HW \#5

1. Consider a 2-sphere as described by the coordinates (r, ϕ) discussed in class.
a) Show that the circumference C is given by $C=2 \pi R \sin (r / R)$.
b) Show that the area of a circle of radius r is given by $A=2 \pi R^{2}[1-\cos (r / R)]$.
c) Show that these expressions take their usual values for a flat surface when $R \rightarrow \infty$.
2. Consider a 2-dimensional surface of a cylinder of radius R. For coordinates, choose conventional cylindrical coordinates with the z axis running along the axis of the cylinder. The coordinates for a point on the surface will thus be (z, ϕ).
a) Determine the elements of the metric tensor.
b) Use the geodesic equation to determine the parametric equation of a geodesic for this surface.
c) What type of curve is the geodesic in part b)? Discuss the geometry of this surface. Is it the same as that of a flat 2-dimensional space?
(3.) Consider an orthogonal coordinate system such that $g_{a b}=0$ for $a \neq b$.
a) Show that for a 2-dimensional surface the element of area is given by $d A=\sqrt{g_{11} g_{22}} d x^{1} d x^{2}$.
b) Show that the volume element in a 3-dimensional space is given by $d V=\sqrt{g_{11} g_{22} g_{33}} d x^{1} d x^{2} d x^{3}$.
c) Show that your results reduce to the familiar expressions for $d A$ in 2-dimensional polar coordinates and $d V$ in 3-dimensional spherical coordinates.
