1. By introducing the new coordinate

$$
r=\rho\left(1+\frac{r^{*}}{4 \rho}\right)^{2}
$$

show that the line element for the Schwarzschild geometry can be written in the isotropic form

$$
d s^{2}=-c^{2}\left(1-\frac{r^{*}}{4 \rho}\right)^{2}\left(1+\frac{r^{*}}{4 \rho}\right)^{-2} d t^{2}+\left(1+\frac{r^{*}}{4 \rho}\right)^{4}\left(d \rho^{2}+\rho^{2} d \theta^{2}+\rho^{2} \sin ^{2} \theta d \phi^{2}\right)
$$

Show that $g_{00} \approx-\left(1-\frac{r^{*}}{\rho}\right)$ in the weak-field limit $r^{*} \ll \rho$.
2. Show that the worldlines of radially moving photons in the Schwarzschild geometry are given by

$$
\begin{aligned}
c t & =r+r^{*} \ln \left|\frac{r}{r^{*}}-1\right|+\text { constant (outgoing photon), } \\
c t & =-r-r^{*} \ln \left|\frac{r}{r^{*}}-1\right|+\mathrm{constant} \quad \text { (incoming photon). }
\end{aligned}
$$

3. Show that, on the introduction of the advanced Eddington-Finkelstein timelike coordinate

$$
c t^{\prime}=c t+r^{*} \ln \left|r / r^{*}-1\right|
$$

the Schwarzschild line element takes the form

$$
d s^{2}=-c^{2}\left(1-\frac{r^{*}}{r}\right) d t^{\prime 2}+\frac{2 r^{*} c}{r} d t^{\prime} d r+\left(1+\frac{r^{*}}{r}\right) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Hence, show that the worldlines of radially moving photons in advanced Eddington-Finkelstein coordinates are given by

$$
\begin{aligned}
& c t^{\prime}=r+2 r^{*} \ln \left|r / r^{*}-1\right|+\text { constant (outgoing photon) } \\
& c t^{\prime}=-r+\text { constant (incoming photon) }
\end{aligned}
$$

4. Show that on introduction of the retarded Eddington-Finkelstein timelike coordinate

$$
c t^{*}=c t-r^{*} \ln \left|r / r^{*}-1\right|
$$

the Schwarzschild line element takes the form

$$
d s^{2}=-c^{2}\left(1-\frac{r^{*}}{r}\right) d t^{* 2}-\frac{2 r^{*} c}{r} d t^{*} d r+\left(1+\frac{r^{*}}{r}\right) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Hence, find the equations for the worldlines of radially moving photons in retarded Eddington-Finkelstein coordinates. Use this result to sketch the spacetime diagram showing the lightcone structure in this coordinate system.
(5.) A spherical distribution of dust of coordinate radius R and total mass M collapses from rest under its own gravity. Show that, as the collapse progresses, the coordinate radius r of the star's surface and the elapsed proper time τ of an observer sitting on the surface are related by

$$
\tau(r)=-\frac{1}{(2 G M)^{1 / 2}} \int_{R}^{r}\left(\frac{r}{1-r / R}\right)^{1 / 2} d r
$$

By making the substitution $r=R \cos ^{2}(\psi / 2)$, or otherwise, show that the solution can be expressed parametrically as

$$
r=\frac{R}{2}(1+\cos \psi), \quad \tau=\frac{R}{2}\left(\frac{R}{2 G M}\right)^{1 / 2}(\psi+\sin \psi)
$$

Calculate the proper time experienced by the observer before the star collapses to a point.

