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Many Thanks!Many Thanks!

The lectures benefited from several useful comments from 
my colleagues on the CMS Statistics Committee, in 
particular,  from Bob Cousins and Luc Demortier.
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A Short (!) Reading ListA Short (!) Reading List
h Books

h A. O’Hagan, Kendall’s Advanced Theory of Statistics, Volume 2B: 
Bayesian Inference, Oxford University Press (1994)

h L. J. Savage, The Foundations of Statistics, Wiley (1954)
h D.S. Sivia and J. Skilling, Data analysis: A Bayesian Tutorial, 2nd ed., 

Oxford University Press (2006) 
h H. Jeffreys, Theory of Probability, 3rd edition, Oxford University Press 

(1961)
h G.E.P. Box and G.C. Tiao, Bayesian Inference In Statistical Analysis, 

John Wiley & Sons (1992)
h E.T. Jaynes and L. Bretthorst, Probability Theory, the Logic of Science, 

Cambridge University Press (2003); 
http://omega.math.albany.edu:8008/JaynesBook.html

h S.K. Chatterjee, Statistical Thought: A Perspective and History, Oxford 
University Press (2003)

Blue – A good starting point

http://omega.math.albany.edu:8008/JaynesBook.html
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A Short (!) Reading ListA Short (!) Reading List
h Articles

h R.T. Cox, Probability, Frequency, and Reasonable Expectation, Am. J. 
Phys. 14, 1 (1946)

h D. Heath and W. Sudderth, de Finnetti’s Theorem on Exchangeable 
Variables, Am. Stat. 30 (4), 188 (1976)

h R.E. Kass and L. Wasserman, The Selection of Prior Distributions by 
Formal Rules, J. Amer. Statist. Assoc., 91, 1343 (1996)

h J. Bernardo, Select Recent Papers, 
http://www.isds.duke.edu/research/conferences/valencia/publications.html

h J. Berger, http://www.stat.duke.edu/~berger/papers.html
h L. Daston, How Probability Came To Be Objective And Subjective, Hist. 

Math. 21, 330 (1994)
h C.M. Caves, Probabilities as betting odds and the Dutch book, 

http://info.phys.unm.edu/~caves/reports/dutchbook.pdf
h H.B. Prosper, Small Signal Analysis in High-Energy Physics: A Bayesian 

Approach, Phys. Rev. D37, 1153 (1988)
h R.D. Cousins, Why Isn’t Every Physicist A Bayesian?, Am. J. Phys. 63, 

398 (1995)
h L. Demortier, Objective Bayesian Upper Limits for Poisson Processes, 

http://physics.rockefeller.edu/~luc/technical_reports/cdf5928_objective_b
ayes_ul.pdf (2005)

http://www.isds.duke.edu/research/conferences/valencia/publications.html
http://www.stat.duke.edu/~berger/papers.html
http://info.phys.unm.edu/~caves/reports/dutchbook.pdf
http://physics.rockefeller.edu/~luc/technical_reports/cdf5928_objective_bayes_ul.pdf
http://physics.rockefeller.edu/~luc/technical_reports/cdf5928_objective_bayes_ul.pdf
http://physics.rockefeller.edu/~luc/technical_reports/cdf5928_objective_bayes_ul.pdf
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Points to NotePoints to Note

hThese lectures are a follow-up to the broad introduction 
given by Bob Cousins some weeks ago. The goal of these 
lectures is to provide a distillation of some key ideas found 
in the short reading list.

hHowever, from time to time, I shall feel compelled to 
inject my own viewpoint!

hThe symbol ☺, at the start of a comment, signals a point of 
view I share, which is not necessarily endorsed by my 
colleagues on the CMS Statistics Committee.
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OutlineOutline

hLecture 1 – Foundations
hHistorical Sketch
hProbability
hDegrees of Belief
hAvoiding Sure Loss
hExchangeability

hThe Bayesian Approach

hLecture 2 – Foundations & Applications
hLecture 3 – Applications
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Historical SketchHistorical Sketch

Before the 1850s, it was taken as self-evident by most 
mathematicians and scientists (e.g., Bayes, Bernoulli, 
Pascal, Poisson, Laplace, Lagrange, Maxwell,...) that 
chance and probability were quite distinct notions:

1. chance is a demonstrable property of the world: it is the 
unpredictability of certain outcomes, such as getting a six 
in the throw of a dice, while

2. probability is a measure of the degree of belief in 
propositions whose truth cannot be decided conclusively, 
given the limited information at hand. 
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Historical SketchHistorical Sketch

In the late 19th century, following the work of John Venn, 
George Boole and others, and continuing into the early 
20th century with the groundbreaking work of Fisher and 
Neyman to name but two, the view of probability as the 
limit, in some sense, of a relative frequency came to 
dominate statistical thinking.

Then in the 2nd half of the 20th century, following pioneering 
work in the 1930s, 1940s and 1950s by Jeffreys, de 
Finetti, Savage and others, the interpretation of 
probability as a measure of degree of belief was revived.



ProbabilityProbability
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ProbabilityProbability

In 1933, the Soviet mathematician Andrey Kolmogorov
created an axiomatic theory of probability comprising three 
elements: a set Ω, its subsets (specifically, a σ-algebra**) 
and a measure*, P, called probability, that satisfies the 
axioms: 

1 2

1: ( ) 0
2 : ( ) 1
3: ( ...) ( ), if 0,i i j

i

P A
P
P A A P A A A i j

≥
Ω =

+ + = ⋅ = ∀ ≠∑

* A measure is a function that assigns a magnitude to a set.
** A set of subsets of Ω, their complement and their union.
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Kolmogorov.html

1903 – 1987
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Degrees of BeliefDegrees of Belief

Consider the propositions, labeled A and B: 
A = Obama will win in 2012
B = Pallin will win in 2012

We assume the following is possible, at least in principle: to 
each proposition a number can be assigned that quantifies 
the degree to which the proposition is thought to be 
plausible. These numbers are usually referred to as 
degrees of belief. 

A priori, there is no obvious reason why these numbers 
should have anything to do with probability. However,…
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Degrees of BeliefDegrees of Belief

…several different lines of reasoning conclude that degrees of 
belief, b, follow rules 
1. b(A) ≥ 0
2. b(A) = 1 if A is true
3. b(A) = 0 if A is false
Sum Rule
4. b(A+B) = b(A) + b(B) if AB is false*
Product Rule
5. b(AB) = b(A|B) b(B)*
that are the same as those of probability. Therefore, we are 
at liberty to interpret probability as degree of belief, that is, 
to make the identification P = b.

*A+B = A or B, AB = A and B, A|B = A given that B is true



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 13

The Cox AxiomsThe Cox Axioms

One line of reasoning is due to the physicist Richard Cox 
who, in 1946, proposed axioms akin to the following

Axiom 1 Degrees of belief can be ordered
Axiom 2 b(A) and b(~A) are related
Axiom 3 b(AB), b(A|B) and b(B) are related

Axiom 1 is of course an idealization. After all, it is doubtful 
that a real person given a large set of propositions would 
be able to order them consistently according to his or her 
perceived degree of belief in each. 
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The Cox AxiomsThe Cox Axioms

Since, by assumption, degrees of belief can be ordered, they 
can be represented by real numbers b. Cox, and others, 
showed that after a suitable rescaling of the degrees of 
belief, they obey the same rules as those of probability. 

The theory is completed by incorporating the axioms of the 
algebra of  propositions, Boolean algebra

A+0 = A A1 = A
A+~A = 1 A~A = 0
A+B = B + A AB = BA
A+BC = (A+B)(A+C) A(B+C)= AB+AC
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BayesBayes’’ Theorem Theorem 

Note that AB = BA. Therefore, the product rule
P(AB) = P(A|B) P(B) 

yields
P(BA) = P(B|A) P(A) 

But, since P(AB) = P(BA)
Bayes’ Theorem

P(B|A) = P(A|B) P(B) / P(A)
follows immediately. 

Note also that setting B = ~A in the sum rule and using the 
fact that the proposition A + ~A is identically true yields 

P(A) + P(~A) = 1
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Avoiding Sure LossAvoiding Sure Loss

Another interesting set of arguments about probability were 
developed by Bruno de Finetti, who proposed the 
following operational definition of probability:

If you are rational and you are willing to forfeit an amount 
X in the hope you may gain an amount Y, then your degree 
of belief in proposition A, that is, the probability P(A) you 
assign to it, is defined to be

P(A) = X / Y
Net gain if A is true: G = Y – X = [1 – P(A)]Y
Net gain if A is false: G = –X = – P(A) Y
Note,  since, by assumption, you are rational, P(A) ≤ 1.
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Avoiding Sure LossAvoiding Sure Loss

Example 1
Consider propositions A, B and A+B, where A and B are 
mutually exclusive, that is, AB is false:

A Obama will win in 2012
B Pallin will win in 2012
A + B Obama or Pallin will win in 2012

You assign probabilities P(A), P(B) and P(A+B) and forfeit 
the amounts P(A) YA, P(B) YB and P(A+B)YA+B, 
respectively, in view of potential gains YA, YB and YA+B. 
Think of these as bets on the outcomes!
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Avoiding Sure LossAvoiding Sure Loss

Example 1
The three possible outcomes and your three possible net gains 

are:

1. A is true and B is false, yielding a net gain for you of 
G1 = [1 – P(A)]YA – P(B) YB + [1 – P(A+B)]YA+B

2. A is false and B is true, yielding a net gain for you of
G2 = – P(A)YA + [1– P(B)] YB + [1 – P(A+B)]YA+B

3. A is false and B is false, yielding a net gain for you of
G3 = – P(A)YA – P(B) YB – P(A+B)YA+B
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Avoiding Sure LossAvoiding Sure Loss

Example 1
Now suppose you have no control over the values of the gains 

YA, YB, YA+B. Then it is possible for an unscrupulous 
agent to chose them so as to guarantee you suffer a loss, 
whatever the actual outcome! 
This scam is called a Dutch book.

The scam can be thwarted, however, provided that you assign 
probabilities such that no solution, YA, YB, YA+B, exists to 
the gain equations

G1 = [1 – P(A)]YA – P(B) YB + [1 – P(A+B)]YA+B
G2 = – P(A)YA + [1– P(B)] YB + [1 – P(A+B)]YA+B
G3 = – P(A)YA – P(B) YB – P(A+B)YA+B
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Avoiding Sure LossAvoiding Sure Loss

Example 1
The gain equations 

G1 = [1 – P(A)]YA – P(B) YB + [1 – P(A+B)]YA+B
G2 = – P(A)YA + [1– P(B)] YB + [1 – P(A+B)]YA+B
G3 = – P(A)YA – P(B) YB – P(A+B)YA+B,

which can be written as a matrix equation
G = P Y,

will have no solutions if the determinant, |P|, of the matrix P 
is forced to be zero. The condition |P| = 0, yields 

P(A+B) = P(A) + P(B).
Analogous reasoning, yields the other probability rules. 
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ExchangeabilityExchangeability

Consider a sequence of trials, each with only two possible 
outcomes: success or failure. Such trials are called 
Bernoulli trials.

A near perfect example of such trials are the ones we are about 
to start at the LHC: proton-proton collisions in which a 
success could be an event not described by the Standard 
Model.

Suppose we observe a sequence (k, n) of k successes in n trials.

…
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ExchangeabilityExchangeability

What is the probability to get the sequence (k, n)?
This cannot be answered in general. However, in the 1930s, 

de Finetti studied the consequences of imposing the 
following two conditions:

1. The order of any pair of trials can be exchanged without 
changing the probability of the sequence of outcomes.

2. The sequence (k, n) can be embedded in a longer sequence 
(r, m) whose length can be made arbitrarily long. The 
unknown relative frequency of success is z = r / m.

de Finetti called these two properties exchangeability.

…
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ExchangeabilityExchangeability

The assumption of exchangeability forces all sequences (k, n) 
to be assigned the same subjective probability P(k, n). 

Exchangeability further implies that we can expand 
P(k, n) as follows

for arbitrarily large m, where P(r, m) is the subjective
probability assigned to the longer sequence (r, m), or, 
equivalently, to the unknown relative frequency z = r / m.

…

0
( , ) ( , | , ) ( , )

m

r
k k r rP n P n m P m

=

= ∑
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ExchangeabilityExchangeability

As m goes to infinity, the probability P(k, n|r, m) → zk (1 – z)k,
where z = r / m. Likewise, the probability P(r, m) = P(zm, m) 

coalesces into the subjective prior density π(z). 
Finally, when one accounts for the number of possible 

distinguishable sequences (k, n), one arrives at de Finetti’s
celebrated representation theorem

…

0
( , ) ( , | , ) ( , )

m

r
k k r rP n P n m P m

=

= ∑

1

0
( | ) ( , ) Binomial( | , ) ( )k k k

n
P n P n n z z dz

k
π

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫
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ExchangeabilityExchangeability

If we know for certain that the relative frequency is z = p, or 
we have a prediction of it, then we can set 

π(z) = δ(z – p)

in which case the representation theorem reduces to the 
binomial distribution

P(k | n, p) = Binomial(k | n, p)

…
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CommentsComments

Bayesian methods are based on the subjective interpretation
of probability, that is, on the interpretation we have just 
sketched. 

But Bayesians come in many flavors of which the most 
pungent are:

1. Subjective Bayes
and

2. Objective Bayes
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CommentsComments

Subjective Bayes
Every probability should be the actual degree of belief of a 
real person. If the degree of belief of a person can be 
elicited accurately this approach is coherent in the sense of 
avoiding sure loss. The coherence may not persist, 
however, when the inevitable short-cuts and 
approximations enter an analysis.

☺ But, coherence requires only that degrees of belief obey the 
rules of probability strictly. 

☺ The stipulation that all degrees of belief be those of a real 
person does not follow from the probability rules. A better 
name for this approach is: Personalistic Bayes (Savage).
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CommentsComments

Objective Bayes
Degrees of belief can be the actual ones of real persons as 
well as those that approximate the degrees belief of an 
ideal reasoner whose knowledge, with respect to some 
aspects of the problem, is minimal. Since the ideal reasoner
is an abstraction, elicitation of degrees of belief must be 
replaced by assessment using formal rules. 

However, the choice of rules is a matter of judgment. 
Moreover, they tend to yield degrees of belief that are not
probabilities. Consequently,  coherence has to be checked 
on a case by case basis. 
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CommentsComments

☺ Probability provides a model of reasoning in the face of 
uncertainty. However, numerous psychological studies 
demonstrate that human beings follow a much more 
complex model that appears, in part, to be irrational*.

☺ Probability therefore should be regarded as a normative
model: it tells us how we ought to reason when faced with 
uncertainty, not how we actually reason.  

☺ I do not like the terms subjective and objective Bayes. 
The former is akin to speaking of wet water, while the 
latter is an oxymoron!
*See for example, New Scientist, Vol 199 No 2666, 26 July, 2008.



The Bayesian ApproachThe Bayesian Approach
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The Bayesian ApproachThe Bayesian Approach

Definition:
A method is Bayesian if 

1. it is based on probability interpreted as degrees of 
belief and

2. it uses Bayes’ theorem
P(B|A) = P(A|B) P(B) / P(A)

In practice, the form of Bayes’ theorem most commonly used 
is based on probability densities that encode propositions 
about data D and parameters ω, which can be continuous, 
discrete, or both.



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 32

The Bayesian ApproachThe Bayesian Approach

Following the statistician José Bernardo, we call
p(D | ω) the probability model that represents 

the mechanism that gave rise to the observed data D, given 
some unknown value of the parameters ω. 

π(ω) the prior probability density over the 
parameter space Ω of the probability model and

p(ω | D) the posterior density.

As noted in Bob Cousin’s talk, probabilities are not absolute, 
but are always conditional on context and assumptions. 
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The Bayesian ApproachThe Bayesian Approach

The proximate goal of a Bayesian analysis is to compute the 
posterior density of the model parameters ω from Bayes’
theorem*

Subsequently, one may use the posterior density to make 
predictions, compute point and interval estimates and 
perform hypothesis tests. 

( | ) ( )( | )
( | ) ( )
pp

p d
DD

D
ω ω

ω
π

π
ω

ω ω
Ω

=
∫

*In principle, in the personalistic approach, one has the option to elicit the 
posterior directly.
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The Bayesian ApproachThe Bayesian Approach

Example 2: Suppose one has observed D events. Let’s 
assume that the mechanism that generated D can be 
modeled by

p(D | ω) = Poisson(D|ω) = exp(–ω) ωD / D!

The prior density π(ω) should reflect our prior beliefs 
about the Poisson parameter ω. Suppose we believe it to be 
confined to the interval 0 ≤ ω ≤ β and that its value is 
closer to zero than to the upper bound. We might choose to 
model these prior beliefs using the prior density

π(ω) = const. /ωk, perhaps with 0 ≤ k < 1.
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The Bayesian ApproachThe Bayesian Approach

Example 2: The posterior p(ω | D) is readily calculated from 
Bayes’ theorem

0

exp( )( | )
exp( )

exp( )
( 1, )

D k

D k

D k

p D
d

D k

β

ω ωω
ω ω ω

ω ω
γ β

−

−

−

−
=

−

−
=

− +

∫

The plot shows p(ω | D) for different values of k.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

p(
ω

| D
)

ω

D = 5
β = 25
0 ≤ k < 1

where γ(n, x) is the lower
incomplete gamma function.
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The Bayesian ApproachThe Bayesian Approach

Marginalization – If we are interested only in a subset θ of 
the parameters ω = θ, φ, we need a way to restrict 
p(ω | D) = p(θ, φ | D) to p(θ | D). 

Since the Bayesian approach is merely applied probability 
theory, the way to effect this restriction is specified, 
uniquely, by a theorem of probability theory: marginalize
with respect to the remaining parameters 

The remaining parameters φ are often referred to as nuisance 
parameters. 

( | ) ( , | )p D p D dθ θ φ φ= ∫
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The Bayesian ApproachThe Bayesian Approach

Prediction – Suppose we observe data D and we wish to 
predict the values of new data X. For example, in track 
fitting, given the hits on the current track, we may wish to 
determine where to look for potential new hits. 

The solution, in principle, is to compute the posterior 
predictive distribution

The Kalman filter and its variants, which are widely used in 
track fitting, can be thought of as linear approximations to 
the posterior predictive distribution. 

( | ) ( | ) ( | )p X D p X p D dω ω ω= ∫
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The Bayesian ApproachThe Bayesian Approach

Example 3: Given the posterior density p(ω | D) from 
Example 2

its posterior predictive 
distribution is given by

exp( )
( 1, )

D k

D k
ω ω

γ β

−−
− +

p(
X

| D
)

X

D = 5
β = 25
k = 0.5

0

1

( | ) ( | ) ( | )

( 1, )
2 ( 1, ) !X D K

p X D p X p D d

X D k
D k X

β

ω ω ω

γ β
γ β+ − +

=

+ − +
=

− +

∫
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SummarySummary

hProbability
hIf we are prepared to make the idealization that degrees 

of belief can be represented by real numbers, one can 
establish through a variety of arguments that these 
numbers follow rules identical to those of probability.

hBayesian Approach
hSince this approach is based on the degree of belief 

interpretation of probability, it is irreducibly subjective.  
hOpinion differs about whether the notion degree of 

belief should be restricted to real persons or whether 
one is permitted to extend it to ideal reasoners.
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SummarySummary

hBayesian Approach
hThe proximate goal of a Bayesian analysis is to 

compute the posterior density of the model parameters.
hA subsequent goal may include extracting summaries 

of the posterior density, such as point or interval 
estimates, using the posterior density to make 
predictions and/or to perform hypothesis tests.
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