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In a Bayesian analysis, the basic elements are always the 
same:  
  p(D | ω)   probability model / likelihood 
     data D model parameters ω.  

 π(ω)    prior probability density / prior 

  p(ω | D)   posterior density / posterior 

The model parameters can be continuous, discrete, or both. 
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And always combined the same way: 

and, in principle, the restriction to the parameters of interest 
is always done the same way:   
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The posterior density p(θ | D) is the complete answer to an 
inference about the parameter θ.  

However, it is often of interest to extract a useful summary of 
it, such as a point estimate θ* and/or an interval estimate 
(θL, θU).  

Or, perhaps, we wish to decide which of two or more 
competing models is preferred by the data. 
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Decision theory provides a general way to model such 
problems.  

To render a decision about the value of θ – implemented as a 
function d that returns an estimate θ* of θ  – we must 
quantify how beneficial the decision is to us, via a utility 
function U(d, θ) that we specify. A function d that returns 
estimates is called an estimator. 

Or, equivalently, we can specify a loss function L(d, θ) that 
quantifies what we lose should the decision turn out to 
have been a bad one. 
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Pascal was one of the first mathematicians to make explicit 
use of what we now call utility. In 1670, he considered the 
following two hypotheses: 
 God  God exists 
 ~God  God does not exist 

 and the following two actions: 
 P  Lead a pious life 
 W  Lead a worldly life 

and assigned utilities to each hypothesis/action pair. 
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God ~ God 

P 

W 

He argued that if your Pr(God) is strictly > 0 then your expected  
utility from being pious is so very much greater than your expected  
utility from being worldly, that the only rational option for you  
is to live a saintly life!  

- (no worldly pleasures)  
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In practice, since our knowledge of the parameter θ is encoded 
in the posterior density p(θ | D), our decisions will be more 
robust if we average (E[*]) the loss L(d, θ) with respect to 
p(θ | D) 

    R(d)  = E[L(d, θ)] 
    = ∫ L(d, θ) p(θ | D) dθ 

The quantity R(d) is called the risk function. By definition, the 
optimal estimate of θ is the one that minimizes the risk 

   θ* = arg mind R(d) 
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In general, different loss functions will yield different 
estimates. Therefore, even with exactly the same data one 
should not be surprised to obtain competing results.  

Moreover, to the degree that the mathematics has been done 
correctly, none of the competing results is wrong. Each 
merely enjoys a different set of properties. 

Reasonable people can disagree about the results simply 
because they disagree about what properties are thought 
most useful. Some properties can even be in conflict… 
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Example 4: Consider a loss function L(d, m) to extract a 
point estimate of the Higgs mass, m, from a posterior 
density p(m|D).  

Suppose L(d, m) is invariant in the sense that it yields an 
estimate m* of m which, when inserted into the prediction 
for the Higgs production cross section σ = g(m), yields an 
estimate of the cross section σ* = g(m*) that is identical to 
the one we would have obtained had we used the loss 
function L(d, σ).  

L(d, σ) is the loss function L(d, m) but with m replaced byσ. 
In general, either m* or σ* or both will be biased.  
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Example 4: 
To see this, expand σ* = g(m*) about the true Higgs mass m 

 σ* ≈ g(m) + (m* – m) g' + ½ (m* – m)2 g'' 

and average both sides over an ensemble of estimates. This 
gives   
 Ε[σ*] ≈ σ  + bias g' + ½mse g'',   
Ε[σ*] ≈ σ  + bias g' + ½[bias2 + variance] g'', 

where  variance = E[m*2] – E[m*]2. 
  mse: mean square error (note: rms = √mse)   
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Example 4: So, invariance and lack of bias are in conflict. 
 However, bias should not be considered a problem 

provided that the estimates are accurate, that is, they lie as 
close to the true value of the parameter as possible. One 
measure of closeness is the mean square error  

 mse = bias2 + variance 

Historically, zero bias has been considered to be very 
important in high energy physics. It could be argued, 
however, that invariance is the more important property: 
the ability to use σ* = g(m*) to go from m* to σ* is better 
because the loss function is the same for both, indeed for 
all, estimates.  
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Point Estimation  
 quadratic loss 
  L(d, θ) = (d – θ)2 

 Average with respect to p(θ |D) 
 risk Rθ (d)  = E[(d – θ)2] 
   = E[d2] – 2E[θd] + E[θ 2] 
   = d2 – 2E[θ]d + E[θ 2] 
 minimize 
  dR/dd  = 2d – 2E[θ] = 0 

  so, θ* = E[θ] 

   θ       d 

L(d, θ)  

Note: quadratic loss is not 
invariant. If α = g(θ), then 
L(d, α)  = (d – α)2 gives 
      α*  = E[α] = E[g(θ)] 

 ≠ g(θ*)= g(E[θ])   
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Point Estimation  
 bilinear loss  

risk 

H(x) = 1 if x > 0 else 0 

   θ       d 

L(d, θ)  
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Point Estimation  
 bilinear loss  
 The optimal estimate is 
   θ* = arg mind R(d)  

 where θ* is the a/(a+b) quantile 

 of p(θ | D). If we set a = b, θ* = median of p(θ | D) 

Note: estimates based on quantiles are invariant.    

   θ       d 

L(d, θ)  
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Point Estimation  
 zero-one loss  

 Its risk function is 

 and the optimal estimate θ* = mind R(d) is the solution of 
  p(θ* + b|D) = p(θ* – b|D).  

In the limit b → 0, one obtains θ* = mode of p(θ | D). The 
mode is not invariant.    

   θ       d 

L(d, θ)  

2b 
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Probability Estimation  
Consider a variable θ that can assume one of several values θ1,

… θk.* The problem is to associate a probability di to each 
of the possible values of θ. Let L(di) =L(di, θi) be the 
corresponding loss function and denote by pi = p(θi) the 
unknown optimal choice (it could be, for example, the 
posterior distribution, p(θi| D)). 

The risk associated with our decisions is given by 

Again, we find the optimal estimates by minimizing the risk. 

* see O’Hagan, 2.54, p56 
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Probability Estimation 
But, the minimization must obey the constraint ∑di = 1,  which 

is readily implemented using a Lagrange multiplier: 

Suppose that our loss function is such that at the absolute 
minimum of the risk, our estimates of the probabilities are 
optimal, that is, di = pi. In this case, we can write 

We conclude that in the neighborhood of minimum risk, our 
loss function must be logarithmic in the density.   
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Probability Estimation  
The argument can be extended to continuous densities, with 

the risk given by 

As noted, its minimum occurs when d(θ) = p(θ), that is, when 
the minimum value of the risk is 

that is, when the risk equals the entropy of the density.  



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 23 

Probability Estimation  
We can make the risk zero at its minimum by subtracting off 

the entropy, H(p). This yields another important quantity, 
called the Kullback-Leibler (K-L) divergence  

where the integration can be over the parameter space or the 
sample space depending on the application. This widely 
used, non-negative, measure of the “distance” between two 
densities p and d is zero if and only if the densities are 
identical. We shall return to it in Lecture 3. 
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Probability Estimation  
The word “distance” is in quotes because D(p||d) ≠ D(d||p). 

However, if p and d are close together in the sense that 
  p = p(θ, φ0 + δφ) and d = p(θ, φ0), then D(p||d) can be 
interpreted as a metric in the space of probability densities: 

where F(φ) is the Fisher information 

p(θ, φ0 + δφ) 

p(θ, φ0) 
Again, the integration can 
be either over the parameter 
space or the sample space 
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Although we have arrived at the concepts of entropy, K-L 
divergence and Fisher information through our 
consideration of probability estimation, these quantities play 
a much broader role in many disciplines and have numerous 
interesting applications. Here is one.  

Paris and his counterpart in ATLAS have urged every group to 
design analyses optimal for discovery. But what precisely 
do they mean by this? Perhaps they mean the following:  
an analysis is optimal for discovery if it maximizes the 
“distance” between the background + signal and 
background-only models, where “distance” is the K-L 
divergence. 
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Consider a simple counting experiment, described by 
H0: background-only 

  p(D|b) = Poisson(D|b) 
H1: background+signal 

 p(D|b, s) = Poisson(D|b + s) 
where, for simplicity, we assume the mean signal and 

background counts s and b, respectively, are known. Our 
goal is to design an analysis for which the densities p(D|b) 
and p(D|b, s) are as “far apart” as possible, in the sense of 
the K-L divergence (where the integration is now over the 
sample space): 
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For this model we get 

which should look familiar to many of you! 
One can get a bit of insight into this expression by considering 

the “search” limit s << b: 

This suggests that√[2D(ps+b||pb)] is a generalization of the 
well-worn, but oft-abused, discovery favorite s/√b.  
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€ 

b(x)

€ 

B

€ 

xα
HEP – 2.7 x 10-7 

BIO – 0.05 

Null hypothesis (H0): background-only 

€ 

α = b(x)dx
xα

∞

∫

In principle, the threshold 
xα is chosen ahead of time 

significance level 
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€ 

b(x)
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B
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xα

€ 

α = b(x)dx
xα

∞

∫ HEP – 2.7 x 10-7 

BIO – 0.05 

Alternative hypothesis 
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Need a way to take 
alternative hypotheses 
into account (H1) 

€ 

α = b(x)dx
xα

∞

∫

€ 

p = a(x)dx
xα

∞

∫
power 
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Unlike Fisher’s method of hypothesis testing*, in the standard 
Bayesian approach it is always necessary to compare one 
hypothesis, or model, against at least one alternative.  

In particular, a goodness of fit  (gof) test – which determines 
whether to reject an hypothesis (called the null 
hypothesis, often denoted by the symbol, H0) without the 
explicit specification of alternatives – does not exist in the 
Bayesian approach.** 

*which uses p-values, as in a χ2-test 
**The closest thing to this is a Bayesian test of a null hypothesis against a 

non-parametric alternative, developed by statistician Jim Berger. 
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Conceptually, Bayesian hypothesis testing proceeds in exactly 
the same way as any other Bayesian calculation: compute 
the posterior density 

and marginalize it with respect to all parameters except those 
indexing the hypotheses  

and thereby get your pHD! 
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However, it is usually more convenient, and instructive, to 
arrive at p(H|D) in stages.  

1.  Factorize the priors: π(θ, φ, H) = π(θ, φ|H) π(H) 

2.  Then, for each hypothesis, H, compute the function 

3.  Then, compute the probability of each hypothesis, H 
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It is clear, however, that to compute p(H|D), it is necessary to 
specify the priors π(H). Unfortunately, there is unlikely to 
be a consensus about what their values should be. 

So, instead of asking for the probability of an hypothesis, 
p(H|D), we could ask: how much more probable is one 
hypothesis H1 than another H0? 

The ratio in brackets, called the Bayes factor, B10, is the 
amount by which the odds in favor of H1 has increased, 
given the observations.  
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From the way it appears in the Bayes factor  

it is natural to interpret p(D | H) as the evidence for 
hypothesis H. The larger the evidence the better the match 
between hypothesis and data. 

This is all very elegant, but, Bayes factors come with a serious 
health warning: they can be very sensitive to the choice of 
priors π(θ, φ|H); therefore, the latter should be carefully 
chosen probability densities: ∫π(θ, φ|H)dθ dφ = 1 
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To illustrate Bayesian hypothesis testing, we shall use the 
nested model* described earlier 

background-only 
  p(D|b, H0) = Poisson(D|b, H0)  probability model 
π(b, H0)     prior 

background+signal 
 p(D|b, s, H1) = Poisson(D|b + s)  probability model 
π(b, s, H1)     prior 

* A model (H0) is nested if is a special case of another (H1). 
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  In principle, the Bayesian approach is straightforward 
because the procedure is always the same: compute the 
posterior density of the model parameters.  

  Moreover, the words we use to describe uncertainties, 
statistical, systematic, theoretical, best guess, gut 
feeling, etc., are totally irrelevant from a Bayesian 
viewpoint because all forms of uncertainty are handled in 
the same way. 

In practice, however, a fully Bayesian analysis can be 
extremely challenging.  
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Why? Firstly, because one has to construct a detailed model 
of both the likelihood and the prior that captures what we 
know about a particular problem.  

Secondly, because the use of a detailed model may entail a 
daunting computational challenge. 

Thirdly, because no model is perfect, we should in principle 
cycle through the entire procedure a few times, varying 
those parts of the model about which we are least certain 
in order to check the robustness of our answers.  

Even for a counting experiment, there is much to think about! 
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We need to decide how to factor our priors. Let’s try:   
π(b, H0)  = π(b| H0) π(H0)  
π(b, s,  H1)  = π(b, s|H1) π(H1) 
    = π(b| s, H1) π(s|H1) π(H1) 

Points to note 
1.  Any joint probability can be factored in different ways 

and each way is valid. 
2.  Consequently, the background prior is, in principle, 

conditioned on the signal, and vice versa. Therefore, it 
is an assumption to assert they are not.  
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Next, compute the evidence for each hypothesis 
 p(D|H0)  = ∫ Poisson(D|b, H0) π(b| H0) db 

 p(D|H1)  = ∫ ∫ Poisson(D|b, s, H1) π(b| s, H1)π(s|H1) 
dbds 
    = ∫ p(D|s, H1)π(s|H1) ds 

 where p(D|s, H1) = ∫ Poisson(D|b, s, H1) π(b|s, H1) db. 

However, since H0 is nested in H1, its evidence, p(D|H0), is 
simply the function p(D|s, H1), evaluated at s = 0, 
assuming that  
  π(b|s, H1) = π(b| H1) = π(b| H0) = π(b)  
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Modeling the Background Prior π(b) 
We assume that the background is to be estimated from a 

Monte Carlo (MC) simulation that yielded y events passing 
an appropriate set of cuts, or from sideband data. 

If y is an integer that is much smaller than the original sample 
size it would be reasonable to adopt the probability model 
p(y| cb) = Poisson(y| cb), where c is a known scale factor 
between the background in the MC sample and that of  the 
real sample.  

Bayes’ theorem will yield a background prior* of the form 
 π(b) = Gamma (b| y+½, c) = c(cb)y-1/2 exp(–cb)/Γ(y+½) 

*Assuming MC prior ~1/√b 
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Modeling the Background Prior π(b) 
In practice, MC events will be weighted because of the need 

to make the MC distributions match the observed ones 
better. Then y will be a weighted sum. 

Even so, the gamma model π(b) = Gamma (b| y+½, c), 
 or perhaps one comprising a mixture of them with 
appropriate values for y, may still be good enough to 
model prior beliefs about the background.  

Priors that are obtained through thorough inspection of the 
problem domain are called subjective priors. A better 
name is evidence-based priors (Sir David, PhyStat-LHC). 



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 45 

The Prior Predictive Distribution is given by the integral:  

The background-only evidence is then 
 p(D| H0) =  p(D|s=0, H1)  
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The Background+Signal Evidence is given by the integral:  

where 

and π(s) = π(s|H1) is the prior for the signal… 

 …and this is where things become controversial! 
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h Decision Theory 
h The basic insight is that optimal decision making 

entails combining a utility function or, equivalently, a 
loss function with a posterior density. Since loss 
functions can differ, it is unsurprising that results can 
differ even when using the same data. 

h Hypothesis Tests 
h The standard Bayesian approach requires the explicit 

consideration of at least one alternative hypothesis. 
Ironically, this was also the opinion of arch-frequentist 
Jerzy Neyman! 
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h Hypothesis Tests 
h It is necessary to specify priors for each of hypothesis.  

h In particular, for our simple counting experiment, we 
need to specify the prior π(s) for the signal since it is 
part of the specification of the background+signal 
hypothesis. 

h Unfortunately, doing so sensibly is hard! 

    More tomorrow!  


