Not
New York Times, Feb. 17, 2011

ZKEWOY

Carol Kaelson/Jeopardy Productions Inc., via Associated Press

Ken Jennings: “| felt obsolete”
TED Talk
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Machine 4, Human 1

2016 — Google’s DeepMind AlphaGo program beats Go
champion Lee Sodol.

—

46 AphaGo  Lee Sedol
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A Very Brief History of ML/AI

“Michigan State professors protest their
replacement by iPhone 9000s”

New York Times, Feb. 8, 2078
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MACHINE LEARNING:
THE STATE
OF
THE ART



“That is positively the dopiest idea | have heard.”
Richard Feynman,
Thinking Machines Corporation, summer 1983.



The State of the Art

REVIEW

doi:10.1038/nature14539

Deep learning

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

436 | NATURE | VOL 521 | 28 MAY 2015
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Deep Neural Networks

A deep neural network (DNN) with two “hidden” layers.

input layer hidden layer 1 hidden layer 2 output layer
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Deep Awakening

In 2006, University of Toronto
researchers Hinton, Osindero,
and Teh* developed a
sophisticated practical method to
train deep neural networks.

Geoffrey Hinton
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* Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm
for deep belief nets, Neural Computation 18, 1527-1554.
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But, it turns out that sophistication may be overrated™!

*Ciresan DC, Meier U, Gambardella LM, Schmidhuber J.

Deep, big, simple neural nets for handwritten digit recognition.

Neural Comput. 2010 Dec. 22 (12): 3207-20.
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(784, 2500, 2000, 1500, 1000, 500, 10)

Upper right: correct answer; lower left answer of highest DNN output;

lower right answer of next highest DNN output.
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Deep Neural Networks

Many of the breakthroughs in tasks such as face recognition
use a DNN called a convolutional neural network (CNN).

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)

bird (0.02)

Source: https://www.clarifai.com/technology
http://yann.lecun.com/
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https://www.clarifai.com/technology
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Follow the Yellow Brick Road!

Giusti et al. treat the problem of trail navigation as a
classification problem!

Data: 8 hours of view direction
1920 x 1080 30fps
video using 3 GoPro
cameras.
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IEEE Robotics and Automation Letters ( Volume: 1, Issue: 2, July 2016 )
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http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7083369
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7419970

ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without
human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan'*, Ioannis Antonoglou', Aja Huang!, Arthur Guez!,
Thomas Hubert!, Lucas Baker!, Matthew Lai', Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hui!, Laurent Sifre',
George van den Driessche!, Thore Graepel' & Demis Hassabis!

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

356 | NATURE | VOL 550 | 19 OCTOBER 2017




Generative Adversarial Networks

“Generative Adversarial Networks is the most interesting
iIdea in the last ten years in machine learning”
Yann LeCun,

S e
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MACHINE LEARNING:
THE LARGE HADRON
COLLIDER



“There are, therefore, agents in nature able to make the
particles of bodies stick together by very strong
attractions. And it is the business of experimental
philosophy to find them out”

Sir Isaac Newton
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One Ring to rule them all,

Ci%l l.lﬁelsln el One Ring to find them, o
One Ring to bring them all

And in the darkness bind them.
Total stored energy

720 MJ '

Collision rate

Jorg Wenninger



The Standard Model — 2018
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Parameters of the Standard Model

Symbol Description Renormalization Value

Mg Electron mass 511 keV
m, Muon mass 105.7 MeV
m; Tau mass 1.78 GeV
m, Up quark mass tys = 2 GeV 1.9 MeV
my Down quark mass Uvus = 2 GeV 4.4 MeV
mq Strange quark mass Uus = 2 GeV 87 MeV
mg Charm quark mass Ums = Mg 1.32 GeV
m, Bottom quark mass Hms = My 4.24 GeV
my Top quark mass 172.7 GeV
01 CKM 12-mixing angle 13.1°

0,3 CKM 23-mixing angle 2.4°

013 CKM 13-mixing angle 0.2°

o) CKM CP-violating Phase 0.995
giorg’ U(1) gauge coupling Uvs = Mz 0.357

g, org SU(2) gauge coupling Uvs = Mz 0.652

g3 Or gs SU(3) gauge coupling Uvs = Mz 1.221

Oacp QCD vacuum angle ~0

vV Higgs VEV 246 GeV

my Higgs mass 125 GeV


http://www.wikiwand.com/en/MSbar_scheme
http://www.wikiwand.com/en/On-shell_scheme
http://www.wikiwand.com/en/CP_violation
http://www.wikiwand.com/en/Vacuum_angle

218t Century Physics

Are the 19 parameters of the Standard Model random
numbers, or can they be explained?

What makes a top quark a top quark, an electron and
electron, and a neutrino a neutrino?
Chris Quigg

What is dark matter?

What is dark energy?
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Evolution of the use of machine learning in physics:

e traditional: classification & regression

e emerging: inference & generation

Kyle Cranmer, ACAT 2017
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Machine Learning in HEP, The Early Days

o 1988

o 1990

o 1992

o 1994

o 1997

Denby, Comp. Phys. Comm.49:429 (1988)

Bhat, Lonnblad, Meier, Sugano, Snowmass;
Lonnblad, Peterson, Rognvaldsson, Phys. Rev.
Lett. 65:1321 (1990)

Peterson, CHEP 92, Denby, FERMILAB-
CONF-92-269-E (1992)

Bhat PC (for the D@ Collaboration), APS
Meeting, Albuquerque, NM

Moneti (CLEO Collaboration) Nuclear Physics
B (Proc. Suppl.) 59:17 (1997)



Top Quark Mass (D, 1997)

0.3

= 02
=
al
0.1
0130 140 150 160 170 180 190 200 210 220 230
Top quark mass hypothesis M (GeV)
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signal =33 £ 8 events

background = 50.8 = 8.3 events Pushpalatha Bhat, HBP
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week ending

PRL 103, 092001 (2009) PHYSICAL REVIEW LETTERS 28 AUGUST 2009

&4

Observation of Single Top-Quark Production

V.M. Abazov,*® B. Abbott,”* M. Abolins,** B.S. Acharya,” M. Adams,’® T. Adams,*® E. Aguilo,® M. Ahsan,® )
G.D. Alexeev,36 G. Alkhazov,40 A. Alton,®** G. Alverson,®” G. A. Alves,2 L.S. Ancu,35 T. Andeen,”> M. S. Anzelc,52
M. Aoki*’ Y. Arnoud.'* M. Arov.>® M. Arthaud.'® A Askew.*>" B. Asman.*' O. Atramentov.*>" C. Avila.®

(a) W+Jets Cross-Check Sample (b) tf Cross-Check Sample
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The Automated Physicist

Automatically construct an algorithm to identify the
particles from the main collision point.

Automatically compress particle data (pr,n, ¢ and

identity) into a smaller set of numbers for further analysis.

Automatically search for and characterize deviations
between simulated and real data.

Automatically construct summary reports.
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McKinsey&Company

A FUTURE THAT WORKS:

JANUARY 2017

EXECUTIVE SUMMARY
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“Almost half the activities people are paid almost $16 trillion
In wages to do in the global economy have the potential to
be automated by adapting currently demonstrated
technology, according to our analysis of more than 2,000
work activities across 800 occupations.”

McKinsey & Company,
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY
Executive Summary January 2017
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