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1 Introdu
tionGeneral relativity (GR) is the most beautiful physi
al theory ever invented. Nevertheless,it has a reputation of being extremely diÆ
ult, primarily for two reasons: tensors are ev-erywhere, and spa
etime is 
urved. These two fa
ts for
e GR people to use a di�erentlanguage than everyone else, whi
h makes the theory somewhat ina

essible. Nevertheless,it is possible to grasp the basi
s of the theory, even if you're not Einstein (and who is?).GR 
an be summed up in two statements: 1) Spa
etime is a 
urved pseudo-Riemannianmanifold with a metri
 of signature (�+++). 2) The relationship between matter and the
urvature of spa
etime is 
ontained in the equationR�� � 12Rg�� = 8�GT�� : (1)However, these statements are in
omprehensible unless you sling the lingo. So that's what weshall start doing. Note, however, that this introdu
tion is a very pragmati
 a�air, intendedto give you some immediate feel for the language of GR. It does not substitute for a deepunderstanding { that takes more work!Administrative notes: physi
ists love to set 
onstants to unity, and it's a diÆ
ult habit tobreak on
e you start. I will not set Newton's 
onstant G = 1. However, it's ridi
ulous not toset the speed of light 
 = 1, so I'll do that. For further referen
e, re
ommended texts in
ludeA First Course in General Relativity by Bernard S
hutz, at an undergrad level; and graduatetexts General Relativity by Wald, Gravitation and Cosmology by Weinberg, Gravitation byMisner, Thorne, and Wheeler, and Introdu
ing Einstein's Relativity by D'Inverno. Of 
oursebest of all would be to rush to <http://pan
ake.u
hi
ago.edu/~
arroll/notes/>, whereyou will �nd about one semester's worth of free GR notes, of whi
h this introdu
tion isessentially an abridgment.2 Spe
ial RelativitySpe
ial relativity (SR) stems from 
onsidering the speed of light to be invariant in all referen
eframes. This naturally leads to a view in whi
h spa
e and time are joined together to formspa
etime; the 
onversion fa
tor from time units to spa
e units is 
 (whi
h equals 1, right?
ouldn't be simpler). The 
oordinates of spa
etime may be 
hosen to bex0 � 
t = tx1 � xx2 � yx3 � z: (2)2



These are Cartesian 
oordinates. Note a few things: these indi
es are supers
ripts, notexponents. The indi
es go from zero to three; the 
olle
tion of all four 
oordinates is denotedx�. Spa
etime indi
es are always in Greek; o

asionally we will use Latin indi
es if we meanonly the spatial 
omponents, e.g. i = 1; 2; 3.The stage on whi
h SR is played out is a spe
i�
 four dimensional manifold, known asMinkowski spa
etime (or sometimes \Minkowski spa
e"). The x� are 
oordinates on thismanifold. The elements of spa
etime are known as events; an event is spe
i�ed by giving itslo
ation in both spa
e and time. Ve
tors in spa
etime are always �xed at an event; there isno su
h thing as a \free ve
tor" that 
an move from pla
e to pla
e. Sin
e Minkowski spa
eis four dimensional, these are generally known as four-ve
tors, and written in 
omponentsas V �, or abstra
tly as just V .We also have the metri
 on Minkowski spa
e, ���. The metri
 gives us a way of takingthe norm of a ve
tor, or the dot produ
t of two ve
tors. Written as a matrix, the Minkowskimetri
 is ��� = 0BBB��1 0 0 00 1 0 00 0 1 00 0 0 11CCCA : (3)Then the dot produ
t of two ve
tors is de�ned to beA �B � ���A�B� = �A0B0 + A1B1 + A2B2 + A3B3 : (4)(We always use the summation 
onvention, in whi
h identi
al upper and lower indi
esare impli
itly summed over all their possible values.) This is espe
ially useful for taking thein�nitesimal (distan
e)2 between two points, also known as the spa
etime interval:ds2 = ���dx�dx� (5)= �dt2 + dx2 + dy2 + dz2 : (6)In fa
t, an equation of the form (6) is often 
alled \the metri
." The metri
 
ontains all of theinformation about the geometry of the manifold. The Minkowski metri
 is of 
ourse just thespa
etime generalization of the ordinary inner produ
t on 
at Eu
lidean spa
e, whi
h we 
anthink of in 
omponents as the Krone
ker delta, Æij. We say that the Minkowski metri
 hassignature (�+++), sometimes 
alled \Lorentzian," as opposed to the Eu
lidian signaturewith all plus signs. (The overall sign of the metri
 is a matter of 
onvention, and many textsuse (+���).)Noti
e that for a parti
le with �xed spatial 
oordinates xi, the interval elapsed as it movesforward in time is negative, ds2 = �dt2 < 0. This leads us to de�ne the proper time � viad� 2 � �ds2 : (7)3



The proper time elapsed along a traje
tory through spa
etime will be the a
tual time mea-sured by an observer on that traje
tory. Some other observer, as we know, will measure adi�erent time.Some verbiage: a ve
tor V � with negative norm, V �V < 0, is known as timelike. If thenorm is zero, the ve
tor is null, and if it's positive, the ve
tor is spa
elike. Likewise, tra-je
tories with negative ds2 (note { not proper time!) are 
alled timelike, et
. These 
on
eptslead naturally to the 
on
ept of a spa
etime diagram, with whi
h you are presumablyfamiliar. The set of null traje
tories leading into and out of an event 
onstitute a light
one, terminology whi
h be
omes transparent in the 
ontext of a spa
etime diagram su
has Figure 1.
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Figure 1: A light
one, portrayed on a spa
etime diagram. Points whi
h are spa
elike-, null-,and timelike-separated from the origin are indi
ated.A path through spa
etime is spe
i�ed by giving the four spa
etime 
oordinates as afun
tion of some parameter, x�(�). A path is 
hara
terized as timelike/null/spa
elike whenits tangent ve
tor dx�=d� is timelike/null/spa
elike. For timelike paths the most 
onvenientparameter to use is the proper time � , whi
h we 
an 
ompute along an arbitrary timelikepath via � = Z p�ds2 = Z s���� dx�d� dx�d� d� : (8)The 
orresponding tangent ve
tor U� = dx�=d� is 
alled the four-velo
ity, and is auto-4



mati
ally normalized: ���U�U� = �1 ; (9)as you 
an 
he
k.A related ve
tor is the momentum four-ve
tor, de�ned byp� = mU� ; (10)where m is the mass of the parti
le. The mass is a �xed quantity independent of inertialframe, what you may be used to thinking of as the \rest mass." The energy of a parti
leis simply p0, the timelike 
omponent of its momentum ve
tor. In the parti
le's rest framewe have p0 = m; re
alling that we have set 
 = 1, we �nd that we have found the famousequation E = m
2. In a moving frame we 
an �nd the 
omponents of p� by performing aLorentz transformation; for a parti
le moving with three-velo
ity v = dx=dt along the x axiswe have p� = (
m; v
m; 0; 0) ; (11)where 
 = 1=p1� v2. For small v, this gives p0 = m + 12mv2 (what we usually think ofas rest energy plus kineti
 energy) and p1 = mv (what we usually think of as Newtonianmomentum).3 TensorsThe transition from 
at to 
urved spa
etime means that we will eventually be unable touse Cartesian 
oordinates; in fa
t, some rather 
ompli
ated 
oordinate systems be
ome ne
-essary. Therefore, for our own good, we want to make all of our equations 
oordinateinvariant { i.e., if the equation holds in one 
oordinate system, it will hold in any. It alsoturns out that many of the quantities that we use in GR will be tensors. Tensors may bethought of as obje
ts like ve
tors, ex
ept with possibly more indi
es, whi
h transform under a
hange of 
oordinates x� ! x�0 a

ording to the following rule, the tensor transformationlaw: S�0�0�0 = �x�0�x� �x��x�0 �x��x�0 S��� : (12)Note that the unprimed indi
es on the right are dummy indi
es, whi
h are summed over.The pattern in (12) is pretty easy to remember, if you think of \
onservation of indi
es": theupper and lower free indi
es (not summed over) on ea
h side of an equation must be the same.This holds true for any equation, not just the tensor transformation law. Remember also thatupper indi
es 
an only be summed with lower indi
es; if you have two upper or lower indi
esthat are the same, you goofed. Sin
e there are in general no preferred 
oordinate systems inGR, it behooves us to 
ast all of our equations in tensor form, be
ause if an equation betweentwo tensors holds in one 
oordinate system, it holds in all 
oordinate systems.5



Tensors are not very 
ompli
ated; they're just generalizations of ve
tors. (Note thats
alars qualify as tensors with no indi
es, and ve
tors are tensors with one upper index; atensor with two indi
es 
an be though of as a matrix.) However, there is an entire languageasso
iated with them whi
h you must learn. If a tensor has n upper and m lower indi
es, itis 
alled a (n; m) tensor. The upper indi
es are 
alled 
ontravariant indi
es, and the lowerones are 
ovariant; but everyone just says \upper" and \lower," and so should you. Tensorsof type (n; m) 
an be 
ontra
ted to form a tensor of type (n� 1; m� 1) by summing overone upper and one lower index: S� = T ��� : (13)The 
ontra
tion of a two-index tensor is often 
alled the tra
e. (Whi
h makes sense if youthink about it.)If a tensor is the same when we inter
hange two indi
es,S�������� = S�������� ; (14)it is said to be symmetri
 in those two indi
es; if it 
hanges sign,S�������� = �S�������� ; (15)we 
all it antisymmetri
. A tensor 
an be symmetri
 or antisymmetri
 in many indi
es aton
e. We 
an also take a tensor with no parti
ular symmetry properties in some set of indi
esand pi
k out the symmetri
/antisymmetri
 pie
e by taking appropriate linear 
ombinations;this pro
edure of symmetrization or antisymmetrization is denoted by putting parenthesesor square bra
kets around the relevant indi
es:T(�1�2����n) = 1n! (T�1�2����n + sum over permutations of �1 � � ��n)T[�1�2����n℄ = 1n! (T�1�2����n + alternating sum over permutations of �1 � � ��n) : (16)By \alternating sum" we mean that permutations whi
h are the result of an odd number ofex
hanges are given a minus sign, thus:T[���℄� = 16 (T���� � T���� + T���� � T���� + T���� � T����) : (17)The most important tensor in GR is the metri
 g��, a generalization (to arbitrary 
oor-dinates and geometries) of the Minkowski metri
 ���. Although ��� is just a spe
ial 
ase ofg��, we denote it by a di�erent symbol to emphasize the importan
e of moving from 
at to
urved spa
e. The metri
 is a symmetri
 two-index tensor. An important fa
t is that it isalways possible to �nd 
oordinates su
h that, at one spe
i�ed point p, the 
omponents of themetri
 are pre
isely those of the Minkowski metri
 (3) and the �rst derivatives of the metri
6



vanish. In other words, the metri
 will look 
at at pre
isely that point; however, in generalthe se
ond derivatives of g�� 
annot be made to vanish, a manifestation of 
urvature.Even if spa
etime is 
at, the metri
 
an still have nonvanishing derivatives if the 
oordi-nate system is non-Cartesian. For example, in spheri
al 
oordinates (on spa
e) we havet = tx = r sin � 
os �y = r sin � sin�z = r 
os � ; (18)whi
h leads dire
tly to ds2 = �dt2 + dr2 + r2 d�2 + r2 sin2 � d�2 ; (19)or g�� = 0BBB��1 0 0 00 1 0 00 0 r2 00 0 0 r2 sin2 �1CCCA : (20)Noti
e that, while we 
ould use the tensor transformation law (12), it is often more straight-forward to �nd new tensor 
omponents by simply plugging in our 
oordinate transformationsto the di�erential expression (e.g. dz = 
os � dr � r sin � d�).Just as in Minkowski spa
e, we use the metri
 to take dot produ
ts:A �B � g��A�B� : (21)This suggests, as a short
ut notation, the 
on
ept of lowering indi
es; from any ve
tor we
an 
onstru
t a (0; 1) tensor de�ned by 
ontra
tion with the metri
:A� � g��A� ; (22)so that the dot produ
t be
omes g��A�B� = A�B�. We also de�ne the inverse metri
 g��as the matrix inverse of the metri
 tensor:g��g�� = Æ�� ; (23)where Æ�� is the (spa
etime) Krone
ker delta. (Convin
e yourself that this expression reallydoes 
orrespond to matrix multipli
ation.) Then we have the ability to raise indi
es:A� = g��A� : (24)Note that raising an index on the metri
 yields the Krone
ker delta, so we haveg��g�� = Æ�� = 4 : (25)7



Despite the ubiquity of tensors, it is sometimes useful to 
onsider non-tensorial obje
ts.An important example is the determinant of the metri
 tensor,g � det (g��) : (26)A straightforward 
al
ulation shows that under a 
oordinate transformation x� ! x�0 , thisdoesn't transform by the tensor transformation law (under whi
h it would have to be invari-ant, sin
e it has no indi
es), but instead asg ! "det �x�0�x� !#�2 g : (27)The fa
tor det(�x�0=�x�) is the Ja
obian of the transformation. Obje
ts with this kind oftransformation law (involving powers of the Ja
obian) are known as tensor densities; thedeterminant g is sometimes 
alled a \s
alar density." Another example of a density is thevolume element d4x = dx0dx1dx2dx3:d4x! det �x�0�x� ! d4x : (28)To de�ne an invariant volume element, we 
an therefore multiply d4x by the square root ofminus g, so that the Ja
obian fa
tors 
an
el out:p�g d4x! p�g d4x : (29)In Cartesian 
oordinates, for example, we have p�g d4x = dt dx dy dz, while in polar 
oor-dinates this be
omes r2 sin � dt dr d� d�. Thus, integrals of fun
tions over spa
etime are ofthe form R f(x�)p�g d4x. (\Fun
tion," of 
ourse, is the same thing as \s
alar.")Another obje
t whi
h is unfortunately not a tensor is the partial derivative �=�x�, oftenabbreviated to ��. A
ting on a s
alar, the partial derivative returns a perfe
tly respe
table(0; 1) tensor; using the 
onventional 
hain rule we have���! ��0� = �x��x�0 ��� ; (30)in agreement with the tensor transformation law. But on a ve
tor V �, given that V � !�x�0�x� V �, we get ��V � ! ��0V �0 =  �x��x�0 ��! �x�0�x� V �!= �x��x�0 �x�0�x� (��V �) + �x��x�0 �2x�0�x��x�V � : (31)8



The �rst term is what we want to see, but the se
ond term ruins it. So we de�ne a 
ovariantderivative to be a partial derivative plus a 
orre
tion that is linear in the original tensor:r�V � = ��V � + ����V � : (32)Here, the symbol ���� stands for a 
olle
tion of numbers, 
alled 
onne
tion 
oeÆ
ients,with an appropriate non-tensorial transformation law 
hosen to 
an
el out the non-tensorialterm in (31). Thus we need to have��0�0�0 = �x��x�0 �x��x�0 �x�0�x� ���� � �x��x�0 �x��x�0 �2x�0�x��x� : (33)Then r�V � is guaranteed to transform like a tensor. The same kind of tri
k works to de�ne
ovariant derivatives of tensors with lower indi
es; we simply introdu
e a minus sign and
hange the dummy index whi
h is summed over:r�!� = ��!� � ����!� : (34)If there are many indi
es, for ea
h upper index you introdu
e a term with a single +�, andfor ea
h lower index a term with a single ��:r�T �1�2����k�1�2����l = ��T �1�2����k�1�2����l+��1�� T ��2����k�1�2����l + ��2�� T �1�����k�1�2����l + � � ������1T �1�2����k��2����l � ����2T �1�2����k�1�����l � � � � : (35)This is the general expression for the 
ovariant derivative.What are these mysterious 
onne
tion 
oeÆ
ients? Fortunately they have a naturalexpression in terms of the metri
 and its derivatives:���� = 12g��(��g�� + ��g�� � ��g��) : (36)It is left up to you to 
he
k that the mess on the right really does have the desired transfor-mation law. You 
an also verify that the 
onne
tion 
oeÆ
ients are symmetri
 in their lowerindi
es, ���� = ����. These 
oeÆ
ients 
an be nonzero even in 
at spa
e, if we have non-Cartesian 
oordinates. In prin
iple there 
an be other kinds of 
onne
tion 
oeÆ
ients, butwe won't worry about that here; the parti
ular 
hoi
e (36) are sometimes 
alled Christo�elsymbols, and are the ones we always use in GR. With these 
onne
tion 
oeÆ
ients, we getthe ni
e feature that the 
ovariant derivative of the metri
 and its inverse are always zero,known as metri
 
ompatibility:r�g�� = 0 ; r�g�� = 0 : (37)9



So, given any metri
 g��, we pro
eed to 
al
ulate the 
onne
tion 
oeÆ
ients so thatwe 
an take 
ovariant derivatives. Many of the familiar equations of physi
s in 
at spa
e
ontinue to hold true in 
urved spa
e on
e we repla
e partial derivatives by 
ovariant ones.For example, in spe
ial relativity the ele
tri
 and magneti
 ve
tor �elds ~E and ~B 
an be
olle
ted into a single two-index antisymmetri
 tensor F�� :F�� = 0BBB� 0 �Ex �Ey �EzEx 0 Bz �ByEy �Bz 0 BxEz By �Bx 0 1CCCA ; (38)and the ele
tri
 
harge density � and 
urrent ~J into a four-ve
tor J�:J� = (�; ~J) : (39)In this notation, Maxwell's equationsr�B� �tE = 4�Jr �E = 4��r�E+ �tB = 0r �B = 0 (40)shrink into two relations, ��F �� = 4�J��[�F��℄ = 0 : (41)These are true in Minkowski spa
e, but the generalization to a 
urved spa
etime is immediate;just repla
e �� ! r�: r�F �� = 4�J�r[�F��℄ = 0 : (42)These equations govern the behavior of ele
tromagenti
 �elds in general relativity.4 CurvatureWe have been loosely throwing around the idea of \
urvature" without giving it a 
are-ful de�nition. The �rst step toward a better understanding begins with the notion of amanifold. Basi
ally, a manifold is \a possibly 
urved spa
e whi
h, in small enough regions(in�nitesimal, really), looks like 
at spa
e." You 
an think of the obvious example: the10



Earth looks 
at be
ause we only see a tiny part of it, even though it's round. A 
ru
ialfeature of manifolds is that they have the same dimensionality everywhere; if you glue theend of a string to a plane, the result is not a manifold sin
e it is partly one-dimensional andpartly two-dimensional.The most famous examples of manifolds are n-dimensional 
at spa
e Rn (\R" as in real,as in real numbers), and the n-dimensional sphere Sn. So, R1 is the real line, R2 is theplane, and so on. Meanwhile S1 is a 
ir
le, S2 is a sphere, et
. For future referen
e, the mostpopular 
oordinates on S2 are the usual � and � angles. In these 
oordinates, the metri
 onS2 (with radius r = 1) is ds2 = d�2 + sin2 � d�2 : (43)The fa
t that manifolds may be 
urved makes life interesting, as you may imagine.However, most of the diÆ
ulties en
ountered in 
urved spa
es are also en
ountered in 
atspa
e if you use non-Cartesian 
oordinates. The thing about 
urved spa
e is, you 
an neveruse Cartesian 
oordinates, be
ause they only des
ribe 
at spa
es. So the ma
hinery wedeveloped for non-Cartesian 
oordinates will be 
ru
ial; in fa
t, we've done most of the workalready.It should 
ome as no surprise that information about the 
urvature of a manifold is
ontained in the metri
; the question is, how to extra
t it? You 
an't get it easily from the���� , for instan
e, sin
e they 
an be zero or nonzero depending on the 
oordinate system(as we saw for 
at spa
e). For reasons we won't go into, the information about 
urvatureis 
ontained in a four-
omponent tensor known as the Riemann 
urvature tensor. Thissupremely important obje
t is given in terms of the Christo�el symbols by the formulaR���� � ������ � ������ + �������� � �������� : (44)(The overall sign of this is a matter of 
onvention, so 
he
k 
arefully when you read anybodyelse's papers. Note also that the Riemann tensor is 
onstru
ted from non-tensorial elements| partial derivatives and Christo�el symbols | but they are 
arefully arranged so that the�nal result transforms as a tensor, as you 
an 
he
k.) This tensor has one ni
e property thata measure of 
urvature should have: all of the 
omponents of R���� vanish if and only ifthe spa
e is 
at. Operationally, \
at" means that there exists a global 
oordinate system inwhi
h the metri
 
omponents are everywhere 
onstant.There are two 
ontra
tions of the Riemann tensor whi
h are extremely useful: the Ri

itensor and the Ri

i s
alar. The Ri

i tensor is given byR�� = R���� : (45)Although it may seem as if other independent 
ontra
tions are possible (using other indi
es),the symmetries of R���� (dis
ussed below) make this the only independent 
ontra
tion. The11



tra
e of the Ri

i tensor yields the Ri

i s
alar:R = R�� = g��R�� : (46)This is another useful item.Although the Riemann tensor has many indi
es, and therefore many 
omponents, usingit is vastly simpli�ed by the many symmetries it obeys. In fa
t, only 20 of the 44 = 256
omponents of R���� are independent. Here is a list of some of the useful properties obeyedby the Riemann tensor, whi
h are most easily expressed in terms of the tensor with all indi
eslowered, R���� = g��R����: R���� = �R���� = �R����R���� = R����R���� +R���� +R���� = 0 : (47)These imply a symmetry of the Ri

i tensor,R�� = R�� : (48)In addition to these algebrai
 identities, the Riemann tensor obeys a di�erential identity:r[�R��℄�� = 0 : (49)This is sometimes known as the Bian
hi identity. If we de�ne a new tensor, the Einsteintensor, by G�� � R�� � 12Rg�� ; (50)then the Bian
hi identity implies that the divergen
e of this tensor vanishes identi
ally:r�G�� = 0 : (51)This is sometimes 
alled the 
ontra
ted Bian
hi identity.Basi
ally, there are only two things you have to know about 
urvature: the Riemanntensor, and geodesi
s. You now know the Riemann tensor { lets move on to geodesi
s.Informally, a geodesi
 is \the shortest distan
e between two points." More formally,a geodesi
 is a 
urve whi
h extremizes the length fun
tional R ds. That is, imagine a pathparameterized by �, i.e. x�(�). The in�nitesimal distan
e along this 
urve is given byds = vuut�����g�� dx�d� dx�d� ����� d� : (52)So the entire length of the 
urve is just L = Z ds : (53)12



To �nd a geodesi
 of a given geometry, we would do a 
al
ulus of variations manipulationof this obje
t to �nd an extremum of L. Lu
kily, stronger souls than ourselves have 
omebefore and done this for us. The answer is that x�(�) is a geodesi
 if it satis�es the famousgeodesi
 equation: d2x�d�2 + ���� dx�d� dx�d� = 0: (54)In fa
t this is only true if � is an aÆne parameter, that is if it is related to the propertime via � = a� + b : (55)In pra
ti
e, the proper time itself is almost always used as the aÆne parameter (for timelikegeodesi
s, at least). In that 
ase, the tangent ve
tor is the four-velo
ity U� = dx�=d� , andthe geodesi
 equation 
an be writtendd� U� + ����U�U� = 0 : (56)The physi
al reason why geodesi
s are so important is simply this: in general relativity,test bodies move along geodesi
s. If the bodies are massless, these geodesi
s will be null(ds2 = 0), and if they are massive the geodesi
s will be timelike (ds2 < 0). Note that whenwe were being formal we kept saying \extremum" rather than \minimum" length. That'sbe
ause, for massive test parti
les, the geodesi
s on whi
h they move are 
urves of maximumproper time. (In the famous \twin paradox", two twins take two di�erent paths through
at spa
etime, one staying at home [thus on a geodesi
℄, and the other traveling o� intospa
e and ba
k. The stay-at-home twin is older when they reunite, sin
e geodesi
s maximizeproper time.)This is an appropriate pla
e to talk about the philosophy of GR. In pre-GR days, Newto-nian physi
s said \parti
les move along straight lines, until for
es kno
k them o�." Gravitywas one for
e among many. Now, in GR, gravity is represented by the 
urvature of spa
e-time, not by a for
e. From the GR point of view, \parti
les move along geodesi
s, until for
eskno
k them o�." Gravity doesn't 
ount as a for
e. If you 
onsider the motion of parti
lesunder the in
uen
e of for
es other than gravity, then they won't move along geodesi
s { you
an still use (54) to des
ribe their motions, but you have to add a for
e term to the righthand side. In that sense, the geodesi
 equation is something like the 
urved-spa
e expressionfor F = ma = 0.5 General RelativityMoving from math to physi
s involves the introdu
tion of dynami
al equations whi
h relatematter and energy to the 
urvature of spa
etime. In GR, the \equation of motion" for the13



metri
 is the famous Einstein equation:R�� � 12Rg�� = 8�GT�� : (57)Noti
e that the left-hand side is the Einstein tensor G�� from (50). G is Newton's 
onstantof gravitation (not the tra
e of G��). T�� is a symmetri
 two-index tensor 
alled the energy-momentum tensor, or sometimes the stress-energy tensor. It en
ompasses all we need toknow about the energy and momentum of matter �elds, whi
h a
t as a sour
e for gravity.Thus, the left hand side of this equation measures the 
urvature of spa
etime, and the rightmeasures the energy and momentum 
ontained in it. Truly glorious.The 
omponents T�� of the energy-momentum tensor are \the 
ux of the �th 
omponent ofmomentum in the �th dire
tion." This de�nition is perhaps not very useful. More 
on
retely,we 
an 
onsider a popular form of matter in the 
ontext of general relativity: a perfe
t 
uid,de�ned to be a 
uid whi
h is isotropi
 in its rest frame. This means that the 
uid has novis
osity or heat 
ow; as a result, it is spe
i�ed entirely in terms of the rest-frame energydensity � and rest-frame pressure p (isotropi
, and thus equal in all dire
tions). If use U� tostand for the four-velo
ity of a 
uid element, the energy-momentum tensor takes the formT�� = (�+ p)U�U� + pg�� : (58)If we raise one index and use the normalization g��U�U� = �1, we get an even more under-standable version: T�� = 0BBB��� 0 0 00 p 0 00 0 p 00 0 0 p1CCCA : (59)If T�� en
apsulates all we need to know about energy and momentum, it should be ableto 
hara
terize the appropriate 
onservation laws. In fa
t these are formulated by sayingthat the 
ovariant divergen
e of T�� vanishes:r�T�� = 0 : (60)Re
all that the 
ontra
ted Bian
hi identity (51) guarantees that the divergen
e of the Ein-stein tensor vanishes identi
ally. So Einstein's equation (57) guarantees energy-momentum
onservation. Of 
ourse, this is a lo
al relation; if we (for example) integrate the energy den-sity � over a spa
elike hypersurfa
e, the 
orresponding quantity is not 
onstant with time. InGR there is no global notion of energy 
onservation; (60) expresses lo
al 
onservation, andthe appearan
e of the 
ovariant derivative allows this equation to a

ount for the transfer ofenergy ba
k and forth between matter and the gravitational �eld.14



The exoti
 appearan
e of Einstein's equation should not obs
ure the fa
t that it a naturalextension of Newtonian gravity. To see this, 
onsider Poisson's equation for the Newtonianpotential �: r2� = 4�G� ; (61)where � is the matter density. On the left hand side of this we see a se
ond-order di�erentialoperator a
ting on the gravitational potential �. This is proportional to the density ofmatter. Now, GR is a fully relativisti
 theory, so we would expe
t that the matter densityshould be repla
ed by the full energy-momentum tensor T�� . To 
orrespond to (61), thisshould be proportional to a 2-index tensor whi
h is a se
ond-order di�erential operator a
tingon the gravitational �eld, i.e. the metri
. If you think about the de�nition of G�� in termsof g��, this is exa
tly what the Einstein tensor is. In fa
t, G�� is the only two-index tensor,se
ond order in derivatives of the metri
, for whi
h the divergen
e vanishes.So the GR equation is of the same essential form as the Newtonian one. We should askfor something more, however: namely, that Newtonian gravity is re
overed in the appro-priate limit, where the parti
les are moving slowly (with respe
t to the speed of light), thegravitational �eld is weak (
an be 
onsidered a perturbation of 
at spa
e), and the �eld isalso stati
 (un
hanging with time). We 
onsider a metri
 whi
h is almost Minkowski, butwith a spe
i�
 kind of small perturbation:ds2 = �(1 + 2�)dt2 + (1� 2�)d~x2 ; (62)where � is a fun
tion of the spatial 
oordinates xi. If we plug this into the geodesi
 equationand solve for the 
onventional three-velo
ity (using that the parti
les are moving slowly), weobtain d2~xdt2 = �r� ; (63)where r here represents the ordinary spatial divergen
e (not a 
ovariant derivative). This isjust the equation for a parti
le moving in a Newtonian gravitational potential �. Meanwhile,we 
al
ulate the 00 
omponent of the left-hand side of Einstein's equation:R00 � 12Rg00 = 2r2� : (64)The 00 
omponent of the right-hand side (to �rst order in the small quantities � and �) isjust 8�GT00 = 8�G� : (65)So the 00 
omponent of Einstein's equation applied to the metri
 (62) yieldsr2� = 4�G� ; (66)15



whi
h is pre
isely the Poisson equation (61). Thus, in this limit GR does redu
e to Newtoniangravity.Although the full nonlinear Einstein equation (57) looks simple, in appli
ations it is not.If you re
all the de�nition of the Riemann tensor in terms of the Christo�el symbols, andthe de�nition of those in terms of the metri
, you realize that Einstein's equation for themetri
 are 
ompli
ated indeed! It is also highly nonlinear, and 
orrespondingly very diÆ
ultto solve. If we take the tra
e of (57), we obtain�R = 8�GT : (67)Plugging this into (57), we 
an rewrite Einstein's equations asR�� = 8�G�T�� � 12Tg��� : (68)This form is useful when we 
onsider the 
ase when we are in the va
uum { no energy ormomentum. In this 
ase T�� = 0 and (68) be
omes Einstein's equation in va
uum:R�� = 0 : (69)This is somewhat easier to solve than the full equation.One �nal word on Einstein's equation: it may be derived from a very simple Lagrangian,L = p�gR (plus appropriate terms for the matter �elds). In other words, the a
tion forGR is simply S = Z d4xp�gR ; (70)an Einstein's equation 
omes from looking for extrema of this a
tion with respe
t to variationsof the metri
 g��. What 
ould be more elegant?6 S
hwarzs
hild solutionIn order to solve Einstein's equation we usually need to make some simplifying assumptions.For example, in many physi
al situations, we have spheri
al symmetry. If we want to solvefor a metri
 g��, this fa
t is very helpful, be
ause the most general spheri
ally symmetri
metri
 may be written (in spheri
al 
oordinates) asds2 = �A(r; t)dt2 +B(r; t)dr2 + r2(d�2 + sin2 �d�2) ; (71)where A and B are positive fun
tions of (r; t), and you will re
ognize the metri
 on the spherefrom (43). If we plug this into Einstein's equation, we will get a solution for a spheri
ally16



symmetri
 matter distribution. To be even more restri
tive, let's 
onsider the equation inva
uum, (69). Then there is a unique solution:ds2 = ��1� 2Gmr � dt2 + �1� 2Gmr ��1 dr2 + r2(d�2 + sin2 �d�2) : (72)This is the 
elebrated S
hwarzs
hild metri
 solution to Einstein's equations. The param-eter m, of 
ourse, measures the amount of mass inside the radius r under 
onsideration. Aremarkable fa
t is that the S
hwarzs
hild metri
 is the unique solution to Einstein's equationin va
uum with a spheri
ally symmetri
 matter distribution. This fa
t, known as Birkho�'stheorem, means that the matter 
an os
illate wildly, as long as it remains spheri
ally sym-metri
, and the gravitational �eld outside will remain un
hanged.Philosophy point: the metri
 
omponents in (72) blow up at r = 0 and r = 2Gm. Of-�
ially, any point at whi
h the metri
 
omponents be
ome in�nite, or exhibit some otherpathologi
al behavior, is known as a singularity. These beasts 
ome in two types: \
o-ordinate" singularities and \true" singularities. A 
oordinate singularity is simply a resultof 
hoosing bad 
oordinates; if we 
hange 
oordinates we 
an remove the singularity. Atrue singularity is an a
tual pathology of the geometry, a point at whi
h the manifold isill-de�ned. In the S
hwarzs
hild geometry, the point r = 0 is a real singularity, an unavoid-able blowing-up. However, the point r = 2Gm is merely a 
oordinate singularity. We 
andemonstrate this by making a transformation to what are known as Kruskal 
oordinates,de�ned by u = � r2Gm � 1�1=2 er=4Gm
osh(t=4Gm)v = � r2Gm � 1�1=2 er=4Gmsinh(t=4Gm): (73)In these 
oordinates, the metri
 (72) takes the formds2 = 32(Gm)3r e�r=2Gm(�dv2 + du2) + r2(d�2 + sin2 �d�2) ; (74)where r is 
onsidered to be an impli
it fun
tion of u and v de�ned byu2 � v2 = er=2Gm � r2Gm � 1� : (75)If we look at (74), we see that nothing blows up at r = 2Gm. The mere fa
t that we 
ould
hoose 
oordinates in whi
h this happens assures us that r = 2Gm is a mere 
oordinatesingularity.The useful thing about the S
hwarzs
hild solution is that it des
ribes both mundanethings like the solar system, and more exoti
 obje
ts like bla
k holes. To get a feel for it,17



let's look at how parti
les move in a S
hwarzs
hild geometry. It turns out that we 
an 
astthe problem of a parti
le moving in the plane � = �=2 as a one-dimensional problem for theradial 
oordinate r = r(�). In other words, the distan
e of a parti
le from the point r = 0is a solution to the equation 12  drd� !2 + V (r) = 12E2 : (76)This is just the equation of motion for a parti
le of unit mass and energy E in a one-dimensional potential V (r). This potential, for the S
hwarzs
hild geometry, is given byV (r) = 12�� �Gmr + L22r2 � GmL2r3 : (77)Here, L represents the angular momentum (per unit mass) of the parti
le, and � is a 
onstantequal to 0 for massless parti
les and +1 for massive parti
les. (Note that the proper time� is zero for massless parti
les, so we use some other parameter � in (76), but the equationitself looks the same). So, to �nd the orbits of parti
les in a S
hwarzs
hild metri
, just solvethe motion of a parti
le in the potential given by (77). Note that the �rst term in (77) is a
onstant, the se
ond term is exa
tly what we expe
t from Newtonian gravity, and the thirdterm is just the 
ontribution of the parti
le's angular momentum, whi
h is also present inthe Newtonian theory. Only the last term in (77) is a new addition from GR.There are two important e�e
ts of this extra term. First, it a
ts as a small perturbationon any orbit { this is what leads to the pre
ession of Mer
ury, for instan
e. Se
ond, for rvery small, the GR potential goes to �1; this means that a parti
le that approa
hes too
lose to r = 0 will fall into the 
enter and never es
ape! Even though this is in the 
ontextof una

elerated test parti
les, a similar statement holds true for parti
les with the abilityto a

elerate themselves all they like { see below. However, not to worry; for a star su
h asthe Sun, for whi
h the S
hwarzs
hild metri
 only des
ribes points outside the surfa
e, youwould run into the star long before you approa
hed the point where you 
ould not es
ape.Nevertheless, we all know of the existen
e of more exoti
 obje
ts: bla
k holes. Abla
k hole is a body in whi
h all of the mass has 
ollapsed gravitationally past the pointof possible es
ape. This point of no return, given by the surfa
e r = 2Gm, is known asthe event horizon, and 
an be thought of as the \surfa
e" of a bla
k hole. Although itis impossible to go into mu
h detail about the host of interesting properties of the eventhorizon, the basi
s are not diÆ
ult to grasp. From the point of view of an outside observer,a 
lo
k falling into a bla
k hole will appear to move more and more slowly as it approa
hesthe event horizon. In fa
t, the external observer will never see a test parti
le 
ross thesurfa
e r = 2Gm; they will just see the parti
le get 
loser and 
loser, and move more andmore slowly.Contrast this to what you would experien
e as a test observer a
tually thrown into a bla
khole. To you, time always seems to move at the same rate; sin
e you and your wristwat
h are18
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t = -t = +Figure 2: The Kruskal diagram | the S
hwarzs
hild solution in Kruskal 
oordinates (74),where all light 
ones are at �45Æ. The surfa
e r = 2Gm is the event horizon; inside theevent horizon, all timelike paths hit the singularity at r = 0. The right- and left-hand sideof the diagram represent distin
t asymptoti
ally 
at regions of spa
etime.in the same inertial frame, you never \feel time moving more slowly." Therefore, rather thantaking an in�nite amount of time to rea
h the event horizon, you zoom right past { doesn'ttake very long at all, a
tually. You then pro
eed dire
tly to fall to r = 0, also in a very shorttime. On
e you pass r = 2Gm, you 
annot help but hit r = 0; it is as inevitable as movingforward in time. The literal truth of this statement 
an be seen by looking at the metri
(72) and noti
ing that r be
omes a timelike 
oordinate for r < 2Gm; therefore your voyageto the 
enter of the bla
k hole is literally moving forward in time! What's worse, we notedabove that a geodesi
 (una

elerated motion) maximized the proper time { this means thatthe more you struggle, the sooner you will get there. (Of 
ourse, you won't struggle, be
auseyou would have been ripped to shreds by tidal for
es. The grisly death of an astrophysi
istwho enters a bla
k hole is detailed in Misner, Thorne, and Wheeler, pp. 860-862.)The spa
etime diagram of a bla
k hole in Kruskal 
oordinates (74) is shown in Figure 2.Shown is a sli
e through the entire spa
etime, 
orresponding to angular 
oordinates � = �=2and � = 0. There are two asymptoti
 regions, one at u! +1 and the other at u! �1; inboth regions the metri
 looks approximately 
at. The event horizon is the surfa
e r = 2Gm,19



or equivalently u = �v. In this diagram all light 
ones are at �45Æ. Inside the event horizon,where r < 2Gm, all timelike traje
tories lead inevitably to the singularity at r = 0. It shouldbe stressed that this diagram represents the \maximally extended" S
hwarzs
hild solution| a 
omplete solution to Einstein's equation in va
uum, but not an espe
ially physi
allyrealisti
 one. In a realisti
 bla
k hole, formed for instan
e from the 
ollapse of a massivestar, the va
uum equations do not tell the whole story, and there will not be two distin
tasymptoti
 regions, only the one in whi
h the star originally was lo
ated. (For that matter,timelike traje
tories 
annot travel between the two regions, so we 
ould never tell whetheranother su
h region did exist.)In the 
ollapse to a bla
k hole, all the information about the detailed nature of the 
ol-lapsing obje
t is lost: what it was made of, its shape, et
. The only information whi
his not wiped out is the amount of mass, angular momentum, and ele
tri
 
harge in thehole. This fa
t, the no-hair theorem, implies that the most general bla
k-hole metri
will be a fun
tion of these three numbers only. However, real-world bla
k holes will prob-ably be ele
tri
ally neutral, so we will not present the metri
 for a 
harged bla
k hole (theReissner-Nordstrom metri
). Of 
onsiderable astrophysi
al interest are spinning bla
kholes, des
ribed by the Kerr metri
:ds2 = � "�� !2 sin2 �� # dt2 � "4!mGr sin2 �� # dtd�+ ��dr2 + �d�2+ "(r2 + !2)2 ��!2 sin2 �� # sin2 �d�2; (78)where � � r2 + !2 
os2 �; � � r2 + !2 � 2Gmr ; (79)and ! is the angular velo
ity of the body.Finally, among the many additional possible things to mention, there's the 
osmi
 
en-sorship 
onje
ture. Noti
e how the S
hwarzs
hild singularity at r = 0 is hidden, in asense { you 
an never get to it without 
rossing an horizon. It is 
onje
tured that this isalways true, in any solution to Einstein's equation. However, some numeri
al work seems to
ontradi
t this 
onje
ture, at least in spe
ial 
ases.7 CosmologyJust as we were able to make great strides with the S
hwarzs
hild metri
 on the assumptionof speri
al symmetry, we 
an make similar progress in 
osmology by assuming that theUniverse is homogeneous and isotropi
. That is to say, we assume the existen
e of a \restframe for the Universe," whi
h de�nes a universal time 
oordinate, and singles out three-dimensional surfa
es perpendi
ular to this time 
oordinate. (In the real Universe, this rest20



frame is the one in whi
h galaxies are at rest and the mi
rowave ba
kground is isotropi
.)\Homogeneous" means that the 
urvature of any two points at a given time t is the same.\Isotropi
" is tri
kier, but basi
ally means that the universe looks the same in all dire
tions.Thus, the surfa
e of a 
ylinder is homogeneous (every point is the same) but not isotropi
(looking along the long axis of the 
ylinder is a preferred dire
tion); a 
one is isotropi
 aroundits vertex, but not homogeneous.These assumptions narrow down the 
hoi
e of metri
s to pre
isely three forms, all givenby the Robertson-Walker (RW) metri
:ds2 = �dt2 + a2(t) " dr21� kr2 + r2(d�2 + sin2 �d�2)# ; (80)where the 
onstant k 
an be �1, 0, or +1. The fun
tion a(t) is known as the s
ale fa
torand tells us the relative sizes of the spatial surfa
es. The above 
oordinates are 
alled
omoving 
oordinates, sin
e a point whi
h is at rest in the preferred frame of the universewill have r; �; � = 
onstant. The k = �1 
ase is known as an open universe, in whi
h thepreferred three-surfa
es are \three-hyperboloids" (saddles); k = 0 is a 
at universe, in whi
hthe preferred three-surfa
es are 
at spa
e; and k = +1 is a 
losed universe, in whi
h thepreferred three-surfa
es are three-spheres. Note that the terms \open," \
losed," and \
at"refer to the spatial geometry of three-surfa
es, not to whether the universe will eventuallyre
ollapse. The volume of a 
losed universe is �nite, while open and 
at universes havein�nite volume (or at least they 
an; there are also versions with �nite volume, obtainedfrom the in�nite ones by performing dis
rete identi�
ations).There are other 
oordinate systems in whi
h (8.1) is sometimes written. In parti
ular, ifwe set r = (sin ;  ; sinh ) for k = (+1; 0; �1) respe
tively, we obtainds2 = �dt2 + a2(t)8><>: d 2 + sin2  (d�2 + sin2 �d�2)d 2 +  2(d�2 + sin2 �d�2)d 2 + sinh2 (d�2 + sin2 �d�2)9>=>; (k = +1)(k = 0)(k = �1) (81)Further, the 
at (k = 0) universe also may be written in almost-Cartesian 
oordinates:ds2 = �dt2 + a2(t)(dx2 + dy2 + dz2)= �a2(�)(�d�2 + dx2 + dy2 + dz2): (82)In this last expression, � is known as the 
onformal time and is de�ned by� � Z dta(t) : (83)The 
oordinates (�; x; y; z) are often 
alled \
onformal 
oordinates."Sin
e the RW metri
 is the only possible homogeneous and isotropi
 metri
, all we haveto do is solve for the s
ale fa
tor a(t) by using Einstein's equation. If we use the va
uum21



equation (69), however, we �nd that the only solution is just Minkowski spa
e. Thereforewe have to introdu
e some energy and momentum to �nd anything interesting. Of 
oursewe shall 
hoose a perfe
t 
uid spe
i�ed by energy density � and pressure p. In this 
ase,Einstein's equation be
omes two di�erential equations for a(t), known as the Friedmannequations: � _aa�2 = 8�G3 �� ka2�aa = �4�G3 (�+ 3p) : (84)Sin
e the Friedmann equations govern the evolution of RW metri
s, one often speaks ofFriedman-Robertson-Walker (FRW) 
osmology.The expansion rate of the universe is measured by the Hubble parameter:H � _aa ; (85)and the 
hange of this quantity with time is parameterized by the de
eleration parameter:q � ��aa_a2 = � 1 + _HH2! : (86)The Friedmann equations 
an be solved on
e we 
hoose an equation of state, but thesolutions 
an get messy. It is easy, however, to write down the solutions for the k = 0universes. If the equation of state is p = 0, the universe is matter dominated, anda(t) / t2=3 : (87)In a matter dominated universe, the energy density de
reases as the volume in
reases, so�matter / a�3 : (88)If p = 13�, the universe is radiation dominated, anda(t) / t1=2 : (89)In a radiation dominated universe, the number of photons de
reases as the volume in
reases,and the energy of ea
h photon redshifts and amount proportional to a(t), so�rad / a�4 : (90)If p = ��, the universe is va
uum dominated, anda(t) / eHt : (91)22



The va
uum dominated universe is also known as de Sitter spa
e. In de Sitter spa
e, theenergy density is 
onstant, as is the Hubble parameter, and they are related byH = s8�G�va
3 = 
onstant : (92)Note that as a! 0, �rad grows the fastest; therefore, if we go ba
k far enough in the historyof the universe we should 
ome to a radiation dominated phase. Similarly, �va
 stays 
onstantas the universe expands; therefore, if �va
 is not zero, and the universe lasts long enough, wewill eventually rea
h a va
uum-dominated phase.Given that our Universe is presently expanding, we may ask whether it will 
ontinue todo so forever, or eventually begin to re
ontra
t. For energy sour
es with p=� � 0 (in
ludingboth matter and radiation dominated universes), 
losed (k = +1) universes will eventuallyre
ontra
t, while open and 
at universes will expand forever. When we let p=� < 0 thingsget messier; just keep in mind that spatially 
losed/open does not ne
essarily 
orrespond totemporally �nite/in�nite.The question of whether the Universe is open or 
losed 
an be answered observationally.In a 
at universe, the density is equal to the 
riti
al density, given by�
rit = 3H28�G : (93)Note that this 
hanges with time; in the present Universe it's about 5 � 10�30 grams per
ubi
 
entimeter. The universe will be open if the density is less than this 
riti
al value,
losed if it is greater. Therefore, it is useful to de�ne a density parameter via
 � ��
rit = 8�G�3H2 = 1 + k_a2 ; (94)a quantity whi
h will generally 
hange with time unless it equals unity. An open universehas 
 < 1, a 
losed universe has 
 > 1.We mentioned in passing the redshift of photons in an expanding universe. In terms ofthe wavelength �1 of a photon emitted at time t1, the wavelength �0 observed at a time t0is given by �0�1 = a(t0)a(t1) : (95)We therefore de�ne the redshift z to be the fra
tional in
rease in wavelengthz � �0 � �1�1 = a(t0)a(t1) � 1 : (96)Keep in mind that this only measures the net expansion of the universe between times t1 andt0, not the relative speed of the emitting and observing obje
ts, espe
ially sin
e the latter23



is not well-de�ned in GR. Nevertheless, it is 
ommon to speak as if the redshift is due to aDoppler shift indu
ed by a relative velo
ity between the bodies; although nonsensi
al from astri
t standpoint, it is an a

eptable bit of sloppiness for small values of z. Then the Hubble
onstant relates the redshift to the distan
e s (measured along a spa
elike hypersurfa
e)between the observer and emitter: z = H(t0)s : (97)This, of 
ourse, is the linear relationship dis
overed by Hubble.
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