Introduction to Multivariate Methods Classification and Function Approximation

Harrison B. Prosper Florida State University

Bari Lectures 30, **31** May, 1 June 2016

1

Outline

- Lecture 1
 - Introduction
 - Classification
 - Grid Searches
 - Decision Trees
- Lecture 2
 - Boosted Decision Trees
- Lecture 3
 - Neural Networks
 - Bayesian Neural Networks

Recap: Goal

The goal of a typical multivariate method is to approximate the mapping of "inputs", or "features",

 $x = (x_1, x_2, ..., x_n)$

to "outputs", or "responses", y, where

$$y = f(\mathbf{x})$$

assuming some specific class $\{f\}$ of functions, together with some constraints on this class, e.g., the functions should be smooth.

Example: Wine Tasting

Today, we shall explore a method called **boosted decision trees** using the wine tasting example based on data by Cortez et al.*

* P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Recap: Decision Trees

Recap: Decision Trees

Decision tree:

a sequence of if then else statements.

Basic idea: recursively partition the space {*x*} into regions of increasing purity.

Geometrically, a decision tree is a *d-dimensional* histogram in which the bins are built using recursive *binary* partitioning.

Recap: Decision Trees

To each bin, we associate the 200 f(x) = 0f(x) = 1value of the function f(x) to be approximated. B = 10B = 1That way, we arrive at a S = 9*S* = 39 piecewise constant 100 approximation of f(x). f(x) = 0**PMT Hits** B = 37S = 40 Energy (GeV) 0.4 () MiniBoone, Byron Roe

Decision Trees

For each variable, find the 2(best partition ("cut"), defined as the one that yields the greatest *decrease* in impurity

- = **Impurity** (parent bin)
- Impurity ("left"-bin)
- Impurity ("right"-bin)

Then choose the best partition among all partitions, and repeat with each child bin

200	f(x)=0	f(x) = 1
	B = 10 $S = 9$	B = 1 $S = 39$
PMT Hits 0		f(x) = 0
	B = 37 $S = 4$	
0) Energy	(GeV) 0.4

Decision Trees

The most common impurity measure is the Gini index (Corrado Gini, 1884-1965):

Gini index = p(1-p)where p is the purity p = S / (S+B)

p = 0 or 1 = maximal purityp = 0.5 = maximal impurity

200	f(x) = 0	f(x) = 1
	B = 10 $S = 9$	B = 1 $S = 39$
PMT Hits 001		f(x)=0
LMG 0	B = 37 $S = 4$	
U	0 Energy	(GeV) 0.4

Boosted Decision Trees

Introduction

- Until relatively recently, the goal of researchers who worked on classification methods was to construct directly a *single* high performance classifier.
- However, in 1997, AT&T researchers Y. Freund and R.E. Schapire [Journal of Computer and Sys. Sci. 55 (1), 119 (1997)], showed that it was possible to build highly effective classifiers by combining many weak ones!

Journal of computer and system sciences $\mathbf{55},\,119{-}139\;(1997)$ article no. SS971504

This was the first successful method to *boost* (i.e., enhance)^{A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting* the performance of poorly performing classifiers by averaging them.}

Averaging Weak Learners

Suppose you have a collection of classifiers $f(x, w_k)$, which, individually, perform only marginally better than random guessing. Such classifiers are called weak learners.

It is possible to build highly effective classifiers by *averaging* many weak learners:

$$f(x) = a_0 + \sum_{k=1}^{K} a_k f(x, w_k)$$

Jeromme Friedman & Bogdan Popescu (2008)

Averaging Weak Learners

The most popular methods (used mostly with decision trees) are:

- Bagging: each tree is trained on a bootstrap* sample drawn from the training set
- Random Forest: bagging with randomized trees
- Boosting: each tree trained on a different reweighting of the training set

*A bootstrap sample is a sample of size N drawn, *with replacement*, from another of the same size. Duplicates can occur and are allowed.

Adaptive Boosting

The AdaBoost algorithm of Freund and Schapire uses decision trees f(x, w) as the weak learners, where w are weights assigned to the objects to be classified, each associated with a label $y = \pm 1$, e.g., +1 for good wine, -1 for bad.

The value assigned to each leaf of f(x, w) is also ± 1 .

Consequently, for object *n*, associated with values (y_n, x_n) , the product

$f(x_n, \mathbf{w}) y_n > 0$	for a correct classification
$f(x_n, w) y_n < 0$	for an incorrect classification

Next, we consider the actual boosting algorithm...

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting

Initialize weights *w* in training set (e.g., setting each to 1/N) For k = 1 to *K*:

- 1. Create a decision tree f(x, w) using the current weights.
- 2. Compute its error rate ε on the *weighted* training set.
- 3. Compute $\alpha = \ln (1 \varepsilon) / \varepsilon$ and store as $\alpha_k = \alpha$
- 4. Update each weight w_n in the training set as follows: new- $w_n = w_n \exp[-\alpha_k f(x_n, w) y_n]/A$, where A is a normalization constant such that $\sum new-w_n = 1$. Since $f(x_n, w) y_n < 0$ for an incorrect classification, the weight of misclassified objects is *increased*.

At the end, compute the average $f(x) = \sum \alpha_k f(x, w_k)$

Y. Freund and R.E. Schapire. Journal of Computer and Sys. Sci. 55 (1), 119 (1997)

Adaptive Boosting

AdaBoost is a very non-intuitive algorithm. However, soon after its invention Friedman, Hastie and Tibshirani showed that the algorithm is mathematically equivalent to minimizing the following risk (or cost) function

$$R(F) = \int p(x, y) \exp(-yF(x)) dx dy,$$

where $F(x) = \sum_{k=1}^{K} \alpha_{k} f(x, w_{k})$

which implies that $D(x) = \frac{\sum_{k=1}^{k} 1}{1 + \exp(-2F(x))}$

can be interpreted as a probability, even though *F* cannot!

J. Friedman, T. Hastie and R. Tibshirani, ("Additive logistic regression: a statistical view of boosting," The Annals of Statistics, 28(2), 377-386, (2000))

Example: Wine Tasting

Let's use the AdaBoost algorithm to build a classifier that can distinguish between good wines and "bad" wines from the

Vinho Verde area of Portugal using the data from Cortez *et al*.

We'll define a good wine as one with rating ≥ 0.7 on a scale from 0 to 1, where

1 is a wine from Heaven and 0 is a wine from Hell!

First, let's look at the training data...

Wine Tasting

Data: [Cortez et al., 2009].

variables	description
acetic	acetic acid
citric	citric acid
sugar	residual sugar
salt	NaCl
SO2free	free sulfur dioxide
SO2tota	total sulfur dioxide
pН	pН
sulfate	potassium sulfate
alcohol	alcohol content
quality	(between 0 and 1)

Example: Wine Tasting

To make visualization easier, we'll use only two variables:

- SO2tota: the total sulfur dioxide content (mg/dm³)
- alcohol: alcohol content (% volume)

Results

$$\begin{array}{ll} x & = \text{SO2tota} \\ y & = \text{alcohol} \end{array}$$

Results

Let's dig more deeply...

Tree 0

Tree 1

Summary

• It is possible to average many relatively crude decision trees to obtain a better approximation to the function

$$D(x,y) = \frac{p(x,y \mid good)}{p(x,y \mid good) + p(x,y \mid bad)}$$

• Tomorrow, we shall consider examples of classification and regression using neural networks.