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In these lectures, I shall illustrate a few key ideas and 
methods in multivariate analysis using the following 
examples:  

h Signal/Background Discrimination 
h Wine Tasting 
h Approximating a 19-parameter Function 
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Two general approaches: 
 Machine Learning 
  Given training data T = (y, x) = (y, x)1,…(y, x)N, a 
class of functions { f  }, and some constraint on these 
functions, teach a machine to learn the mapping  
  y = f (x) 

 Bayesian Learning 
  This is similar, except the goal is to create a 
probability density over the space of functions f (x), 
 that is, to assign a probability (density) to each function in 
the space. 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi ,w))

i=1

N

∑

*The loss function measures the cost of making a bad choice 
of function from the function space. 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  
 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained empirical risk (that is, the average loss function) 

We shall consider Bayesian learning in Lecture 3. 

  L( y, f (x, w)) = [y − f (x,w)]2

  
R[ fw] = 1

N
L( yi , f (xi , w))

i=1

N

∑ + C(w)
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Optimality criterion: minimize the error rate, α + β	

Background density 
p(x, b) = p(x | b) p(b) 

Signal density 
p(x, s) = p(x | s) p(s) 

x 

de
ns

ity
 

   
p 

(x
) 

x0 

β	
α	
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The total loss L arising from classification errors is given by 

  

L = Lb H ( f ) p(x,b) dx∫
+ Ls [1− H ( f )] p(x,s) dx∫

where f (x) = 0 defines a decision boundary 
such that f (x) > 0 defines the signal acceptance region 

H(f ) is the Heaviside step function:  
   H(f )  = 1 if f > 0, 0 otherwise 

Cost of background 
misclassification 
Cost of signal 
misclassification 
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L = Lb H (x − x0 ) p(x,b) dx∫ + Ls [1− H (x − x0 )]p(x,s) dx∫

1-D example 

Minimizing the total loss L with respect to the boundary x0 

  

Lb

Ls

=
p(x0 ,s)
p(x0 ,b)

=
p(x0 | s)
p(x0 | b)

⎡

⎣
⎢

⎤

⎦
⎥

p(s)
p(b)

leads to the result: 

The quantity in brackets is just the likelihood ratio. The 
result, in the context of hypothesis testing (with p(s) = p(b)),  
is called the Neyman-Pearson lemma (1933). 
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B(x)
1+ B(x)

= p(s | x) = p(x | s) p(s)
p(x | s) p(s) + p(x | b) p(b)

The ratio 

  

p(x,s)
p(x,b)

= p(s | x)
p(b | x)

≡ B(x), p(s | x) = p(x,s) / p(x)

                                             p(b | x) = p(x,b) / p(x)



13 

If the signal class s is assigned y = 1, while the class b is assigned 
y = 0, one obtains the very important result: 

See,   Ruck et al., IEEE Trans. Neural Networks 4, 296-298 (1990); 
  Wan, IEEE Trans. Neural Networks 4, 303-305 (1990);   
  Richard and Lippmann, Neural Computation. 3, 461-483 (1991) 

In summary: 
1.  Given sufficient training data T and 
2.  a sufficiently flexible function f (x, w), then f (x, w) will 

approximate p(s | x), if y = 1 is assigned to objects of class 
s and y = 0 is assigned to objects of class b 

  
f (x) = y p( y | x)∫ dy = p(1 | x) ≡ p(s | x)





Here is a short list of multivariate (MVA) methods that can 
be used for classification: 
h Random Grid Search 
h Fisher Discriminant 
h Quadratic Discriminant 
h Naïve Bayes (Likelihood Discriminant) 
h Kernel Density Estimation 
h Support Vector Machines 
h Binary Decision Trees 
h Neural Networks 
h Bayesian Neural Networks 
h RuleFit 
h Random Forests 
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Wine tasting is big business. But, can we automate it? 
In principle, yes, if we can establish the 
physical attributes that define “good” wine, 
such as this one for $117,000 a bottle! 

     We’ll look 
     at this  
     problem 
     tomorrow.  
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 pp→ H → ZZ→ ℓ+ℓ− ′ℓ + ′ℓ −

Signal 

 pp→ ZZ→ ℓ+ℓ− ′ℓ + ′ℓ −

Background 

We shall use this example to illustrate signal/background 
discrimination, using the variables x = (mZ1, mZ2). 

mZ1

mZ2
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Given the variables x = (mZ1, mZ2), the simplest way to try to 
separate the signal from the background (i.e., the noise) is 
to consider n thresholds (cuts) on each variable. This 
means, we would try n2 pairs of cuts and find the best pair. 

But, suppose we have d variables, and do the same thing. 
Now, we must consider nd d-tuples of cuts! As d increases, 
this becomes computationally impossible becomes the 
number of points to be considered grows extremely 
rapidly. This is an example of the well-known “curse of 
dimensionality”.  

We need to be a bit cleverer… 
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One way to lessen this “curse” is to place cuts where they will 
do the most good.  

The best place is at the signal points, since it is the signal that 
we are most interested in extracting!  

We shall call  
  (x1 CUT-DIR mZ1) AND (x1 CUT-DIR mZ1) 

where CUT-DIR: <, >, or ==, a cut-point. In our example, our 
cut-point is a 2-tuple; in d-dimensions, it is a d-tuple. 

(Note: we can also combine cut-points, to form “box” cuts.) 

The next slide is a graphical representation of the algorithm. 
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Ntot  = # events before cuts 
Ncut  = # events after cuts 
Fraction  = Ncut/Ntot 

x > xi ,   y > yi

H.B.P. et al., Proceedings, CHEP 1995 

y 

x 
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The red point gives p(s | x) / p(b | x) ~ 1 / 1 

Each point here is the result 
of applying a different pair 
of cut-points, which form 
a random box. 

Cyan: signal 
Magenta: background 
Box: best box cut 
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Decision tree:  
a sequence of if then else 
statements. 

Basic idea: recursively 
partition the space {x} into  
regions of increasing purity. 

Geometrically, a decision tree  
is a d-dimensional histogram  
in which the bins are built  
using recursive binary  
partitioning. 

root node 

leaf node 

MiniBoone, Byron Roe 

child node 
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To each bin, we associate the 
value of the function f (x) to 
be approximated. 

That way, we arrive at a 
piecewise constant 
approximation of  f (x). 

MiniBoone, Byron Roe 
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For each variable,  find the  
best partition (“cut”), defined 
as the one that yields the  
greatest decrease in impurity 

 = Impurity (parent bin)  
 – Impurity (“left”-bin) 

  – Impurity (“right”-bin) 

Then choose the best partition 
among all partitions, and 
repeat with each child bin. 
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The most common impurity 
measure is the Gini index 

(Corrado Gini, 1884-1965): 

Gini index = p (1 – p) 
where p is the purity 

 p = S / (S + B) 

p = 0 or 1 = maximal purity 
p = 0.5      = maximal impurity 
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h Multivariate methods can be applied to many aspects of 
data analysis, including classification and function 
approximation. 

h We considered a simple example of classification using the 
random grid search and we introduced decision trees. 

h In Lecture 2, we shall apply decision trees to the wine 
tasting problem.  


