In Search of New Physics or Why We Need to Talk More!

Harrison B. Prosper

Florida State University

WHEPP XIV, IIT Kanpur, India

10 December, 2015

Outline

- * Introduction
- * LHC Run I A Random Stroll
- * LHC Run II Early Results
- * Opportunities and Challenges
- * Final Remarks

Outline

***** Introduction

- * LHC Run I A Random Stroll
- * LHC Run II Early Results
- * Opportunities and Challenges

Introduction

- The discovery of the Higgs boson at the LHC was a remarkable achievement.
- * But, equally remarkable is the astonishing reaffirmation of the predictive power of the Standard Model.
- * The disappointing corollary is the complete absence of <u>compelling</u> evidence of new physics at the LHC, so far.
- * Nevertheless, there is still hope that we shall not be disappointed by the end of Run II.
- But, we could still be unlucky: finding no obvious resonances, but just a set of subtle spectral deviations.

Introduction

- Ordinarily, the remarkable level of agreement between observations and predictions should be cause for celebration.
- * But, that is not what we were hoping for in 2008!
- * Run II, however, has only just started, and hope remains a rational stance.
- * The fact that WHEPP is still going strong (XIV) suggests that many of you agree.

Outline

- * Introduction
- ***** LHC Run I A Random Stroll
- * LHC Run II Early Results
- * The LHC and Beyond Opportunities and Challenges

LHC Run I – A Random Stroll

Let "N" Thousand Flowers Bloom! $N \rightarrow \chi_0$

Compositeness

Large extra dimensions

Heavy neutrinos

Di-boson resonances

Di-jet resonances

Braneworlds

Microscopic black holes

Supersymmetry

Leptoquarks

Walking, crawling, semi-comatose Technicolor

Strings

Excited fermions

ATLAS SUSY Searches* - 95% CL Lower Limits AT								
Sta	itus: July 2015		1.4.	∠ miss	(c. um		5 5 5 5	$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	ε,μ,ι,γ	Jets	L _T	$\int \mathcal{L} dt$ [fb	$Mass IImit = \sqrt{s} = 7.1$	$\sqrt{s} = 8 \text{ TeV}$	Reference
sive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0} \text{ (compressed)} \\ \tilde{q}\tilde{g}, \tilde{q} \rightarrow q\ell\ell\ell_{1}^{\ell} \langle \ell \nu / \nu \nu \rangle \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{1} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\ell\ell_{1}^{\ell} \langle \ell / \ell \nu / \nu \nu \rangle \tilde{\chi}_{1}^{0} \\ \text{GMSB} \left(\ell \text{ NLSP} \right) \\ \end{array} $	$\begin{array}{c} 0.3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 2 \ e, \mu \ (off-Z) \\ 0 \\ 0.1 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau + 0.1 \ \ell \end{array}$	2-10 jets/3 <i>b</i> 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20 20 20 20.3	<i>ã</i> , <i>š</i>	1.8 TeV $m(\tilde{q})=m(\tilde{g})$ $m(\tilde{\chi}_{1}^{0})=0$ GeV, $m(1^{st} \text{ gen.} \tilde{q})=m(2^{nc})$ $m(\tilde{q})-m(\tilde{\chi}_{1}^{0})<10$ GeV $m(\tilde{\chi}_{1}^{0})=0$ GeV V $m(\tilde{\chi}_{1}^{0})=0$ GeV $m(\tilde{\chi}_{1}^{0})=300$ GeV, $m(\tilde{\chi}^{\pm})=0.5(m(\tilde{\chi}_{1}^{0})$ V $m(\tilde{\chi}_{1}^{0})=0$ GeV 1.6 TeV $\tan\beta > 20$	$(\bar{g} en. \bar{q}) = (\bar{q}) + m(\bar{g}) + m(\bar{g}) = (\bar{q}) + m(\bar{g}) + m(\bar{g}) = (\bar{q}) + m(\bar{g}) + m(\bar{g}) = (\bar{g}) = (\bar{g}) + m(\bar{g}) = (\bar{g}) = (\bar{g}) = (\bar{g}) + m(\bar{g}) = (\bar{g}) = (\bar{g})$
Inclui	GGM (higgsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGA (higgsino NLSP) 2 Gravitino LSP	2γ γ γ $2 e, \mu (Z)$ 0	1 <i>b</i> 2 jets 2 jets mono-jet	Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3	g 1.29 le g 1.3 Te ĝ 1.25 TeV ĝ 1.25 TeV ĝ 850 GeV F ^{1/2} scale 865 GeV	V $m(\tilde{x}_1^0) < 900 \text{ GeV}, cr(NLSP) < 0.1 \text{ m}$ m $(\tilde{x}_1^0) < 850 \text{ GeV}, cr(NLSP) < 0.1 \text{ m}$ m $(NLSP) > 430 \text{ GeV}$ m $(\tilde{\alpha}) > 1.8 \times 10^{-4} \text{ eV}, m(\tilde{g}) = m(\tilde{q}) =$	1507.05493 nm, μ<0
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{1} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ĝ 1.25 TeV ĝ 1.1 TeV ĝ 1.34 Te ĝ 1.3 Te	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) < 400 \ {\rm GeV} \\ m(\tilde{\chi}_{1}^{0}) < 350 \ {\rm GeV} \\ {\rm eV} \qquad m(\tilde{\chi}_{1}^{0}) < 400 \ {\rm GeV} \\ {\rm V} \qquad m(\tilde{\chi}_{1}^{0}) < 300 \ {\rm GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \! \rightarrow \! b \tilde{\chi}_{1}^{0} \\ & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \! \rightarrow \! t \tilde{\chi}_{1}^{\pm} \\ & \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \! \rightarrow \! t \tilde{\chi}_{1}^{\pm} \\ & \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \! \rightarrow \! b \tilde{\chi}_{1}^{\pm} \\ & \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \! \rightarrow \! b \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1}, \tilde{i}_{1} \! \rightarrow \! c \tilde{\chi}_{1}^{0} \\ & \tilde{i}_{1} \tilde{i}_{1} (\text{natural GMSB}) \\ & \tilde{i}_{2} \tilde{i}_{2}, \tilde{i}_{2} \! \rightarrow \! \tilde{i}_{1} \! + Z \end{split} $	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \ (\text{O}) \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 b nono-jet/c-ta 1 b 1 b	Yes Yes Yes 4. b Yes g Yes Yes Yes	20.1 20.3 .7/20.3 20.3 20.3 20.3 20.3	⁶ 1 ¹⁰⁰⁻⁶²⁰ GeV ⁶ 1 ⁶ 1 ⁶ 1 ⁶ 1 ⁶ 1 ⁷ 1 ¹¹⁰⁻⁶⁷ GeV ²³⁰⁻⁴⁶⁰ GeV ⁷ 1 ⁹⁰⁻¹⁹¹ GeV ⁹⁰⁻²⁴⁰ GeV ⁷ 1 ¹⁵⁰⁻⁵⁸⁰ GeV ⁷ 2	$\begin{split} &m(\tilde{\chi}_{1}^{0}){<}90~GeV \\ &m(\tilde{\chi}_{1}^{+}){=}2~m(\tilde{\chi}_{1}^{0}) \\ &m(\tilde{\chi}_{1}^{0}){=}~Im(\tilde{\chi}_{1}^{0}){=}~Im(\tilde{\chi}_{1}^{0}){=}~IS5~GeV \\ &m(\tilde{\chi}_{1}^{0}){=}1~GeV \\ &m(\tilde{\chi}_{1}){=}~IS6~GeV \\ &m(\tilde{\chi}_{1}^{0}){>}~IS0~GeV \\ &m(\tilde{\chi}_{1}^{0}){<}~200~GeV \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \bar{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\bar{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\bar{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{1}, h \rightarrow b \tilde{b} / W W / \tau \bar{\iota} \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \end{array} $ GGM (wino NLSP) weak prod.	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ -/γγ e, μ, γ 4 e, μ 1 e, μ + γ	0 0 - 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV \$\vec{1}{1}^{+}\$ 140-465 GeV \$\vec{1}{1}^{+}\$ 100-350 GeV \$\vec{1}{1}^{+}\$,\$\vec{1}{2}\$ 700 GeV \$\vec{1}{1}^{+}\$,\$\vec{1}{2}\$ 420 GeV \$\vec{1}{1}^{+}\$,\$\vec{1}{2}\$ 250 GeV \$\vec{1}{2}^{+}\$,\$\vec{1}{2}\$ 620 GeV \$\vec{1}{2}^{+}\$ 124-361 GeV	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0 \; GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0 \; GeV, \; m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\ell}_{1}^{+}){+}) \\ & m(\tilde{\chi}_{1}^{0}){=}0 \; GeV, \; m(\tilde{\tau}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; m(\tilde{\ell}, \tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; sleptons \\ & m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{1}^{0}){=}0, \; sleptons \\ & m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_{2}^{0}), \; m(\tilde{\chi}_{2}^{0}){=}m(\tilde{\chi}_$	$\begin{array}{c} 1403.5294 \\ +m(\tilde{\chi}_1^0)) & 1403.5294 \\ +m(\tilde{\chi}_1^0)) & 1407.0350 \\ +m(\tilde{\chi}_1^0)) & 1402.7029 \\ decoupled \\ decoupled \\ decoupled \\ t501.07110 \\ -m(\tilde{\chi}_1^0)) & 1405.5086 \\ 1507.05493 \end{array}$
Long-lived particles	$\begin{array}{l} \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}~\tilde{\chi}\\ \text{Direct}~\tilde{\chi}_1^+\tilde{\chi}_1^- \text{ prod., long-lived}~\tilde{\chi}\\ \text{Stable, stopped}~\tilde{g} \text{ R-hadron}\\ \text{Stable}~\tilde{g} \text{ R-hadron}\\ \text{GMSB, stable}~\tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau(\tilde{e}, \tilde{\mu}) {+} \tau(\tilde{e}$	$ \begin{array}{c} \stackrel{\scriptscriptstyle \pm}{\underset{\scriptstyle 1}{\overset{\scriptstyle \pm}}} & \text{Disapp. trk} \\ & \text{dE/dx trk} \\ & 0 \\ & \text{trk} \\ e, \mu) & 1-2\mu \\ & 2\gamma \\ & \text{displ. } ee/e\mu/\mu \\ & \text{displ. } vtx + jet \end{array} $	1 jet - 1-5 jets - - - μ - s -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	\$\$\vec{1}{1}\$ 270 GeV \$\$\vec{1}{1}\$ 482 GeV \$\$\vec{2}{3}\$ 832 GeV \$\$\vec{2}{3}\$ 537 GeV \$\$\vec{1}{4}\$ 435 GeV \$\$\vec{1}{4}\$ 1.0 TeV \$\$\vec{1}{4}\$ 1.0 TeV	$ \begin{array}{c} m(\tilde{x}_{1}^{*})-m(\tilde{x}_{1}^{0})\sim\!160 \; MeV, \tau(\tilde{x}_{1}^{*})=\!0. \\ m(\tilde{x}_{1}^{*})-m(\tilde{x}_{1}^{0})\sim\!160 \; MeV, \tau(\tilde{x}_{1}^{*})<\!18 \\ m(\tilde{x}_{1}^{0})=\!100 \; GeV, 10 \mus\!<\!\tau(\tilde{g})\!<\!100 \\ 10\!<\!tan\beta\!<\!50 \\ 2\!<\!\tau(\tilde{x}_{1}^{0})\!\cdot\!3 \; ns, SPS8 \; model \\ 7 <\!\tau(\tilde{x}_{1}^{0})\!\cdot\!3 \; ns, m(\tilde{g})\!=\!1.3 \; Te \\ 6 <\!c\tau(\tilde{x}_{1}^{0})\!<\!480 \; mm, m(\tilde{g})\!=\!1.1 \; Te \\ \end{array} $	2 ns 1310.3675 5 ns 1506.05332 00 s 1310.6584 1411.6795 1411.6795 1409.5542 eV 1504.05162 eV 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{\nu}_{\mu}, e\mu\tilde{\nu}_{t},$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau\tau\tilde{\nu}_{e}, e\tau\tilde{\nu}_{\tau},$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{q}\tilde{q}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$\begin{array}{c} e\mu, e\tau, \mu\tau \\ 2 e, \mu (SS) \\ 4 e, \mu \\ 3 e, \mu + \tau \\ 0 \\ 2 e, \mu (SS) \\ 0 \\ 2 e, \mu (SS) \\ 0 \\ 2 e, \mu (SS) \end{array}$	0-3 <i>b</i> 6-7 jets 6-7 jets 0-3 <i>b</i> 2 jets + 2 <i>b</i>	- Yes Yes - - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_{+}\$ 1.35 T \$\vec{v}_{1}\$ 750 GeV \$\vec{v}_{1}\$ 450 GeV \$\vec{v}_{1}\$ 917 GeV \$\vec{v}_{2}\$ 870 GeV \$\vec{v}_{1}\$ 850 GeV \$\vec{v}_{1}\$ 100-308 GeV	1.7 TeV $\lambda'_{311}=0.11, \lambda_{132/133/233}=0.07$ $\mathbf{m}(\tilde{q})=\mathbf{m}(\tilde{g}), cr_{LS} < 1 \text{ mm}$ $\mathbf{m}(\tilde{\chi}_{1}^{0})>0.2\times\mathbf{m}(\tilde{\chi}_{1}^{1}), \lambda_{121}\neq 0$ $\mathbf{m}(\tilde{\chi}_{1}^{0})>0.2\times\mathbf{m}(\tilde{\chi}_{1}^{1}), \lambda_{133}\neq 0$ $\mathbf{B}(c)=\mathbf{B}(b)=\mathbf{B}(c)=0\%$ $\mathbf{m}(\tilde{\chi}_{1}^{0})=600 \text{ GeV}$ $\mathbf{B}(\tilde{c}, \rightarrow bc/\nu)>20\%$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-026
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV	$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*00	v a selection of the availab	ole mass limi	te on now	etator	1	-1 1 1	Mass scale	

Searching for Resonances

Resonances, such as

- * excited quarks
- * W and Z primes
- * Randall-Sundrum gravitons
- * Axigluons,

to name but a few, are a generic prediction of many models of beyond the SM physics.

A systematic search for resonances should be a priority.

Searching for Resonances

A (Cautionary) Tale of Resonances

 Today, no discovery in our field is more convincing than observing a peak, especially if narrow, on top of a smooth monotonic background.

* But, we should tread carefully...

Resonances That Aren't!

H1 6σ pentaquarks hep-ex/0403017

CDF 4 σ dijet bump http://arxiv.org/abs/1104.0699

And Resonances That Are!

CMS, ATLAS, Higgs boson, $> 5\sigma$

A (Cautionary) Tale of an Excess

 CMS and ATLAS measured a cross section ~20% higher than the NLO SM prediction.

 This exciting result triggered a frenzy of speculation: arXiv:1406.0848 arXiv:1406.0858 arXiv:1407.4912, etc.

A (Cautionary) Tale of an Excess

- * My colleagues Jaiswal and Okui (arXiv:1407.4537), and Meade, Ramani, and Zeng (arXiv:1407.4537) noted that the jet veto cut $p_T > p_{T,veto}$, used by ATLAS and CMS to reduce background from top quark production, renders the NLO calculation inaccurate because terms like $log^n(M/p_{T,veto})$ now need to be included. Improved calculations brought better agreement.
- Finally, a NNLO calculation of the WW cross section (Phys. Rev. Lett. 113, 212001 (2014)) is found to agree with the measurements:

So How Sure is Sure Enough?

Our field uses a rigid 5σ rule to claim a discovery. But, is this sensible?

Louis Lyons argues perhaps not: <u>http://arxiv.org/pdf/1310.1284v1.pdf</u>.

The point is whether you accept a statistically significant hypothesis H_1 depends on your prior opinion (π) about that hypothesis:

 $\frac{p(H_1 \mid data)}{p(H_0 \mid data)} = \frac{p(data \mid H_1)}{p(data \mid H_0)} \frac{\pi_1}{\pi_0}$

So How Sure is Sure Enough?

http://arxiv.org/pdf/1310.1284v1.pdf

Search	Degree of	Impact	LEE	Systematics	Number
	surprise				of σ
Higgs conrob	Modium	Vory high	Mass	Modium	5
Single top	No	Low	No	No	3
5051	res	very nign	very large	res	(
B_s oscillations	Medium/low	Medium	Δm	No	4
Neutrino oscillations	Medium	High	$sin^2(2\theta), \Delta m^2$	No	4
$B_s \rightarrow \mu \mu$	No	Low/Medium	No	Medium	3
Pentaquark	Yes	High/very high	M, decay mode	Medium	7
$(g-2)_{\mu}$ anomaly	Yes	High	No	Yes	4
H spin $\neq 0$	Yes	High	No	Medium	5
A^{th} generation $a \downarrow \nu$	Ves	High	M_mode	No	6
$\mathrm{v}_{ u} > \mathrm{c}$	Enormous	Enormous	No	Yes	>8
Dark matter (direct)	Medium	ingh	Medium	105	0
Dark energy	Yes	Very high	Strength	Yes	5
Grav waves	No	High	Enormous	Yes	7

or Clapping With One Hand!

Looking for "nothing" recoiling against something (X = e.g., a jet).

Example: 8 TeV ATLAS mono-jet search (1502.01518, 15 Sep 2015) imposed the requirements

 $p_{Tj} > 30 \text{ GeV}, |\eta_j| < 4.5$ $p_{T1} > 120 \text{ GeV}, |\eta_{j1}| < 2.0, p_{T1} / E_T^{mis} > 0.5$ $\Delta \varphi(\text{jet}, \vec{p}_T^{miss}) > 1.0$

to select mono-jet like events.

All backgrounds (single-boson, di-boson, top quark) are <u>simulated</u>, except for multi-jets and non-collision events, which are estimated using data-driven methods.

ATLAS 1502.01518, 15 Sep 2015

27

Outline

- * Introduction
- * LHC Run I A Random Stroll
- ***** LHC Run II Early Results
- * Opportunities and Challenges

Early Commissioning Results

ATLAS@13 TeV: Breathtaking!

Resonance Searches – Round 2

CMS search for a narrow resonance in dijet mass spectrum $p_T > 30 \text{ GeV}$ $|\eta_j| < 2.5$ $|\Delta \eta_{jj}| > 1.3$ $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 1.1$

Background modeled with $\frac{d\sigma}{m_{jj}} = p_1 (1-x)^{P_2} x^{-P_3}$

Resonance Searches – Round 2

- As expected, this search can be used to set limits on many models:
- But, yet again, the Standard Model reigns supreme!

A 2.9 TeV Di-Electron Event

$p_{T1} = 1.28 \text{ TeV}, \eta_1 = -1.31, \phi_1 = 0.42$

 $p_{T2} = 1.26 \text{ TeV}$ $\eta_2 = -1.24,$ $\phi_2 = -2.74$ Expected
background

above 2 TeV 0.007 events

Outline

- * Introduction
- * LHC Run I A Random Stroll
- * LHC Run II Early Results
- *** Opportunities and Challenges**

Year

- The upgraded LHC and its amazing detectors provide the best chance we have to move the field significantly forward.
- * The opportunities for young physicists to make lasting contributions are enormous. They are so precisely because of the many challenges we must face!

* Take, for example, pileup:

At $L \sim 1.3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, find ~140 vertices spread over 5 cm!

$$\mu = \frac{\sigma_{tot}L}{n_b f}$$

 μ average number of events/bunch crossing σ_{tot} total inelastic cross sectionLluminosity n_b number of bunchesfbunch collision frequency

A Few Experimental Challenges

- * Handle data storage at the rate of 6 gigabytes/second
- * Trigger efficiently, even at low thresholds
- * Mitigate the effects of pileup
- * Efficient identification of boosted W, Z, Higgs, top
- * Efficient identification of b jets and taus
- * High fidelity, yet fast, detector simulation
- Automatic search for deviations from SM

A Couple of Theoretical Physics Challenges (my wish list!)

- Fully automatic high precision predictions for hundreds of SM <u>exclusive</u> final states.
- * Precise calculation of multijet cross sections, finally!

- * Where does our field want to be in 2050?
- * We want to be in possession of the New Standard Model.
- * However, for that to happen, two things are <u>necessary</u>:
 - * We must discover new physics, and
 - * we must significantly narrow the divide between theorists and experimentalists: We Need To Talk More.
- * But, for the latter to happen, a major cultural shift will be necessary.

Final Remarks

The Standard Model – a complicated Heath Robinson edifice ingeniously put together by brilliant architects and builders – is to be celebrated as a truly magnificent achievement.

But the NSM will be even more extraordinary.

William Heath Robinson 1872 – 1944

