3. Show that the line element $d s^{2}=y^{2} d x^{2}+x^{2} d y^{2}$ represents the Euclidean plane, but the line element $d s^{2}=y d x^{2}+x d y^{2}$ represents a curved two-dimensional space. (Hint: Calculate the elements of the metric tensor, the Christoffel symbols, and then the Riemann curvature tensor. From the latter, calculate the Gaussian curvature K as noted at the top of page 314. (Note: There are two typographical erros at the top of page 314. The correct relationships are $K=\frac{1}{g} R_{1212}$ and $R=2 K$.)
(4.) A spacetime has the metric

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left(d x^{2}+d y^{2}+d z^{2}\right)
$$

Show that the only non-zero connection coefficients are

$$
\Gamma_{11}^{0}=\Gamma_{22}^{0}=\Gamma_{33}^{0}=a \dot{a} \text { and } \Gamma_{10}^{1}=\Gamma_{20}^{2}=\Gamma_{30}^{3}=\dot{a} / a
$$

Show that particles may be at rest in such a spacetime and that for such particles the coordinate t is their proper time. What is the time dependence of the the separation $d s^{2}$ for two particles initially separated by some distance in space?

Show that the non-zero components of the Ricci tensor are

$$
R_{00}=-3 \ddot{a} / a \text { and } R_{11}=R_{22}=R_{33}=a \ddot{a}+2 \dot{a}^{2}
$$

Hence show that the 00 -component of the Einstein tensor is $G_{00}=3 \dot{a}^{2} / a^{2}$.
(Note also that the dot notation used here means $\dot{a}=\frac{\partial a}{\partial x^{0}}$.)

