1. Photons of frequency $\nu_{E}$ are emitted from the surface of the Sun and observed by an astronaut with fixed spatial coordinates at a large distance away. Obtain an expression for the frequency $\nu_{O}$ of the photons as measured by the astronaut. Hence, estimate the observed redshift of the photon.
2. An experimenter $A$ drops a pebble of rest mass $m$ in a uniform gravitational field $g$. At a distance $h$ below $A$, experimenter $B$ converts the pebble (with no energy loss) into a photon of frequency $\nu_{B}$. The photon passes $A$, who observes it to have frequency $\nu_{A}$. Use simple physical arguments to show that to a first approximation

$$
\frac{\nu_{B}}{\nu_{A}}=1+\frac{g h}{c^{2}}
$$

Use this result to argue that for two stationary observers $A$ and $B$ in a weak gravitational field with potential $\Phi$, the ratio of the rates at which their laboratory clocks run is $1+\frac{\Delta \Phi}{c^{2}}$, where $\Delta \Phi$ is the potential difference between $A$ and $B$.
3. A satellite in a circular polar orbit of radius $r$ around the Earth (radius $R$, mass $M$ ). A standard clock $C$ on the satellite is compared with an identical clock $C_{0}$ at the south pole on Earth. Show that the ratio of the rate of the orbiting clock to that of the clock on Earth is approximately

$$
1+\frac{G M}{R c^{2}}-\frac{3 G M}{2 r c^{2}}
$$

Note that the orbiting clock is faster only if $r>\frac{3}{2} R$, i.e., if $r-R>3184 \mathrm{~km}$. This is a simple model for the corrections needed in the GPS system.
4. A sodium lamp emits light in its rest frame with a wavelength of $5890 \AA$. If the lamp is placed on a turntable and is rotating with a speed of 0.2 c , what wavelength would an observer fixed at the center of the turntable measure?
(5). Using the Principle of Equivalence we derived a relationship between the frequency of a photon and the value of the gravitational potential it experiences:

$$
\frac{\omega_{1}-\omega_{2}}{\omega_{2}}=-\frac{\Phi_{1}-\Phi_{2}}{c^{2} .}
$$

This is valid if the change in $\Phi$ is small. However, if the change is large, then we should rewrite our result as

$$
\frac{d \omega}{\omega}=-\frac{d \Phi}{c^{2} .}
$$

a)Integrate this equation to find the relationship between the frequencies at two different locations in the gravitational potential.
b) Suppose that the Earth's density were to increase by a factor of $10^{9}$. Show that a clock at the surface of the Earth would run at one-half the rate of one at infinity.

