3rd set of Corrections Relativity, Gravitation and Cosmology 2e by Ta-Pei Cheng (September, 2010) - one page

- p.336, last expression on the right hand side of Eq (14.83):

Delete the factor of 4 in the denominator so that the displayed equation reads as

$$
\begin{align*}
\Delta \phi & =2 \pi\left(1-\frac{\Omega^{\prime}}{\Omega}\right)=2 \pi\left[1-\left(1-\frac{3 r^{*}}{2 R}\right)^{1 / 2}\right] \\
& \simeq \frac{3 \pi}{2} \frac{r^{*}}{R}=\frac{3 \pi}{c^{2}} \frac{G_{\mathrm{N}} M}{R} . \tag{14.83}
\end{align*}
$$

- p.410, first two lines of text on top of the page, just above Eq.(44): Replace the entire sentence as well as change the subscript of the Γ sym$\overline{\text { bol on the left hand side of the first equation in (44) from }} \Gamma_{r t}^{r}$ to $\Gamma_{t t}^{r}$ so that the text and equation together read as
"From the (t-independent) metric in (42) we can calculate the Christoffel symbols as in (14.32) - but restricted to $r=R$ and $\theta=\pi / 2$. The relevant non-vanishing elements are

$$
\begin{align*}
\Gamma_{t t}^{r} & =\frac{r^{*}}{2 R^{2}}\left(1-\frac{r^{*}}{R}\right), \quad \Gamma_{\phi \phi}^{r}=-R\left(1-\frac{r^{*}}{R}\right), \\
\Gamma_{r t}^{t} & =\frac{r^{*}}{2 R^{2}}\left(1-\frac{r^{*}}{R}\right)^{-1}, \quad \Gamma_{r \phi}^{\phi}=\frac{1}{R} . \tag{44}
\end{align*}
$$

- p.410, left hand sides of Eq.(46) and the not-numbered equation after (46): Insert missing factors of 2 in the second term inside the parenthesis, so the equations should read

$$
\begin{equation*}
\frac{d S^{r}}{d t}-R \Omega\left(1-\frac{3 r^{*}}{2 R}\right) S^{\phi}=0 . \tag{46}
\end{equation*}
$$

and

$$
\frac{d^{2} S^{r}}{d t^{2}}-R \Omega\left(1-\frac{3 r^{*}}{2 R}\right) \frac{d S^{\phi}}{d t}=0
$$

- p.410, left hand sides of Eq.(48) and the text following the equation: Insert a missing factor of 2 inside the parenthesis, and add a qualifying clause at the beginning of the paragraph below the equation so that they read as

$$
\begin{equation*}
\Omega^{\prime}=\left(1-\frac{3 r^{*}}{2 R}\right)^{1 / 2} \Omega \tag{48}
\end{equation*}
$$

which is given in Eq.(14.80). The simple harmonic oscillator equation (47), ...

