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Standard Bayesian method: 

1.  Factorize the priors: π(θ, φ, H) = π(θ, φ|H) π(H) 

2.  For each hypothesis, H, compute the evidence  

3.  Compute the Bayes factors 

4.  If, e.g., B10, or some function thereof, say,√(2lnB10) > 

agreed-upon threshold, accept H1, otherwise keep H0. 
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The standard model for a counting  experiment: 

background-only 

  p(D|b, H0) = Poisson(D|b, H0)  probability model 

π(b, H0)     prior 

background+signal 

 p(D|b, s, H1) = Poisson(D|b + s)  probability model 

π(b, s, H1)     prior 
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The prior predictive density p(D|s, H1) for the experiment: 

The evidence p(D| H0) for the background-only hypothesis: 

p(D| H0) = p(D|s=0, H1), that is, 
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The evidence for the background+signal hypothesis p(D| H1):  

where π(s| H1) is the prior for the signal, which brings us to 

yesterday’s question:  

   What should π(s| H1) be? 
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 The short answer is:  

 ideally, it is a well-motivated evidence-based prior for 

which 

 otherwise, it is (or ought to be!) a very carefully chosen 

objective prior.*  

 * I prefer the name formal prior. 
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Evidence-Based Prior 

To create such a prior for the signal requires that we have 

some idea of what signal we are looking for. 

So what is the basic strategy? 

  “know thine enemy” 

   The Art of War, Sun Tzu, ~300 BC   

   then  

    “divide and conquer” 

     Teenage Mutant Ninja Turtles 
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Evidence-Based Prior  

Consider looking for H → WW, WH/ZH → WW, in the 

Higgs mass range m = 155 – 200 GeV (FERMILAB-08-270-E). 

http://www.hep.ph.ic.ac.uk/cms/physics/higgs.html 
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Evidence-Based Prior 

Our beliefs about the putative Higgs are precise and detailed:   

http://www.hep.ph.ic.ac.uk/cms/physics/higgs.html 
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Evidence-Based Prior  

Moreover, there is experimental information to draw upon: 

the CDF/Dzero posterior 

density p(R|D, m), 

where R = σ / σSM(m), 

is the signal cross  

section relative  

to the Standard Model  

prediction, σSM(m).  

http://arxiv.org/abs/0903.4001 
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Evidence-Based Prior  

Given this, and if we are willing to interpret H1 as the Higgs 

hypothesis for a given Higgs mass, then it would be 

reasonable to use the following evidence-based prior 

  π(s| H1) = p(R | DRunII, m) 

for the signal, where R = s / ε σSM and ε is the effective 

integrated luminosity, that is, the integrated luminosity times 

the signal efficiency, for ATLAS or CMS, assumed known. 

In practice, of course, we would need to construct an evidence-

based prior for ε also! 
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Evidence-Based Prior  

Finally, suppose we can model the signal prior using 

 π(s| H1)  = p(R | DRunII, m)  

    = Gamma(R| a, σSM
-1)  

    = σSM
-1 Ra-1 exp(R)/Γ(a), 

then the evidence for H1 is readily calculated:  
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Evidence-Based Prior  

Now that we have computed the evidences p(D|H0) and  
p(D|H1) for the two hypotheses, we can compute the Bayes 
factor (at a given Higgs mass) 

   B10 = p(D|H1) / p(D|H0)  

and check if it exceeds an agreed-upon LHC discovery 
threshold.  

But, what if we want to interpret H1 as the Higgs hypothesis 
regardless of mass? In this case, we might choose to model 
π(s| H1) as a hierarchical prior: 

  π(s| H1) = ∫π(s| m) π(m| H1) dm 
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Evidence-Based Prior  

This we can do because we 

have experimental information  

about the Higgs mass:  

A plausible choice for a high 

mass prior might be  

https://twiki.cern.ch/twiki/bin/view/CMS/HiggsWGConf 

€ 

π (m |H1)∝exp[−Δχ
2(m) /2]
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Suppose in the Higgs search we chose to act as if we are 
unaware of the beautiful results from LEP and the TeVatron. 
How might we proceed then to compute Bayes factors? 

We would be obliged to produce a prior using a formal rule of 
our choosing, but which yields results with good properties 
(Berger, Bernardo). 

We shall consider four formal rules: one proposed by Jeffreys, 
one proposed by Berger and Pericchi, one popular in high 
energy physics and the other proposed by Bernardo. 
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The first broadly successful formal prior for one-parameter 

problems was proposed by Jeffreys in the 1930s: 

  π(θ) = √F(θ) 

where F(θ) = –∫ p(x|θ) ∂2ln p(x|θ )/∂θ 2 dx is the Fisher 

information, where the integration is over the sample 

space. 

One of Jeffreys’ motivations was to find priors invariant in the 

following sense. If z = g(s), where g is a one-to-one 

transformation – and π(z) and π(s) are calculated using the 

proposed algorithm, then π(z)dz = π(s)ds holds, as should 

be the case for probabilities. For a Poisson distribution, 

with parameter θ, this algorithm yields π(θ) = 1/√θ
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The Berger and Pericchi formal rule: 

1.  Compute p(D|H1) = ∫ p(D| s, H1) πF(s) ds, using a prior 
πF(s) chosen by a formal rule! 

2.  Choose the smallest subset of D for which p(D|H1) < ∞ 

3.  Compute p(s|D, H1) = p(D| s, H1) πF(s) / p(D|H1) 

4.  Take π(s| H1) = p(s|D, H1) as the signal prior 

The idea is to split the data D into a training sample to be used 
to construct the prior π(s| H1) and a remaining sample for 
computing the Bayes factor.  The Bayes factor is then 
averaged over all possible training samples.  

In our Higgs example, we could use simulated data for the 
training samples.   
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A Bayes factor computed with this rule is called an intrinsic 

Bayes factor (IBF). Berger shows that it yields sensible 

results. 

However, to compute it, we still have the problem of specifying 

πF(s) from some other formal rule!  

We shall consider two rules: 

1.  The flat prior rule popular in high energy physics 

2.  The reference prior rule of Bernardo 
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Consider the value of p(D|H1) computed using the flat prior 

πF(s) = 1. For our Higgs example, it turns out that D = 0 is 

the smallest value for which p(D|H1) < ∞. Indeed, we find 

Because p(D=0|H1) is finite, the posterior p(s|D=0, H1)  

is proper, that is, integrates to one. It can therefore be used as 

the signal prior π(s| H1) in the calculation of the evidence 

for hypothesis H1. 
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Setting π(s| H1) = exp(–s) yields  

for the signal evidence, which when combined with p(D|H0) 

gives the following Bayes factor 



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 25 

Example: 

The figure shows B10  

as a function of  D for 

 c  = 1,   5, 10  

 y  = 5, 25, 50 

Note the sensitivity of  

the Bayes factor to the  

accuracy with which the  

background b ~ y / c  

is known. 

Bayes factor vs D 
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We have arrived at a seemingly reasonable result. But, consider 

this. We could have expressed the evidence integral in 

terms of the variable z = ln(s), which of course cannot 

change the value of the integral. Consequently, the Jacobian 

of the transformation forces the formal prior for z to be  

πF(z) = exp(–z).  

The unsettling point is that we have not justified why we chose 

the formal prior to be flat in s rather than in z, or some other 

variable. Our choice seems arbitrary. That being said, if the 

event count D is large, as expected at the LHC, the precise 

form of πF(s) will be less of an issue than when D is small. 
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The Bernardo formal rule 

In 1979, the statistician José Bernardo introduced what proved 

to be a very successful formal rule for constructing what he 

called reference priors. 

His idea was to construct priors which, in a sense to be made 

precise shortly, contained as little information as possible 

relative to the probability model. Such priors would be 

expected to approximate the (impossible!) ideal of “letting 

the data speak for themselves.” 
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Reference priors have several desirable properties, including  

1.  broad applicability 

2.  invariance, in the sense that z = g(s), implies  

π(z) = π(s) |∂z/∂s|, that is, π(z)dz = π(s)ds, where π(z) 

and π(s) are reference priors. 

3.  generation of posterior distributions, which when 

computed for an ensemble of experiments, cluster 

correctly about the true value of the parameters. 

4.  avoidance of incoherent inferences, such as 

marginalization paradoxes. 
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A marginalization paradox is said to occur when the 
calculation of a posterior can be done in different ways that 
ought to yield the same answer but do not: 

For references priors p1(θ|t) = p2(θ|t) as it should be.*  

1 

2 

*This holds only if one uses different priors 
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The reference priors makes use of the notion of expected 
intrinsic information, defined by 

that is, it is the expectation of the Kullback-Leibler divergence  
 D(p||πk) = ∫ p(θ | xk) ln [p(θ | xk) / πk(θ)] dθ 

 between the posterior p(θ | xk) and the prior πk(θ), where 
the averaging is with respect to the marginal density 

  p(xk) = ∫ p(xk|θ) πk(θ) dθ�

Ik measures the amount of information about the value of θ that 
might be expected from a sequence of k observations x = 
x1,..., xk. Note the prior’s dependence on k. 
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As more and more observations are made, one would expect 
the amount of information about the value θ to increase.  

Reference prior algorithm 

Given k observations, Ik is maximized with respect to the prior 
πk(θ), thereby maximizing the expected discrepancy 
between it and the posterior p(θ |xk).  

(Note: if needed, the domain of πk(θ) may have to be chosen so 
as to ensure that πk(θ) is proper, that is, integrates to one.) 

By definition, the reference prior  

  π(θ) = limk → ∞ πk(θ)  
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This procedure seems, at first, challenging to implement. 

Happily, however, Bernardo has given an explicit formula 

for computing the functions πk(θ), 

where h(θ) is any convenient function, such as h(θ)  = 1, and 

 p(xk|θ) = p(x1|θ) p(x2|θ) … is the joint likelihood for k 

observations. The functions πk(θ)  are computed for 

increasing values of k until one obtains convergence. 
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CMS Reference Prior Project 

Reference priors have not been widely used so far in high 
energy physics. Consequently,  relatively little is known 
about how they would fair in the problems we face.  

However, given their remarkable properties, they are 
potentially useful to us.  

This was the motivation for the CMS Reference Prior Project 
started by Luc Demortier, Supriya Jain and HBP.  

We are currently studying the construction of reference priors 
for the kind of Poisson probability models in common use. 

Our goal is to develop sufficient understanding of reference 
priors so that they can be put to routine use at the LHC. 
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We are currently studying the following probability model (and 

its generalization to multiple counts): 

background+signal 

 p(D|b,ε,σ)  = Poisson(D|b + εσ) 

π(b, ε, σ) 

with evidence-based priors 

π(b|y)  = Gamma (b| y+½, c) = c(cb)y-1/2 exp(–cb)/Γ(y+½) 

π(ε| x) = Gamma (ε| x+½, τ) = τ(τε)x-1/2 exp(–τε)/Γ(x+½) 

where x, y, τ and c are known constants. 



Bayesian Methods: Theory & Practice.  Harrison B. Prosper 35 

Given the presence of the nuisance parameters, b and ε , there 
are at two plausible ways one might proceed. 

Method 1 (Berger) – factorize the prior as follows  

π(b, ε, σ)  = π(σ |b, ε) π(b, ε), 

compute the reference prior π(σ |b, ε) conditional on b and ε, 
then compute the marginal density  

 p(D| b, ε) = ∫ p(D|b, ε, σ) π(σ |b, ε) dσ�

The conditional reference prior π(σ |b, ε) can be computed 
exactly (Demortier). 
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Method 2 (Bernardo, Prosper) – factorize the prior as follows 

π(b, ε, σ)= π(b, ε| σ) π(σ)   

compute the marginal density  

 p(D|σ) = ∫ p(D|b, ε, σ) π(b, ε| σ) db dε�

then compute the reference prior π(σ) for p(D|σ), which, in 

general, must be done numerically (Jain). 

The following slides show some preliminary results. 
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Test of Numerical Calculation of Reference Priors 

Here we compare our numerical 

calculation of the reference  

prior for an exponential  

density with the exact  

analytical result, π(θ) ~ 1/θ. 

Bernardo showed that under  

certain  conditions, the prior  

suggested by Jeffreys  

agrees with the reference prior,  

as shown in this plot.  
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Test of Numerical Calculation of Reference Priors 

Here we compare our numerical 

calculation of the reference  

prior for a Poisson 

distribution with the exact  

analytical result π(θ) ~ 1/√θ. 
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Test of Numerical Calculation of Reference Priors 

Comparison of our numerical 

calculation of the reference  

prior for a binomial 

distribution with the exact  

result π(θ) ~ 1/√[θ (1�θ )]. 
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Coverage of intervals 

These plot show the coverage probability of 68.3% intervals  

(averaged over the priors) for methods 1 and 2. 
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In these lectures I hope to have shown that Bayesian methods 

are:  

1.  well-founded, 

2.  general  

3.  and powerful. 

Moreover, they encourage you to think hard about what you 

are doing.  

However, it is important to understand the methods well in 

order to minimize the probability of making egregious 

mistakes…but… 
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 “Have the courage to use your own understanding!” 

    Immanuel Kant 


