Introduction to Multivariate Methods Classification and Function Approximation

Harrison B. Prosper
Florida State University

Bari Lectures
30, 31 May, 1 June 2016

Outline

- Lecture 1
- Introduction
- Classification
- Grid Searches
- Decision Trees
- Lecture 2
- Boosted Decision Trees
- Lecture 3
- Neural Networks
- Bayesian Neural Networks

Recap: Goal

The goal of a typical multivariate method is to approximate the mapping of "inputs", or "features",

$$
x=\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right)
$$

to "outputs", or "responses", y, where

$$
y=f(x)
$$

assuming some specific class $\{f\}$ of functions, together with some constraints on this class, e.g., the functions should be smooth.

Example: Wine Tasting

Today, we shall explore a method called boosted decision trees using the wine tasting example based on data by Cortez et al.*

Recap: Decision Trees

Recap: Decision Trees

Decision tree:
a sequence of if then else statements.

Basic idea: recursively partition the space $\{x\}$ into regions of increasing purity.

Geometrically, a decision tree is a d-dimensional histogram in which the bins are built using recursive binary partitioning.

MiniBoone, Byron Roe

Recap: Decision Trees

To each bin, we associate the 200 value of the function $f(x)$ to be approximated.

That way, we arrive at a piecewise constant approximation of $f(x)$.

MiniBoone, Byron Roe

200	$f(x)=0$	$f(x)=1$
	$\begin{aligned} & B=10 \\ & S=9 \end{aligned}$	$\begin{aligned} & B=1 \\ & S=39 \end{aligned}$
100	$f(x)=0$	
$\frac{\tilde{n}_{3}^{n}}{E}$	$B=37$	
	Ener	(GeV) 0.

Decision Trees

For each variable, find the best partition ("cut"), defined as the one that yields the greatest decrease in impurity
$=$ Impurity (parent bin)

- Impurity ("left"-bin)
- Impurity ("right"-bin)

Then choose the best partition among all partitions, and repeat with each child bin

Decision Trees

The most common impurity measure is the Gini index (Corrado Gini, 1884-1965):

Gini index $=p(1-p)$
where p is the purity

$$
\begin{aligned}
& p=S /(S+B) \\
& p=0 \text { or } 1=\text { maximal purity } \\
& p=0.5 \quad=\text { maximal impurity }
\end{aligned}
$$

200	$f(x)=0$	$f(x)=1$
	$\begin{aligned} & B=10 \\ & S=9 \end{aligned}$	$\begin{aligned} & B=1 \\ & S=39 \end{aligned}$
$\frac{n}{3}$		$f(x)=0$
	$B=37$	
	$S=4$	
	Ener	(GeV) 0.4

Boosted Decision Trees

Introduction

Until relatively recently, the goal of researchers who worked on classification methods was to construct directly a single high performance classifier.
However, in 1997, AT\&T researchers Y. Freund and R.E.
Schapire [Journal of Computer and Sys. Sci. 55 (1), 119 (1997)], showed that it was possible to build highly effective classifiers by combining many weak ones!

This was the first successful
method to boost (i.e., enhance) ${ }^{\text {A Decision-Theoretic Generalization of On-Line Learning }} \begin{gathered}\text { and an Application to Boosting* }\end{gathered}$ the performance of poorly and an Application to Boosting*

$$
1
$$

performing classifiers by averaging them.

Averaging Weak Learners

Suppose you have a collection of classifiers $f\left(x, w_{\mathrm{k}}\right)$, which, individually, perform only marginally better than random guessing. Such classifiers are called weak learners.

It is possible to build highly effective classifiers by averaging many weak learners:

$$
f(x)=a_{0}+\sum_{k=1}^{K} a_{k} f\left(x, w_{k}\right)
$$

Jeromme Friedman \& Bogdan Popescu (2008)

Averaging Weak Learners

The most popular methods (used mostly with decision trees) are:

- Bagging: each tree is trained on a bootstrap* sample drawn from the training set
- Random Forest:
- Boosting: bagging with randomized trees
each tree trained on a different reweighting of the training set
*A bootstrap sample is a sample of size N drawn, with replacement, from another of the same size. Duplicates can occur and are allowed.

Adaptive Boosting

The AdaBoost algorithm of Freund and Schapire uses decision trees $f(x, \boldsymbol{w})$ as the weak learners, where \boldsymbol{w} are weights assigned to the objects to be classified, each associated with a label $y= \pm 1$, e.g., +1 for good wine, -1 for bad.
The value assigned to each leaf of $f(x, \boldsymbol{w})$ is also ± 1.
Consequently, for object n, associated with values (y_{n}, x_{n}), the product

$$
\begin{array}{ll}
f\left(x_{n}, \boldsymbol{w}\right) y_{n}>0 & \text { for a correct classification } \\
f\left(x_{n}, \boldsymbol{w}\right) y_{n}<0 & \text { for an incorrect classification }
\end{array}
$$

Next, we consider the actual boosting algorithm...

[^0]
Adaptive Boosting

Initialize weights w in training set (e.g., setting each to $1 / \mathrm{N}$)
For $k=1$ to K :

1. Create a decision tree $f(x, \boldsymbol{w})$ using the current weights.
2. Compute its error rate ε on the weighted training set.
3. Compute $\alpha=\ln (1-\varepsilon) / \varepsilon$ and store as $\alpha_{k}=\alpha$
4. Update each weight w_{n} in the training set as follows: new- $w_{n}=w_{n} \exp \left[-\alpha_{k} f\left(x_{n}, \boldsymbol{w}\right) y_{n}\right] / \mathrm{A}$, where A is a normalization constant such that \sum new- $w_{n}=1$. Since $f\left(x_{n}, \boldsymbol{w}\right) y_{n}<0$ for an incorrect classification, the weight of misclassified objects is increased.
At the end, compute the average $f(x)=\sum \alpha_{k} f\left(x, w_{\mathrm{k}}\right)$
Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting

AdaBoost is a very non-intuitive algorithm. However, soon after its invention Friedman, Hastie and Tibshirani showed that the algorithm is mathematically equivalent to minimizing the following risk (or cost) function

$$
\begin{aligned}
& \qquad R(F)=\int p(x, y) \exp (-y F(x)) d x d y, \\
& \text { where } F(x)=\sum_{k=1}^{K} \alpha_{k} f\left(x, w_{k}\right) \\
& \text { which implies that } D(x)=\frac{1}{1+\exp (-2 F(x))}
\end{aligned}
$$

can be interpreted as a probability, even though F cannot!
J. Friedman, T. Hastie and R. Tibshirani, ("Additive logistic regression: a statistical view of boosting," The Annals of Statistics, 28(2), 377-386, (2000))

Example: Wine Tasting

Let's use the AdaBoost algorithm to build a classifier that can distinguish between good wines and "bad" wines from the Vinho Verde area of Portugal using the data from Cortez et al.

We'll define a good wine as one with rating ≥ 0.7 on a scale from 0 to 1 , where

1 is a wine from Heaven and 0 is a wine from Hell!

First, let's look at the training data...

Wine Tasting

Data: [Cortez et al., 2009].

variables	description acetic
acetic acid citric	citric acid
sugar	residual sugar
salt	NaCl
SO2free	free sulfur dioxide
SO2tota	total sulfur dioxide
pH	pH
sulfate	potassium sulfate
alcohol	alcohol content
quality	(between 0 and 1)

Example: Wine Tasting

To make visualization easier, we'll use only two variables: SO2tota: the total sulfur dioxide content ($\mathrm{mg} / \mathrm{dm}^{3}$) alcohol: alcohol content (\% volume)

Input variable: SO2tota

Input variable: alcohol

Results

Distribution of BDT response

$$
B D T(x, y)=\sum_{k=0}^{99} a_{k} f\left(x, y, w_{k}\right)
$$

Fraction of bad wine rejected for a given fraction of good wine accepted.

Results

The upper figures are density plots of the training data.

The lower plots are

 approximations of

$$
D=\frac{p(x, y \mid \text { good })}{p(x, y \mid \text { good })+p(x, y \mid \text { bad })}
$$

The left, uses 2-D
histograms, the right uses the BDT.

Results

Let's dig more deeply...

Tree 0

Tree 1

Summary

- It is possible to average many relatively crude decision trees to obtain a better approximation to the function

$$
D(x, y)=\frac{p(x, y \mid \operatorname{good})}{p(x, y \mid \operatorname{good})+p(x, y \mid b a d)}
$$

- Tomorrow, we shall consider examples of classification and regression using neural networks.

[^0]: Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

