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Abstract

Here we describe the 1.2 update to NLOX, a computer program for calculations in high-energy
particle physics. New features since the 1.0 release and other changes are described, along with
usage documentation.
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NEW VERSION PROGRAM SUMMARY

Program Title: NLOX
Licensing provisions: CC BY NC 3.0
Programming language: C++. Fortran interface available, and Fortran compiler required for dependencies.
Does the new version supersede the previous version?: Yes
Reasons for the new version: New features; performance and stability improvements.
Summary of revisions: New expansion modes; color-correlated matrix elements; runtime parameter setting;
improved cross-checks and stability.
Nature of problem: The computation of higher-order terms in the coupling expansion of Standard Model
scattering amplitudes is required for precision studies in collider experiments. Techniques for computing
the first corrections are well-known, and are now suited to automation. We wish to provide code that
calculates virtual (one-loop) quantum chromodynamics and electroweak corrections for desired amplitudes
using a package that automates the production of this code.
Solution method: We use Python scripts and a computer algebra system, FORM, to reduce virtual ampli-
tudes to C++ code and data based on Feynman rules of the Standard Model. The scripts perform a tensor
decomposition of the one loop integral to reduce the amplitude to dependence on tensor integral coefficients.
These coefficients are called at runtime by the provided library TRed, which performs tensor reduction into
base (scalar) coefficients at runtime. The scripts identify repeated structures to be calculated once in the
produced code for efficiency. The tensor reduction code is designed such that needed tensor coefficients
need to be computed only once per evaluation of the desired amplitude, and are built recursively from other
needed coefficients.
Additional comments including Restrictions and Unusual features: The code-producing scripts are not pro-
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vided in this release, only fixed libraries such as TRed and required interface code for pre-generated processes.
Some processes are provided with this release, with others available upon request.
Required External Dependencies: QCDLoop 1.95, OneLOop 3.6 (available for download in utility tarball).
Required Compilers: gcc 4.6 or higher. Interface to certain optional libraries requires C++ 11 support found
in gcc 4.7 or higher.
Operating System: Linux, MacOS.

1. Introduction

NLOX is a one-loop provider that allows for the automated calculation of one-loop QCD and
electroweak (EW) corrections to Standard Model (SM) scattering amplitudes. Based on Feynman-
diagram techniques, it has been developed to optimize the manipulation of symbolic and tensor
structures recurring in one-loop amplitudes. The first release of the code (v1.0) [1] consisted of the
main tensor-integral reduction library, TRed, and several pre-generated processes. Further processes
have been produced upon demand for various projects. All core functionalities of NLOX v1.0 have
been presented in detail in Ref. [1] to which we refer.

Since v1.0 the code has seen a substantial number of important additions aimed at improving
the numerical stability of the one-loop amplitudes and the interface to external codes. Among the
most important additions are improved stability checks in the tensor reduction performed by TRed

and new routines that check at runtime the IR pole structure of virtual amplitudes against the IR
pole structure of the corresponding real emission, order by order in the QCD+EW couplings. These
new IR checks are implemented using color-correlated amplitudes that are now also independently
obtainable from the code. Given the impact that these improvements will have on the succesful use
of the code, we have included them in the new NLOX v1.2 that is being released.

In the following, Sections 2 and 3 present a more technical description of all the code’s new
features and improvements, while future developments are outlined in Section 4.

2. New features

2.1. New modes for perturbative expansions

NLOX now has interface support for automatic compilation of all sub-amplitudes that con-
tribute to the same overall power of αs (QCD) and αe (QED) in the interference between tree
level and tree level or one-loop amplitudes for any given sub-process. This α-mode complement the
existing possibility of compiling sub-amplitudes by specifying the gs (g2s = 4παs) and e (e2 = 4παe)
power of the interfering tree level and tree level or one-loop amplitudes [1].

The compiled result with a fixed power of both αs and αe can be accessed via the OLP function
NLOX OLP EvalSubProcess by passing the corresponding string (cp) specifying the coupling-power
combination. In a C++ program this OLP function takes the form:

NLOX OLP EvalSubProcess(isub, type, cp, p, next, mu, rval, acc)

where the arguments follow the BLHA standard [2]:
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• isub: Integer number specifying the index of the desired sub-process as defined in the sub-
process list in nlox process.h.

• type: Character string specifying the interference type, both tree tree and tree loop are
supported.

• cp: Character string specifying the coupling-power combination of the interference type in
question, both gXeY gX′eY′ and asWaeZ are supported.

• p: Array of double-precision numbers specifying the external momenta and masses, each
momenta must be followed by its mass.

• next: Integer number specifying the number of external particles.

• mu: Double-precision number specifying the renormalization scale (in GeV).

• rval: Return value pointer, the container must allow for 3 double-precision numbers to be
stored corresponding to double pole, single pole, and finite part.

• acc: Accuracy pointer, the container must allow for a single double-precision value to be
stored.

In a Fortran program this OLP function takes extra arguments specifying the length of the inter-
ference type and of the coupling power combination:

NLOX OLP EvalSubProcess(isub, type, ltyp, cp, lcp, p, next, mu, rval, acc)

where the extra arguments of this function are:

• ltyp: Integer specifying the length of the interference type string.

• lcp: Integer specifying the length of the coupling-power combination string.

A detail worth mentioning is that for NLOX the two contributions gXeY gX′eY′ and gX′eY′ gXeY

are different contributions that one must collect and sum if one decides to use the {g,e} specifi-
cation for coupling powers, while in the α-mode all sub-amplitudes with the same overall power of
αs and αe are summed over, and so these two will be summed up by the OLP function automatically.

2.2. Color-correlated output

NLOX is now capable of providing color-correlated Born-level matrix elements Bij . The nor-
malization convention used is:

Bij =<MC1,...,Ci,...,Cj ,...,Cm |(Ta)CiDi
(Ta)CjDj

|MC1,...,Di,...,Dj ,...,Cm >

where the matrices Ta denote the generators of the SU(3) algebra and the indices {Ci, Di} are
generic indices associated to the SU(3) representation under which the i-th particle transforms.
More specifically [3] the (Ta)CiDi

are defined as:

(Ta)CiDi =


(T a)αβ for initial quarks and final anti-quarks,

−(T a)βα for initial anti-quarks and final quarks,

if cab for gluons,
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where (T a)αβ (α, β = 1, 2, 3) are the Gell-Mann matrices and fabc (a, b, c = 1, . . . , 8) are the SU(3)
structure constants. For direct evaluation, there is a dedicated OLP level function that calls for
the evaluation of color-correlated matrix elements:

NLOX OLP EvalSubProcess CC(isub, type, cp, p, next, mu, borncc, acc)

which can only be called for Born-level matrix elements. The container that borncc points to must
be able to store the uncorrelated Born-level matrix element as well as the Bij components for which
j > i, while the components with i > j can be obtained via symmetry from the Bij . The first
element in the container is reserved for the uncorrelated Born, and the subsequent [n(n − 1)]/2
elements correspond to the components of Bij using lexicographical order on (i, j).

For Fortran programs the OLP function takes extra arguments specifying the length of the
interference type as well as the coupling power combination:

NLOX OLP EvalSubProcess CC(isub, type, ltyp, cp, lcp, p, next, mu, rval, acc)

where the extra arguments of this function are:

• ltyp: Integer specifying the length of the interference type string.

• lcp: Integer specifying the length of the coupling-power combination string.

For debugging purposes the generation of color-correlated Born matrix elements can be deactivated
in the input file by setting:

generateColorCorrelations = false

By default generateColorCorrelations is set to true.

2.3. Runtime amplitude-level pole checks

Routines that calculate the IR pole structure of the real emission associated to a given Born
amplitude have been newly implemented within NLOX, but are only computed in the α-mode of
coupling-power specification. The virtual IR poles are computed independently in the combination
of loop and counterterm diagrams, and must cancel the real IR poles in the Gµ input scheme.5 If
real and virtual IR poles must cancel against each other, checking for the goodness of zero of their
sum can be used to provide a check on the stability of the tensor reduction algorithm. The user
has access to this new feature via the acc flag of the NLOX OLP EvalSubProcess function. This flag
has different behavior depending on the particular type of cp the user specifies:

• cp=gXeY gWeZ: acc is either 0 for success or −1 for failure, where failure is internally deter-
mined by TRed as described in 3.1.

5Because NLOX only allows nonzero masses for the b and t quarks, EW renormalization in the α(0) scheme
formally produces IR poles arising from massless fermions that remain after combination with those arising from
real radiation, and must be compensated externally. Thus, in the α(0) cheme, the IR pole-checking feature is only
useful for strictly QCD corrections, while it works for both QCD and EW corrections in the Gµ scheme (GmuScheme
= true).

4



• cp=asWaeZ: acc is −1 for a TRed failure. In case of a TRed success the acc flag returns the
accuracy of the virtual IR single pole relative to the real IR single pole.

The calculation of the real IR poles is performed using the dipole-subtraction formalism and it
requires the internal evaluation of color-correlated Born matrix elements [3]. Due to this fact if the
generation of color-correlated amplitudes is turned off via the input file (see Sec. 2.2) this will also
have the effect of turning off the amplitude level IR pole checks.

2.4. Runtime parameter setting

In order to change physical parameters at runtime, NLOX now supports the Les Houches [2]
standard function OLP SetParameter():

NLOX OLP SetParameter(para, re, im, ierr)

whose arguments are:

• para: Character array, the name of the parameter to be changed. The currently supported
names are:

– "alpha e": αe, the QED fine structure constant.

– "alpha s": αs, the QCD coupling constant.

– "mb", "mt", "mH", "mW", "mZ": masses of supported massive particles.

– "wH", "wW", "wZ": widths of supported particles. At present unstable fermions are not
officially supported, and giving a nonzero width to an external particle will result in
undetermined behavior.

– "nlf" the number of light quark flavors to be used for renormalization purposes.

– "nhf" the number of heavy quark flavors to be used for renormalization purposes.

– "mu" the renormalization scale.
It is recommended that one change these values only as often as necessary. For masses and
widths in particular, changing the value can result in expensive reallocations and computa-
tions.

• re: Pointer to a double precision number holding the new real part of the value to be set.

• im: Pointer to a double precision number. This should be a dummy variable, as NLOX does
not currently support setting parameters to complex values through this function.

• ierr: Pointer to an integer to store the return flag of the function. Set to 1 if successful and
2 if the name is unknown.

For Fortran programs the SetParameter function takes an extra argument:

NLOX OLP SetParameter(para, lpara, re, im, ierr)

where the extra argument of this function is:

• lpara: Integer specifying the length of the parameter name string.
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3. Improvements and other changes

3.1. TRed stability checks

Since its original release, the TRed library has internally checked the stability of the tensor-
integral reduction. Its primary check is to compare the single pole term (the coefficient c1 in the
expansion c2ε

−2 + c1ε
−1 + c0 of a given tensor-integral coefficient) to an internal fast-evaluating

library for coefficients that are infrared finite. This is a direct cross-check, that allows early cor-
rection of individual coefficients through recalculation at higher precision, and acts as a first-pass
filter of potential instabilities, and has now been complemented by the IR-pole check described in
Section 2.3. In this new release of NLOX we have improved its effectiveness as described in the
following.

The driver of instability for the primary reduction method, Passarino-Veltman [4], is unstable
matrix inversion involving the Gram matrix Gij ≡ 2pi · pj for loop internal momenta pi. In
particular, the determinant of this matrix becomes small as it becomes degenerate, and as it appears
explicitly in the denominator of reduction formulae, an imprecise cancellation in the numerator of
the reduction can result in large incorrect results. To guard against this problem, in previous
versions TRed has compared the size of the Gram determinant to an appropriate-scaling quantity,
E2(N−1) for E a scale in the problem. However, one can improve on the sensitivity and specificity
of this test with more information, reducing the failures for acceptable phase space points and
catching others that may have been problematic. To this end, we have improved the test to more
directly check the instability of the linear system.

A geometric interpretation of a determinant is that it is the volume of the parallelepiped spanned
by the matrix’s row (or column) vectors. As the vectors become linearly dependent, the volume of
this space shrinks to zero, and the space spanned by them loses a dimension. Therefore, a direct
measure of the smallness of the determinant compares it to the maximal volume such a space would
have with the same-sized vectors, i.e., if they were orthogonal. Our new test compares detGij
to

∏
j | ~Gi|. The specificity of this test has allowed us to pass many configurations that would

previously have been thrown out, even while preventing unhandled instabilities that could occur in
collinear configurations for some processes.

Since TRed relies on external scalar integral libraries for the endpoint of its reduction, it is only
as good as the precision of those libraries. In particular, in the small determinant case above,
combinations of scalar integrals appearing may cancel in the limit of degenerate configurations.
While TRed will attempt to do the reduction in higher precision, if the scalars only match to a
lower precision, this can result in poor behavior regardless. Therefore we have reconfigured the
installation of the default scalar library, OneLOop [5], to install quadruple-precision versions of its
functions, and adjusted TRed to make use of them as appropriate.

3.2. Code size optimizations

Expressions resulting from the algebraic construction of the expression for a process squared
amplitude naturally can be large for complicated processes, especially if many masses are involved
or the theory has non-trivial expressions for interactions, as in the case of the broken electroweak
theory. We have focused on simplifying expressions, especially finding overall factors, and finding
common structures such that the resulting code size is smaller. These optimizations can result in a
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reduction of code size of as much as a factor of two in extreme situations compared to the version
1.0 release. These optimizations improve runtime speed as well if the speed is process-cache or
memory-speed limited.

Since much of the resulting algebraic data has been removed from code generation entirely, and
placed into process data files, this is the dominant contribution to a process package size. We
have eliminated some empty files and redundant structures to further reduce the size of a process
package.

4. Outlook

We have described the important changes to NLOX since its original release. The main focus
has been on numerical stability. We have reorganized internal integral stability checks for accuracy
and efficiency. We have also added a new stability check by implementing the dipole subtraction
formalism, which contains the singular part of the real radiation contribution to next-to-lowest-order
amplitudes and allows us to exploit the finiteness of combined next-to-lowest-order amplitudes to
detect problems at the level of the final answer.

The implementation of the dipole formalism has also exposed a new functionality to the user,
that of Born-level color-correlated amplitudes, which may be of use to users wishing to interface
NLOX to Monte Carlo simulators requesting these amplitudes.

This release has also seen the implementation of runtime parameter setting, further imple-
menting the Les Houches Accord next-to-lowest-order function interface and making the process of
interfacing NLOX to external programs more convenient.

While this 1.2 release and its predecessor, 1.1, have focused on stability and ease of use, we
anticipate the next releases will focus on speed and size efficiency, while also continuing to improve
the ease of use and organization of the non-public process archive generation features so that the
full package may be released.

To access the host URL for the NLOX package, please go to http://www.hep.fsu.edu/~nlox/

v1.2.0/.
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