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1 IntrodutionGeneral relativity (GR) is the most beautiful physial theory ever invented. Nevertheless,it has a reputation of being extremely diÆult, primarily for two reasons: tensors are ev-erywhere, and spaetime is urved. These two fats fore GR people to use a di�erentlanguage than everyone else, whih makes the theory somewhat inaessible. Nevertheless,it is possible to grasp the basis of the theory, even if you're not Einstein (and who is?).GR an be summed up in two statements: 1) Spaetime is a urved pseudo-Riemannianmanifold with a metri of signature (�+++). 2) The relationship between matter and theurvature of spaetime is ontained in the equationR�� � 12Rg�� = 8�GT�� : (1)However, these statements are inomprehensible unless you sling the lingo. So that's what weshall start doing. Note, however, that this introdution is a very pragmati a�air, intendedto give you some immediate feel for the language of GR. It does not substitute for a deepunderstanding { that takes more work!Administrative notes: physiists love to set onstants to unity, and it's a diÆult habit tobreak one you start. I will not set Newton's onstant G = 1. However, it's ridiulous not toset the speed of light  = 1, so I'll do that. For further referene, reommended texts inludeA First Course in General Relativity by Bernard Shutz, at an undergrad level; and graduatetexts General Relativity by Wald, Gravitation and Cosmology by Weinberg, Gravitation byMisner, Thorne, and Wheeler, and Introduing Einstein's Relativity by D'Inverno. Of oursebest of all would be to rush to <http://panake.uhiago.edu/~arroll/notes/>, whereyou will �nd about one semester's worth of free GR notes, of whih this introdution isessentially an abridgment.2 Speial RelativitySpeial relativity (SR) stems from onsidering the speed of light to be invariant in all refereneframes. This naturally leads to a view in whih spae and time are joined together to formspaetime; the onversion fator from time units to spae units is  (whih equals 1, right?ouldn't be simpler). The oordinates of spaetime may be hosen to bex0 � t = tx1 � xx2 � yx3 � z: (2)2



These are Cartesian oordinates. Note a few things: these indies are supersripts, notexponents. The indies go from zero to three; the olletion of all four oordinates is denotedx�. Spaetime indies are always in Greek; oasionally we will use Latin indies if we meanonly the spatial omponents, e.g. i = 1; 2; 3.The stage on whih SR is played out is a spei� four dimensional manifold, known asMinkowski spaetime (or sometimes \Minkowski spae"). The x� are oordinates on thismanifold. The elements of spaetime are known as events; an event is spei�ed by giving itsloation in both spae and time. Vetors in spaetime are always �xed at an event; there isno suh thing as a \free vetor" that an move from plae to plae. Sine Minkowski spaeis four dimensional, these are generally known as four-vetors, and written in omponentsas V �, or abstratly as just V .We also have the metri on Minkowski spae, ���. The metri gives us a way of takingthe norm of a vetor, or the dot produt of two vetors. Written as a matrix, the Minkowskimetri is ��� = 0BBB��1 0 0 00 1 0 00 0 1 00 0 0 11CCCA : (3)Then the dot produt of two vetors is de�ned to beA �B � ���A�B� = �A0B0 + A1B1 + A2B2 + A3B3 : (4)(We always use the summation onvention, in whih idential upper and lower indiesare impliitly summed over all their possible values.) This is espeially useful for taking thein�nitesimal (distane)2 between two points, also known as the spaetime interval:ds2 = ���dx�dx� (5)= �dt2 + dx2 + dy2 + dz2 : (6)In fat, an equation of the form (6) is often alled \the metri." The metri ontains all of theinformation about the geometry of the manifold. The Minkowski metri is of ourse just thespaetime generalization of the ordinary inner produt on at Eulidean spae, whih we anthink of in omponents as the Kroneker delta, Æij. We say that the Minkowski metri hassignature (�+++), sometimes alled \Lorentzian," as opposed to the Eulidian signaturewith all plus signs. (The overall sign of the metri is a matter of onvention, and many textsuse (+���).)Notie that for a partile with �xed spatial oordinates xi, the interval elapsed as it movesforward in time is negative, ds2 = �dt2 < 0. This leads us to de�ne the proper time � viad� 2 � �ds2 : (7)3



The proper time elapsed along a trajetory through spaetime will be the atual time mea-sured by an observer on that trajetory. Some other observer, as we know, will measure adi�erent time.Some verbiage: a vetor V � with negative norm, V �V < 0, is known as timelike. If thenorm is zero, the vetor is null, and if it's positive, the vetor is spaelike. Likewise, tra-jetories with negative ds2 (note { not proper time!) are alled timelike, et. These oneptslead naturally to the onept of a spaetime diagram, with whih you are presumablyfamiliar. The set of null trajetories leading into and out of an event onstitute a lightone, terminology whih beomes transparent in the ontext of a spaetime diagram suhas Figure 1.
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Figure 1: A lightone, portrayed on a spaetime diagram. Points whih are spaelike-, null-,and timelike-separated from the origin are indiated.A path through spaetime is spei�ed by giving the four spaetime oordinates as afuntion of some parameter, x�(�). A path is haraterized as timelike/null/spaelike whenits tangent vetor dx�=d� is timelike/null/spaelike. For timelike paths the most onvenientparameter to use is the proper time � , whih we an ompute along an arbitrary timelikepath via � = Z p�ds2 = Z s���� dx�d� dx�d� d� : (8)The orresponding tangent vetor U� = dx�=d� is alled the four-veloity, and is auto-4



matially normalized: ���U�U� = �1 ; (9)as you an hek.A related vetor is the momentum four-vetor, de�ned byp� = mU� ; (10)where m is the mass of the partile. The mass is a �xed quantity independent of inertialframe, what you may be used to thinking of as the \rest mass." The energy of a partileis simply p0, the timelike omponent of its momentum vetor. In the partile's rest framewe have p0 = m; realling that we have set  = 1, we �nd that we have found the famousequation E = m2. In a moving frame we an �nd the omponents of p� by performing aLorentz transformation; for a partile moving with three-veloity v = dx=dt along the x axiswe have p� = (m; vm; 0; 0) ; (11)where  = 1=p1� v2. For small v, this gives p0 = m + 12mv2 (what we usually think ofas rest energy plus kineti energy) and p1 = mv (what we usually think of as Newtonianmomentum).3 TensorsThe transition from at to urved spaetime means that we will eventually be unable touse Cartesian oordinates; in fat, some rather ompliated oordinate systems beome ne-essary. Therefore, for our own good, we want to make all of our equations oordinateinvariant { i.e., if the equation holds in one oordinate system, it will hold in any. It alsoturns out that many of the quantities that we use in GR will be tensors. Tensors may bethought of as objets like vetors, exept with possibly more indies, whih transform under ahange of oordinates x� ! x�0 aording to the following rule, the tensor transformationlaw: S�0�0�0 = �x�0�x� �x��x�0 �x��x�0 S��� : (12)Note that the unprimed indies on the right are dummy indies, whih are summed over.The pattern in (12) is pretty easy to remember, if you think of \onservation of indies": theupper and lower free indies (not summed over) on eah side of an equation must be the same.This holds true for any equation, not just the tensor transformation law. Remember also thatupper indies an only be summed with lower indies; if you have two upper or lower indiesthat are the same, you goofed. Sine there are in general no preferred oordinate systems inGR, it behooves us to ast all of our equations in tensor form, beause if an equation betweentwo tensors holds in one oordinate system, it holds in all oordinate systems.5



Tensors are not very ompliated; they're just generalizations of vetors. (Note thatsalars qualify as tensors with no indies, and vetors are tensors with one upper index; atensor with two indies an be though of as a matrix.) However, there is an entire languageassoiated with them whih you must learn. If a tensor has n upper and m lower indies, itis alled a (n; m) tensor. The upper indies are alled ontravariant indies, and the lowerones are ovariant; but everyone just says \upper" and \lower," and so should you. Tensorsof type (n; m) an be ontrated to form a tensor of type (n� 1; m� 1) by summing overone upper and one lower index: S� = T ��� : (13)The ontration of a two-index tensor is often alled the trae. (Whih makes sense if youthink about it.)If a tensor is the same when we interhange two indies,S�������� = S�������� ; (14)it is said to be symmetri in those two indies; if it hanges sign,S�������� = �S�������� ; (15)we all it antisymmetri. A tensor an be symmetri or antisymmetri in many indies atone. We an also take a tensor with no partiular symmetry properties in some set of indiesand pik out the symmetri/antisymmetri piee by taking appropriate linear ombinations;this proedure of symmetrization or antisymmetrization is denoted by putting parenthesesor square brakets around the relevant indies:T(�1�2����n) = 1n! (T�1�2����n + sum over permutations of �1 � � ��n)T[�1�2����n℄ = 1n! (T�1�2����n + alternating sum over permutations of �1 � � ��n) : (16)By \alternating sum" we mean that permutations whih are the result of an odd number ofexhanges are given a minus sign, thus:T[���℄� = 16 (T���� � T���� + T���� � T���� + T���� � T����) : (17)The most important tensor in GR is the metri g��, a generalization (to arbitrary oor-dinates and geometries) of the Minkowski metri ���. Although ��� is just a speial ase ofg��, we denote it by a di�erent symbol to emphasize the importane of moving from at tourved spae. The metri is a symmetri two-index tensor. An important fat is that it isalways possible to �nd oordinates suh that, at one spei�ed point p, the omponents of themetri are preisely those of the Minkowski metri (3) and the �rst derivatives of the metri6



vanish. In other words, the metri will look at at preisely that point; however, in generalthe seond derivatives of g�� annot be made to vanish, a manifestation of urvature.Even if spaetime is at, the metri an still have nonvanishing derivatives if the oordi-nate system is non-Cartesian. For example, in spherial oordinates (on spae) we havet = tx = r sin � os �y = r sin � sin�z = r os � ; (18)whih leads diretly to ds2 = �dt2 + dr2 + r2 d�2 + r2 sin2 � d�2 ; (19)or g�� = 0BBB��1 0 0 00 1 0 00 0 r2 00 0 0 r2 sin2 �1CCCA : (20)Notie that, while we ould use the tensor transformation law (12), it is often more straight-forward to �nd new tensor omponents by simply plugging in our oordinate transformationsto the di�erential expression (e.g. dz = os � dr � r sin � d�).Just as in Minkowski spae, we use the metri to take dot produts:A �B � g��A�B� : (21)This suggests, as a shortut notation, the onept of lowering indies; from any vetor wean onstrut a (0; 1) tensor de�ned by ontration with the metri:A� � g��A� ; (22)so that the dot produt beomes g��A�B� = A�B�. We also de�ne the inverse metri g��as the matrix inverse of the metri tensor:g��g�� = Æ�� ; (23)where Æ�� is the (spaetime) Kroneker delta. (Convine yourself that this expression reallydoes orrespond to matrix multipliation.) Then we have the ability to raise indies:A� = g��A� : (24)Note that raising an index on the metri yields the Kroneker delta, so we haveg��g�� = Æ�� = 4 : (25)7



Despite the ubiquity of tensors, it is sometimes useful to onsider non-tensorial objets.An important example is the determinant of the metri tensor,g � det (g��) : (26)A straightforward alulation shows that under a oordinate transformation x� ! x�0 , thisdoesn't transform by the tensor transformation law (under whih it would have to be invari-ant, sine it has no indies), but instead asg ! "det �x�0�x� !#�2 g : (27)The fator det(�x�0=�x�) is the Jaobian of the transformation. Objets with this kind oftransformation law (involving powers of the Jaobian) are known as tensor densities; thedeterminant g is sometimes alled a \salar density." Another example of a density is thevolume element d4x = dx0dx1dx2dx3:d4x! det �x�0�x� ! d4x : (28)To de�ne an invariant volume element, we an therefore multiply d4x by the square root ofminus g, so that the Jaobian fators anel out:p�g d4x! p�g d4x : (29)In Cartesian oordinates, for example, we have p�g d4x = dt dx dy dz, while in polar oor-dinates this beomes r2 sin � dt dr d� d�. Thus, integrals of funtions over spaetime are ofthe form R f(x�)p�g d4x. (\Funtion," of ourse, is the same thing as \salar.")Another objet whih is unfortunately not a tensor is the partial derivative �=�x�, oftenabbreviated to ��. Ating on a salar, the partial derivative returns a perfetly respetable(0; 1) tensor; using the onventional hain rule we have���! ��0� = �x��x�0 ��� ; (30)in agreement with the tensor transformation law. But on a vetor V �, given that V � !�x�0�x� V �, we get ��V � ! ��0V �0 =  �x��x�0 ��! �x�0�x� V �!= �x��x�0 �x�0�x� (��V �) + �x��x�0 �2x�0�x��x�V � : (31)8



The �rst term is what we want to see, but the seond term ruins it. So we de�ne a ovariantderivative to be a partial derivative plus a orretion that is linear in the original tensor:r�V � = ��V � + ����V � : (32)Here, the symbol ���� stands for a olletion of numbers, alled onnetion oeÆients,with an appropriate non-tensorial transformation law hosen to anel out the non-tensorialterm in (31). Thus we need to have��0�0�0 = �x��x�0 �x��x�0 �x�0�x� ���� � �x��x�0 �x��x�0 �2x�0�x��x� : (33)Then r�V � is guaranteed to transform like a tensor. The same kind of trik works to de�neovariant derivatives of tensors with lower indies; we simply introdue a minus sign andhange the dummy index whih is summed over:r�!� = ��!� � ����!� : (34)If there are many indies, for eah upper index you introdue a term with a single +�, andfor eah lower index a term with a single ��:r�T �1�2����k�1�2����l = ��T �1�2����k�1�2����l+��1�� T ��2����k�1�2����l + ��2�� T �1�����k�1�2����l + � � ������1T �1�2����k��2����l � ����2T �1�2����k�1�����l � � � � : (35)This is the general expression for the ovariant derivative.What are these mysterious onnetion oeÆients? Fortunately they have a naturalexpression in terms of the metri and its derivatives:���� = 12g��(��g�� + ��g�� � ��g��) : (36)It is left up to you to hek that the mess on the right really does have the desired transfor-mation law. You an also verify that the onnetion oeÆients are symmetri in their lowerindies, ���� = ����. These oeÆients an be nonzero even in at spae, if we have non-Cartesian oordinates. In priniple there an be other kinds of onnetion oeÆients, butwe won't worry about that here; the partiular hoie (36) are sometimes alled Christo�elsymbols, and are the ones we always use in GR. With these onnetion oeÆients, we getthe nie feature that the ovariant derivative of the metri and its inverse are always zero,known as metri ompatibility:r�g�� = 0 ; r�g�� = 0 : (37)9



So, given any metri g��, we proeed to alulate the onnetion oeÆients so thatwe an take ovariant derivatives. Many of the familiar equations of physis in at spaeontinue to hold true in urved spae one we replae partial derivatives by ovariant ones.For example, in speial relativity the eletri and magneti vetor �elds ~E and ~B an beolleted into a single two-index antisymmetri tensor F�� :F�� = 0BBB� 0 �Ex �Ey �EzEx 0 Bz �ByEy �Bz 0 BxEz By �Bx 0 1CCCA ; (38)and the eletri harge density � and urrent ~J into a four-vetor J�:J� = (�; ~J) : (39)In this notation, Maxwell's equationsr�B� �tE = 4�Jr �E = 4��r�E+ �tB = 0r �B = 0 (40)shrink into two relations, ��F �� = 4�J��[�F��℄ = 0 : (41)These are true in Minkowski spae, but the generalization to a urved spaetime is immediate;just replae �� ! r�: r�F �� = 4�J�r[�F��℄ = 0 : (42)These equations govern the behavior of eletromagenti �elds in general relativity.4 CurvatureWe have been loosely throwing around the idea of \urvature" without giving it a are-ful de�nition. The �rst step toward a better understanding begins with the notion of amanifold. Basially, a manifold is \a possibly urved spae whih, in small enough regions(in�nitesimal, really), looks like at spae." You an think of the obvious example: the10



Earth looks at beause we only see a tiny part of it, even though it's round. A ruialfeature of manifolds is that they have the same dimensionality everywhere; if you glue theend of a string to a plane, the result is not a manifold sine it is partly one-dimensional andpartly two-dimensional.The most famous examples of manifolds are n-dimensional at spae Rn (\R" as in real,as in real numbers), and the n-dimensional sphere Sn. So, R1 is the real line, R2 is theplane, and so on. Meanwhile S1 is a irle, S2 is a sphere, et. For future referene, the mostpopular oordinates on S2 are the usual � and � angles. In these oordinates, the metri onS2 (with radius r = 1) is ds2 = d�2 + sin2 � d�2 : (43)The fat that manifolds may be urved makes life interesting, as you may imagine.However, most of the diÆulties enountered in urved spaes are also enountered in atspae if you use non-Cartesian oordinates. The thing about urved spae is, you an neveruse Cartesian oordinates, beause they only desribe at spaes. So the mahinery wedeveloped for non-Cartesian oordinates will be ruial; in fat, we've done most of the workalready.It should ome as no surprise that information about the urvature of a manifold isontained in the metri; the question is, how to extrat it? You an't get it easily from the���� , for instane, sine they an be zero or nonzero depending on the oordinate system(as we saw for at spae). For reasons we won't go into, the information about urvatureis ontained in a four-omponent tensor known as the Riemann urvature tensor. Thissupremely important objet is given in terms of the Christo�el symbols by the formulaR���� � ������ � ������ + �������� � �������� : (44)(The overall sign of this is a matter of onvention, so hek arefully when you read anybodyelse's papers. Note also that the Riemann tensor is onstruted from non-tensorial elements| partial derivatives and Christo�el symbols | but they are arefully arranged so that the�nal result transforms as a tensor, as you an hek.) This tensor has one nie property thata measure of urvature should have: all of the omponents of R���� vanish if and only ifthe spae is at. Operationally, \at" means that there exists a global oordinate system inwhih the metri omponents are everywhere onstant.There are two ontrations of the Riemann tensor whih are extremely useful: the Riitensor and the Rii salar. The Rii tensor is given byR�� = R���� : (45)Although it may seem as if other independent ontrations are possible (using other indies),the symmetries of R���� (disussed below) make this the only independent ontration. The11



trae of the Rii tensor yields the Rii salar:R = R�� = g��R�� : (46)This is another useful item.Although the Riemann tensor has many indies, and therefore many omponents, usingit is vastly simpli�ed by the many symmetries it obeys. In fat, only 20 of the 44 = 256omponents of R���� are independent. Here is a list of some of the useful properties obeyedby the Riemann tensor, whih are most easily expressed in terms of the tensor with all indieslowered, R���� = g��R����: R���� = �R���� = �R����R���� = R����R���� +R���� +R���� = 0 : (47)These imply a symmetry of the Rii tensor,R�� = R�� : (48)In addition to these algebrai identities, the Riemann tensor obeys a di�erential identity:r[�R��℄�� = 0 : (49)This is sometimes known as the Bianhi identity. If we de�ne a new tensor, the Einsteintensor, by G�� � R�� � 12Rg�� ; (50)then the Bianhi identity implies that the divergene of this tensor vanishes identially:r�G�� = 0 : (51)This is sometimes alled the ontrated Bianhi identity.Basially, there are only two things you have to know about urvature: the Riemanntensor, and geodesis. You now know the Riemann tensor { lets move on to geodesis.Informally, a geodesi is \the shortest distane between two points." More formally,a geodesi is a urve whih extremizes the length funtional R ds. That is, imagine a pathparameterized by �, i.e. x�(�). The in�nitesimal distane along this urve is given byds = vuut�����g�� dx�d� dx�d� ����� d� : (52)So the entire length of the urve is just L = Z ds : (53)12



To �nd a geodesi of a given geometry, we would do a alulus of variations manipulationof this objet to �nd an extremum of L. Lukily, stronger souls than ourselves have omebefore and done this for us. The answer is that x�(�) is a geodesi if it satis�es the famousgeodesi equation: d2x�d�2 + ���� dx�d� dx�d� = 0: (54)In fat this is only true if � is an aÆne parameter, that is if it is related to the propertime via � = a� + b : (55)In pratie, the proper time itself is almost always used as the aÆne parameter (for timelikegeodesis, at least). In that ase, the tangent vetor is the four-veloity U� = dx�=d� , andthe geodesi equation an be writtendd� U� + ����U�U� = 0 : (56)The physial reason why geodesis are so important is simply this: in general relativity,test bodies move along geodesis. If the bodies are massless, these geodesis will be null(ds2 = 0), and if they are massive the geodesis will be timelike (ds2 < 0). Note that whenwe were being formal we kept saying \extremum" rather than \minimum" length. That'sbeause, for massive test partiles, the geodesis on whih they move are urves of maximumproper time. (In the famous \twin paradox", two twins take two di�erent paths throughat spaetime, one staying at home [thus on a geodesi℄, and the other traveling o� intospae and bak. The stay-at-home twin is older when they reunite, sine geodesis maximizeproper time.)This is an appropriate plae to talk about the philosophy of GR. In pre-GR days, Newto-nian physis said \partiles move along straight lines, until fores knok them o�." Gravitywas one fore among many. Now, in GR, gravity is represented by the urvature of spae-time, not by a fore. From the GR point of view, \partiles move along geodesis, until foresknok them o�." Gravity doesn't ount as a fore. If you onsider the motion of partilesunder the inuene of fores other than gravity, then they won't move along geodesis { youan still use (54) to desribe their motions, but you have to add a fore term to the righthand side. In that sense, the geodesi equation is something like the urved-spae expressionfor F = ma = 0.5 General RelativityMoving from math to physis involves the introdution of dynamial equations whih relatematter and energy to the urvature of spaetime. In GR, the \equation of motion" for the13



metri is the famous Einstein equation:R�� � 12Rg�� = 8�GT�� : (57)Notie that the left-hand side is the Einstein tensor G�� from (50). G is Newton's onstantof gravitation (not the trae of G��). T�� is a symmetri two-index tensor alled the energy-momentum tensor, or sometimes the stress-energy tensor. It enompasses all we need toknow about the energy and momentum of matter �elds, whih at as a soure for gravity.Thus, the left hand side of this equation measures the urvature of spaetime, and the rightmeasures the energy and momentum ontained in it. Truly glorious.The omponents T�� of the energy-momentum tensor are \the ux of the �th omponent ofmomentum in the �th diretion." This de�nition is perhaps not very useful. More onretely,we an onsider a popular form of matter in the ontext of general relativity: a perfet uid,de�ned to be a uid whih is isotropi in its rest frame. This means that the uid has novisosity or heat ow; as a result, it is spei�ed entirely in terms of the rest-frame energydensity � and rest-frame pressure p (isotropi, and thus equal in all diretions). If use U� tostand for the four-veloity of a uid element, the energy-momentum tensor takes the formT�� = (�+ p)U�U� + pg�� : (58)If we raise one index and use the normalization g��U�U� = �1, we get an even more under-standable version: T�� = 0BBB��� 0 0 00 p 0 00 0 p 00 0 0 p1CCCA : (59)If T�� enapsulates all we need to know about energy and momentum, it should be ableto haraterize the appropriate onservation laws. In fat these are formulated by sayingthat the ovariant divergene of T�� vanishes:r�T�� = 0 : (60)Reall that the ontrated Bianhi identity (51) guarantees that the divergene of the Ein-stein tensor vanishes identially. So Einstein's equation (57) guarantees energy-momentumonservation. Of ourse, this is a loal relation; if we (for example) integrate the energy den-sity � over a spaelike hypersurfae, the orresponding quantity is not onstant with time. InGR there is no global notion of energy onservation; (60) expresses loal onservation, andthe appearane of the ovariant derivative allows this equation to aount for the transfer ofenergy bak and forth between matter and the gravitational �eld.14



The exoti appearane of Einstein's equation should not obsure the fat that it a naturalextension of Newtonian gravity. To see this, onsider Poisson's equation for the Newtonianpotential �: r2� = 4�G� ; (61)where � is the matter density. On the left hand side of this we see a seond-order di�erentialoperator ating on the gravitational potential �. This is proportional to the density ofmatter. Now, GR is a fully relativisti theory, so we would expet that the matter densityshould be replaed by the full energy-momentum tensor T�� . To orrespond to (61), thisshould be proportional to a 2-index tensor whih is a seond-order di�erential operator atingon the gravitational �eld, i.e. the metri. If you think about the de�nition of G�� in termsof g��, this is exatly what the Einstein tensor is. In fat, G�� is the only two-index tensor,seond order in derivatives of the metri, for whih the divergene vanishes.So the GR equation is of the same essential form as the Newtonian one. We should askfor something more, however: namely, that Newtonian gravity is reovered in the appro-priate limit, where the partiles are moving slowly (with respet to the speed of light), thegravitational �eld is weak (an be onsidered a perturbation of at spae), and the �eld isalso stati (unhanging with time). We onsider a metri whih is almost Minkowski, butwith a spei� kind of small perturbation:ds2 = �(1 + 2�)dt2 + (1� 2�)d~x2 ; (62)where � is a funtion of the spatial oordinates xi. If we plug this into the geodesi equationand solve for the onventional three-veloity (using that the partiles are moving slowly), weobtain d2~xdt2 = �r� ; (63)where r here represents the ordinary spatial divergene (not a ovariant derivative). This isjust the equation for a partile moving in a Newtonian gravitational potential �. Meanwhile,we alulate the 00 omponent of the left-hand side of Einstein's equation:R00 � 12Rg00 = 2r2� : (64)The 00 omponent of the right-hand side (to �rst order in the small quantities � and �) isjust 8�GT00 = 8�G� : (65)So the 00 omponent of Einstein's equation applied to the metri (62) yieldsr2� = 4�G� ; (66)15



whih is preisely the Poisson equation (61). Thus, in this limit GR does redue to Newtoniangravity.Although the full nonlinear Einstein equation (57) looks simple, in appliations it is not.If you reall the de�nition of the Riemann tensor in terms of the Christo�el symbols, andthe de�nition of those in terms of the metri, you realize that Einstein's equation for themetri are ompliated indeed! It is also highly nonlinear, and orrespondingly very diÆultto solve. If we take the trae of (57), we obtain�R = 8�GT : (67)Plugging this into (57), we an rewrite Einstein's equations asR�� = 8�G�T�� � 12Tg��� : (68)This form is useful when we onsider the ase when we are in the vauum { no energy ormomentum. In this ase T�� = 0 and (68) beomes Einstein's equation in vauum:R�� = 0 : (69)This is somewhat easier to solve than the full equation.One �nal word on Einstein's equation: it may be derived from a very simple Lagrangian,L = p�gR (plus appropriate terms for the matter �elds). In other words, the ation forGR is simply S = Z d4xp�gR ; (70)an Einstein's equation omes from looking for extrema of this ation with respet to variationsof the metri g��. What ould be more elegant?6 Shwarzshild solutionIn order to solve Einstein's equation we usually need to make some simplifying assumptions.For example, in many physial situations, we have spherial symmetry. If we want to solvefor a metri g��, this fat is very helpful, beause the most general spherially symmetrimetri may be written (in spherial oordinates) asds2 = �A(r; t)dt2 +B(r; t)dr2 + r2(d�2 + sin2 �d�2) ; (71)where A and B are positive funtions of (r; t), and you will reognize the metri on the spherefrom (43). If we plug this into Einstein's equation, we will get a solution for a spherially16



symmetri matter distribution. To be even more restritive, let's onsider the equation invauum, (69). Then there is a unique solution:ds2 = ��1� 2Gmr � dt2 + �1� 2Gmr ��1 dr2 + r2(d�2 + sin2 �d�2) : (72)This is the elebrated Shwarzshild metri solution to Einstein's equations. The param-eter m, of ourse, measures the amount of mass inside the radius r under onsideration. Aremarkable fat is that the Shwarzshild metri is the unique solution to Einstein's equationin vauum with a spherially symmetri matter distribution. This fat, known as Birkho�'stheorem, means that the matter an osillate wildly, as long as it remains spherially sym-metri, and the gravitational �eld outside will remain unhanged.Philosophy point: the metri omponents in (72) blow up at r = 0 and r = 2Gm. Of-�ially, any point at whih the metri omponents beome in�nite, or exhibit some otherpathologial behavior, is known as a singularity. These beasts ome in two types: \o-ordinate" singularities and \true" singularities. A oordinate singularity is simply a resultof hoosing bad oordinates; if we hange oordinates we an remove the singularity. Atrue singularity is an atual pathology of the geometry, a point at whih the manifold isill-de�ned. In the Shwarzshild geometry, the point r = 0 is a real singularity, an unavoid-able blowing-up. However, the point r = 2Gm is merely a oordinate singularity. We andemonstrate this by making a transformation to what are known as Kruskal oordinates,de�ned by u = � r2Gm � 1�1=2 er=4Gmosh(t=4Gm)v = � r2Gm � 1�1=2 er=4Gmsinh(t=4Gm): (73)In these oordinates, the metri (72) takes the formds2 = 32(Gm)3r e�r=2Gm(�dv2 + du2) + r2(d�2 + sin2 �d�2) ; (74)where r is onsidered to be an impliit funtion of u and v de�ned byu2 � v2 = er=2Gm � r2Gm � 1� : (75)If we look at (74), we see that nothing blows up at r = 2Gm. The mere fat that we ouldhoose oordinates in whih this happens assures us that r = 2Gm is a mere oordinatesingularity.The useful thing about the Shwarzshild solution is that it desribes both mundanethings like the solar system, and more exoti objets like blak holes. To get a feel for it,17



let's look at how partiles move in a Shwarzshild geometry. It turns out that we an astthe problem of a partile moving in the plane � = �=2 as a one-dimensional problem for theradial oordinate r = r(�). In other words, the distane of a partile from the point r = 0is a solution to the equation 12  drd� !2 + V (r) = 12E2 : (76)This is just the equation of motion for a partile of unit mass and energy E in a one-dimensional potential V (r). This potential, for the Shwarzshild geometry, is given byV (r) = 12�� �Gmr + L22r2 � GmL2r3 : (77)Here, L represents the angular momentum (per unit mass) of the partile, and � is a onstantequal to 0 for massless partiles and +1 for massive partiles. (Note that the proper time� is zero for massless partiles, so we use some other parameter � in (76), but the equationitself looks the same). So, to �nd the orbits of partiles in a Shwarzshild metri, just solvethe motion of a partile in the potential given by (77). Note that the �rst term in (77) is aonstant, the seond term is exatly what we expet from Newtonian gravity, and the thirdterm is just the ontribution of the partile's angular momentum, whih is also present inthe Newtonian theory. Only the last term in (77) is a new addition from GR.There are two important e�ets of this extra term. First, it ats as a small perturbationon any orbit { this is what leads to the preession of Merury, for instane. Seond, for rvery small, the GR potential goes to �1; this means that a partile that approahes toolose to r = 0 will fall into the enter and never esape! Even though this is in the ontextof unaelerated test partiles, a similar statement holds true for partiles with the abilityto aelerate themselves all they like { see below. However, not to worry; for a star suh asthe Sun, for whih the Shwarzshild metri only desribes points outside the surfae, youwould run into the star long before you approahed the point where you ould not esape.Nevertheless, we all know of the existene of more exoti objets: blak holes. Ablak hole is a body in whih all of the mass has ollapsed gravitationally past the pointof possible esape. This point of no return, given by the surfae r = 2Gm, is known asthe event horizon, and an be thought of as the \surfae" of a blak hole. Although itis impossible to go into muh detail about the host of interesting properties of the eventhorizon, the basis are not diÆult to grasp. From the point of view of an outside observer,a lok falling into a blak hole will appear to move more and more slowly as it approahesthe event horizon. In fat, the external observer will never see a test partile ross thesurfae r = 2Gm; they will just see the partile get loser and loser, and move more andmore slowly.Contrast this to what you would experiene as a test observer atually thrown into a blakhole. To you, time always seems to move at the same rate; sine you and your wristwath are18
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or equivalently u = �v. In this diagram all light ones are at �45Æ. Inside the event horizon,where r < 2Gm, all timelike trajetories lead inevitably to the singularity at r = 0. It shouldbe stressed that this diagram represents the \maximally extended" Shwarzshild solution| a omplete solution to Einstein's equation in vauum, but not an espeially physiallyrealisti one. In a realisti blak hole, formed for instane from the ollapse of a massivestar, the vauum equations do not tell the whole story, and there will not be two distintasymptoti regions, only the one in whih the star originally was loated. (For that matter,timelike trajetories annot travel between the two regions, so we ould never tell whetheranother suh region did exist.)In the ollapse to a blak hole, all the information about the detailed nature of the ol-lapsing objet is lost: what it was made of, its shape, et. The only information whihis not wiped out is the amount of mass, angular momentum, and eletri harge in thehole. This fat, the no-hair theorem, implies that the most general blak-hole metriwill be a funtion of these three numbers only. However, real-world blak holes will prob-ably be eletrially neutral, so we will not present the metri for a harged blak hole (theReissner-Nordstrom metri). Of onsiderable astrophysial interest are spinning blakholes, desribed by the Kerr metri:ds2 = � "�� !2 sin2 �� # dt2 � "4!mGr sin2 �� # dtd�+ ��dr2 + �d�2+ "(r2 + !2)2 ��!2 sin2 �� # sin2 �d�2; (78)where � � r2 + !2 os2 �; � � r2 + !2 � 2Gmr ; (79)and ! is the angular veloity of the body.Finally, among the many additional possible things to mention, there's the osmi en-sorship onjeture. Notie how the Shwarzshild singularity at r = 0 is hidden, in asense { you an never get to it without rossing an horizon. It is onjetured that this isalways true, in any solution to Einstein's equation. However, some numerial work seems toontradit this onjeture, at least in speial ases.7 CosmologyJust as we were able to make great strides with the Shwarzshild metri on the assumptionof sperial symmetry, we an make similar progress in osmology by assuming that theUniverse is homogeneous and isotropi. That is to say, we assume the existene of a \restframe for the Universe," whih de�nes a universal time oordinate, and singles out three-dimensional surfaes perpendiular to this time oordinate. (In the real Universe, this rest20



frame is the one in whih galaxies are at rest and the mirowave bakground is isotropi.)\Homogeneous" means that the urvature of any two points at a given time t is the same.\Isotropi" is trikier, but basially means that the universe looks the same in all diretions.Thus, the surfae of a ylinder is homogeneous (every point is the same) but not isotropi(looking along the long axis of the ylinder is a preferred diretion); a one is isotropi aroundits vertex, but not homogeneous.These assumptions narrow down the hoie of metris to preisely three forms, all givenby the Robertson-Walker (RW) metri:ds2 = �dt2 + a2(t) " dr21� kr2 + r2(d�2 + sin2 �d�2)# ; (80)where the onstant k an be �1, 0, or +1. The funtion a(t) is known as the sale fatorand tells us the relative sizes of the spatial surfaes. The above oordinates are alledomoving oordinates, sine a point whih is at rest in the preferred frame of the universewill have r; �; � = onstant. The k = �1 ase is known as an open universe, in whih thepreferred three-surfaes are \three-hyperboloids" (saddles); k = 0 is a at universe, in whihthe preferred three-surfaes are at spae; and k = +1 is a losed universe, in whih thepreferred three-surfaes are three-spheres. Note that the terms \open," \losed," and \at"refer to the spatial geometry of three-surfaes, not to whether the universe will eventuallyreollapse. The volume of a losed universe is �nite, while open and at universes havein�nite volume (or at least they an; there are also versions with �nite volume, obtainedfrom the in�nite ones by performing disrete identi�ations).There are other oordinate systems in whih (8.1) is sometimes written. In partiular, ifwe set r = (sin ;  ; sinh ) for k = (+1; 0; �1) respetively, we obtainds2 = �dt2 + a2(t)8><>: d 2 + sin2  (d�2 + sin2 �d�2)d 2 +  2(d�2 + sin2 �d�2)d 2 + sinh2 (d�2 + sin2 �d�2)9>=>; (k = +1)(k = 0)(k = �1) (81)Further, the at (k = 0) universe also may be written in almost-Cartesian oordinates:ds2 = �dt2 + a2(t)(dx2 + dy2 + dz2)= �a2(�)(�d�2 + dx2 + dy2 + dz2): (82)In this last expression, � is known as the onformal time and is de�ned by� � Z dta(t) : (83)The oordinates (�; x; y; z) are often alled \onformal oordinates."Sine the RW metri is the only possible homogeneous and isotropi metri, all we haveto do is solve for the sale fator a(t) by using Einstein's equation. If we use the vauum21



equation (69), however, we �nd that the only solution is just Minkowski spae. Thereforewe have to introdue some energy and momentum to �nd anything interesting. Of oursewe shall hoose a perfet uid spei�ed by energy density � and pressure p. In this ase,Einstein's equation beomes two di�erential equations for a(t), known as the Friedmannequations: � _aa�2 = 8�G3 �� ka2�aa = �4�G3 (�+ 3p) : (84)Sine the Friedmann equations govern the evolution of RW metris, one often speaks ofFriedman-Robertson-Walker (FRW) osmology.The expansion rate of the universe is measured by the Hubble parameter:H � _aa ; (85)and the hange of this quantity with time is parameterized by the deeleration parameter:q � ��aa_a2 = � 1 + _HH2! : (86)The Friedmann equations an be solved one we hoose an equation of state, but thesolutions an get messy. It is easy, however, to write down the solutions for the k = 0universes. If the equation of state is p = 0, the universe is matter dominated, anda(t) / t2=3 : (87)In a matter dominated universe, the energy density dereases as the volume inreases, so�matter / a�3 : (88)If p = 13�, the universe is radiation dominated, anda(t) / t1=2 : (89)In a radiation dominated universe, the number of photons dereases as the volume inreases,and the energy of eah photon redshifts and amount proportional to a(t), so�rad / a�4 : (90)If p = ��, the universe is vauum dominated, anda(t) / eHt : (91)22



The vauum dominated universe is also known as de Sitter spae. In de Sitter spae, theenergy density is onstant, as is the Hubble parameter, and they are related byH = s8�G�va3 = onstant : (92)Note that as a! 0, �rad grows the fastest; therefore, if we go bak far enough in the historyof the universe we should ome to a radiation dominated phase. Similarly, �va stays onstantas the universe expands; therefore, if �va is not zero, and the universe lasts long enough, wewill eventually reah a vauum-dominated phase.Given that our Universe is presently expanding, we may ask whether it will ontinue todo so forever, or eventually begin to reontrat. For energy soures with p=� � 0 (inludingboth matter and radiation dominated universes), losed (k = +1) universes will eventuallyreontrat, while open and at universes will expand forever. When we let p=� < 0 thingsget messier; just keep in mind that spatially losed/open does not neessarily orrespond totemporally �nite/in�nite.The question of whether the Universe is open or losed an be answered observationally.In a at universe, the density is equal to the ritial density, given by�rit = 3H28�G : (93)Note that this hanges with time; in the present Universe it's about 5 � 10�30 grams perubi entimeter. The universe will be open if the density is less than this ritial value,losed if it is greater. Therefore, it is useful to de�ne a density parameter via
 � ��rit = 8�G�3H2 = 1 + k_a2 ; (94)a quantity whih will generally hange with time unless it equals unity. An open universehas 
 < 1, a losed universe has 
 > 1.We mentioned in passing the redshift of photons in an expanding universe. In terms ofthe wavelength �1 of a photon emitted at time t1, the wavelength �0 observed at a time t0is given by �0�1 = a(t0)a(t1) : (95)We therefore de�ne the redshift z to be the frational inrease in wavelengthz � �0 � �1�1 = a(t0)a(t1) � 1 : (96)Keep in mind that this only measures the net expansion of the universe between times t1 andt0, not the relative speed of the emitting and observing objets, espeially sine the latter23



is not well-de�ned in GR. Nevertheless, it is ommon to speak as if the redshift is due to aDoppler shift indued by a relative veloity between the bodies; although nonsensial from astrit standpoint, it is an aeptable bit of sloppiness for small values of z. Then the Hubbleonstant relates the redshift to the distane s (measured along a spaelike hypersurfae)between the observer and emitter: z = H(t0)s : (97)This, of ourse, is the linear relationship disovered by Hubble.
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