2nd set of corrections to Relativity, Gravitation and Cosmology 2e by Ta-Pei Cheng (August, 2010) - four pages

- p.114, right hand side of Eq (6.38): Remove the minus sign so that the displayed equation reads as

$$
\begin{equation*}
\kappa=\frac{8 \pi G_{\mathrm{N}}}{c^{4}} . \tag{6.38}
\end{equation*}
$$

- p.137, right hand side of Eq.(7.84): Remove last part of the equation so that the displayed equation reads as

$$
\begin{equation*}
c t_{\delta}\left(r, r_{0}\right)=\frac{r^{*}}{2}+r^{*} \ln \left(\frac{2 r}{r_{0}}\right) . \tag{7.84}
\end{equation*}
$$

- p.137, Eq.(7.85) as well as the sentence above this equation:

Modify last part of the sentence and the displayed equation so that they read as
"Thus, when the distance from the spherical gravitational source M to the closest point r_{0} is much smaller than either of the distances to A or to B, the total time delay for a light pulse traveling round trip between A and B, obtained by using $(7.72),,(7.73)$ and (7.84), is:

$$
\begin{align*}
\Delta t_{\delta} & =2\left[t_{\delta}\left(r_{A}, r_{0}\right)+t_{\delta}\left(r_{B}, r_{0}\right)\right] \\
& =\frac{4 G_{\mathrm{N}} M}{c^{3}}\left[\ln \left(\frac{4 r_{A} r_{B}}{r_{0}^{2}}\right)+1\right] . \tag{7.85}
\end{align*}
$$

- p.238, one line below subsection heading " Λ as a modification of the geometry side": Remove the minus sign in front of the expression $8 \pi c^{-4} G_{\mathrm{N}}$ so that the inline equation reads as " $\kappa=8 \pi c^{-4} G_{\mathrm{N}}$."
- p.238, left hand side of Eq (11.1): Change the minus sign to a plus sign in front of the Greek symbol Lambda so that the displayed equation reads as

$$
\begin{equation*}
G_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu} . \tag{11.1}
\end{equation*}
$$

- p.239, middle part of the first displayed equation on this page (no equation number): Insert a minus sign in front of the Greek symbol Lambda so that the displayed equation reads as

$$
G_{\mu \nu}=-\Lambda g_{\mu \nu} \equiv \kappa T_{\mu \nu}^{\Lambda} .
$$

- p.323, right hand side of Eq (14.21): Insert a minus sign in front of the factor of $\frac{1}{2}$ so that the displayed equation reads as

$$
\begin{equation*}
R_{\mu \nu \alpha \beta}=-\frac{1}{2}\left(\partial_{\mu} \partial_{\alpha} g_{\nu \beta}-\partial_{\nu} \partial_{\alpha} g_{\mu \beta}+\partial_{\nu} \partial_{\beta} g_{\mu \alpha}-\partial_{\mu} \partial_{\beta} g_{\nu \alpha}\right) . \tag{14.21}
\end{equation*}
$$

- p.323, right hand side of Eq (14.22): Insert a minus sign in front of the factor of $\frac{g^{i j}}{2}$ so that the displayed equation reads as

$$
\begin{equation*}
R_{00}=g^{i j} R_{i 0 j 0}=-\frac{g^{i j}}{2}\left(\partial_{i} \partial_{j} g_{00}-\partial_{0} \partial_{j} g_{i 0}+\partial_{0} \partial_{0} g_{i j}-\partial_{i} \partial_{0} g_{0 j}\right) \tag{14.22}
\end{equation*}
$$

- p.323, right hand side of Eq (14.23): Insert a minus sign in front of the factor of $\frac{1}{2}$ so that the displayed equation reads as

$$
\begin{equation*}
R_{00}=-\frac{1}{2} \nabla^{2} g_{00} \tag{14.23}
\end{equation*}
$$

- p.323, left hand side of the last equation at the bottom of the page: Remove the minus sign in front of the expression $\frac{1}{2} \nabla^{2}\left(1+2 \frac{\Phi}{c^{2}}\right)$ so that the displayed equation reads as

$$
\frac{1}{2} \nabla^{2}\left(1+2 \frac{\Phi}{c^{2}}\right)=\frac{1}{2} \kappa \rho c^{2}
$$

- p.324, right hand side of Eq.(14.24): Remove the minus sign so that the displayed equation reads as

$$
\begin{equation*}
\nabla^{2} \Phi=\frac{1}{2} \kappa \rho c^{4} \tag{14.24}
\end{equation*}
$$

- p.324, right hand side of Eq.(14.25): Remove the minus sign so that the displayed equation reads as

$$
\begin{equation*}
\kappa=\frac{8 \pi G_{N}}{c^{4}} . \tag{14.25}
\end{equation*}
$$

- p.324, right hand side of Eq.(14.26): Remove the minus sign so that the displayed equation reads as

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G_{\mathrm{N}}}{c^{4}} T_{\mu \nu} \tag{14.26}
\end{equation*}
$$

- p.324, right hand side of Eq.(14.27): Remove the minus sign so that the displayed equation reads as

$$
\begin{equation*}
R_{\mu \nu}=\frac{8 \pi G_{\mathrm{N}}}{c^{4}}\left(T_{\mu \nu}-\frac{1}{2} T g_{\mu \nu}\right) . \tag{14.27}
\end{equation*}
$$

- p.324, sidenote 3: Change the last minus sign to a plus sign in $(++-)$ as well as inserting a phrase "to [S2] as well as" after the word "related" so that the side note reads as
${ }^{3}$ Beware of various sign conventions $[S]= \pm 1$ used in the literature:

$$
\begin{aligned}
\eta_{\mu \nu}= & {[S 1] \times \operatorname{diag}(-1,1,1,1) } \\
R_{\lambda \alpha \beta}^{\mu}= & {[S 2] \times\left(\partial_{\alpha} \Gamma_{\lambda \beta}^{\mu}-\partial_{\beta} \Gamma_{\lambda \alpha}^{\mu}\right.} \\
& \left.+\Gamma_{\nu \alpha}^{\mu} \Gamma_{\lambda \beta}^{\nu}-\Gamma_{\nu \beta}^{\mu} \Gamma_{\lambda \alpha}^{\nu}\right) \\
G_{\mu \nu}= & {[S 3] \times \frac{8 \pi G}{c^{4}} T_{\mu \nu} . }
\end{aligned}
$$

Thus our convention is $[S 1, S 2, S 3]=(+++)$. The sign in the Einstein equation $[S 3]$ is related to $[S 2]$ as well as to the sign convention in the definition of the Ricci tensor $R_{\mu \nu}=R_{\mu \alpha \nu}^{\alpha}$." (To copy editor: please make sure that the square brackets are not omitted.)

- p.333, right hand side of inline equation in item 1 , three lines above Eq.(14.68): Remove the minus sign so that the line reads as
"1. The $G_{00}=8 \pi G_{\mathrm{N}} \rho / c^{2}$ equation can then be written (again after a"
- p.333, right hand side of inline equation in item 2, two lines above Eq.(14.69): Remove the minus sign so that the line reads as
"2. From the $G_{i j}=8 \pi G_{\mathrm{N}} p g_{i j} / c^{4}$ equation, we have the second"
- p.333, the right hand side of the inline equation just above Eq.(14.70): $\underline{\text { Remove the minus sign so that the inline equation reads as "(with } \kappa=}$ $\left.8 \pi G_{\mathrm{N}} / c^{4}\right)^{\prime \prime}$
- p.333, left hand side of Eq.(14.70): Change the middle minus sign to plus sign so that the equation reads as

$$
\begin{equation*}
G_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu} \tag{14.70}
\end{equation*}
$$

- p.334, middle of Eq.(14.71): Change the middle plus sign to a minus sign so that the displayed equation reads as

$$
\begin{equation*}
G_{\mu \nu}=\kappa\left(T_{\mu \nu}-\kappa^{-1} \Lambda g_{\mu \nu}\right)=\kappa\left(T_{\mu \nu}+T_{\mu \nu}^{\Lambda}\right) \tag{14.71}
\end{equation*}
$$

- p.334, one line below Eq.(14.71): Insert a minus sign in front of $\kappa^{-1} \Lambda g_{\mu \nu}$ on the right hand side of the inline equation so that the line reads as "where $T_{\mu \nu}^{\Lambda}=-\kappa^{-1} \Lambda g_{\mu \nu}$ can be called the "vacuum energy tensor."
- p.334, in the middle of Eq.(14.72): Insert a minus sign in front of Λ / κ so that the displayed equation reads as

$$
T_{\mu \nu}^{\Lambda}=-\frac{\Lambda}{\kappa}\left(\begin{array}{cc}
-1 & 0 \tag{14.72}\\
0 & g_{i j}
\end{array}\right) \equiv\left(\begin{array}{cc}
\rho_{\Lambda} c^{2} & 0 \\
0 & p_{\Lambda} g_{i j}
\end{array}\right)
$$

- p.334, in the middle of Eq.(14.73): Remove a minus sign in front of $\Lambda / \kappa c^{2}$ so that the displayed equation reads as

$$
\begin{equation*}
\rho_{\Lambda}=\frac{\Lambda}{\kappa c^{2}}=\frac{\Lambda c^{2}}{8 \pi G_{\mathrm{N}}}, \tag{14.73}
\end{equation*}
$$

- p.339, right hand side of Eq.(15.10): Remove a minus sign so that the displayed equation reads as

$$
\begin{equation*}
G_{\mu \nu}^{(1)}=\frac{8 \pi G_{N}}{c^{4}} T_{\mu \nu}^{(0)} . \tag{15.10}
\end{equation*}
$$

- p. 348 , right hand side of second equation from top (no equation number): Remove the minus sign so that the displayed equation reads as

$$
R_{\mu \nu}^{(b)}-\frac{1}{2} \eta_{\mu \nu} R^{(b)}=\frac{8 \pi G_{\mathrm{N}}}{c^{4}} t_{\mu \nu} .
$$

- p.348, right hand side of Eq.(15.40): Insert a minus sign so that the displayed equation reads as

$$
\begin{equation*}
t_{\mu \nu}=-\frac{c^{4}}{8 \pi G_{N}}\left(R_{\mu \nu}^{(2)}-\frac{1}{2} \eta_{\mu \nu} R^{(2)}\right) . \tag{15.40}
\end{equation*}
$$

- p.348, right hand side of Eq.(15.41): Insert a minus sign so that the displayed equation reads as

$$
\begin{equation*}
t_{\mu \nu}=-\frac{c^{4}}{8 \pi G_{N}}\left[\left\langle R_{\mu \nu}^{(2)}\right\rangle-\frac{1}{2} \eta_{\mu \nu}\left\langle R^{(2)}\right\rangle\right] \tag{15.41}
\end{equation*}
$$

- p.349, right hand side of the second set of displayed equation in Eq.(15.47): Insert a minus sign so that the displayed equations read as

$$
\begin{equation*}
R_{11}^{(2)}=R_{22}^{(2)}=0 \quad \text { and } \quad R_{00}^{(2)}=R_{33}^{(2)}=-\frac{1}{2}\left(\partial_{0} \tilde{h}_{+}\right)^{2} \tag{15.47}
\end{equation*}
$$

- p.371, answer key \#9 to Review Questions of Chapter 14:

Change the minus sign to a plus sign in the inline expression $\Lambda g_{\mu \nu}$ and change the plus sign to a minus sign in displayed equation (no equation number) so that $\# 9$ answer key reads as
" 9 . Moving the $+\Lambda g_{\mu \nu}$ term to the source side of the equation, we get

$$
G_{\mu \nu}=\kappa\left(T_{\mu \nu}-\kappa^{-1} \Lambda g_{\mu \nu}\right)=\kappa\left(T_{\mu \nu}+T_{\mu \nu}^{\Lambda}\right) .
$$

Thus, even in the absence of matter/energy source $T_{\mu \nu}=0$ (i.e., a vacuum), space can still be curved by the Λ term."

- p.417, 14th line from the top: Remove the minus sign so the line reads as $\kappa \quad 6.3 \quad$ gravity strength $\left(8 \pi G_{\mathrm{N}} / c^{4}\right)$

