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Proton struture, Partons, QCD, DGLAP and beyondAlan D. MartinInstitute for Partile Physis Phenomenology, University of Durham, Durham, DH1 3LE

AbstratWe present an introdutory disussion of deep-inelasti lepton-proton sattering as ameans to probe the substruture of the proton. A r�esum�e of QCD is given, emphasizingthe running of the oupling onstant and the DGLAP evolution equations for the partondensities. The determination of parton distributions is disussed and their importanefor preditions of proesses at the LHC is emphasized. Going beyond the pure DGLAPregime, we briey disuss the behaviour of parton densities at low x, and the evidene fornon-linear absorptive ontributions.1 Deep inelasti sattering (DIS) introduedHigh energy eletron sattering is an ideal probe of the struture of a omposite objet. Forinstane, onsider the sattering of a beam of eletrons on a nulear target of mass MN . Thesattering ours via the exhange of a virtual photon, see Fig. 1. Sine it is virtual, the photonis not on its mass shell. That is, its 4-momentum q does not satisfy q2 = 0. On the other hand,a real (ingoing or outgoing) partile or system must be on its mass shell. So the invariant massW of the outgoing system in Fig. 1 satis�esW 2 = (pN + q)2 = M2N + 2pN � q + q2; (1)
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Figure 1: Eletron-nuleus sattering, where pN and q are the 4-momenta of the inomingnuleus and virtual photon respetively, and W is the invariant mass of the outgoing hadronisystem. The lower three diagrams are a shemati illustration of the ross setion for eletron-nuleus sattering, eN ! eX, plotted as a funtion of the saling variable xN = Q2=2pN � q atthree di�erent values of Q2. In the lowest plot the wavelength � of the virtual photon probeis muh less that the nulear radius RN , and the photon probes a onstituent proton of thenuleus.
1



where MN and pN are the mass and 4-momentum of the nuleus. It follows that q2 is negative.So we de�ne Q2 � �q2.The wavelength of the probing photon � � 1=Q. Let us follow what happens as we inreasethe eletron energy, so that the photon probe has a shorter and shorter wavelength �. We beginwith � � RN , where RN is the radius of the nuleus. In this ase the photon sees a \point"nuleus and we have elasti eletron-nuleus sattering with W = MN . Thus, from (1),xN � Q22pN � q =  Q22MN�!lab: = 1; (2)where � is the energy loss of the eletron. The expression in the laboratory frame showsimmediately that Q2 � �q2 is positive. We sketh the orresponding elasti peak at xN = 1 inthe �rst of the three plots of Fig. 1. If we inrease Q until � � RN then the outgoing systemmay be an exited nulear state. Now W > MN and xN < 1, as shown in Fig. 1.Finally, if �� RN , the photon may probe deep within the nuleus. The nuleus is brokenup. We have deep (Q2 � M2N ) inelasti (W 2 � M2N) eletron-nuleus sattering. Indeed,the eletron may satter o� a onstituent proton of the nuleus. In terms of xN , the resultingeletron-proton elasti sattering peak will our atxN = MMN  Q22M�!lab: = 1A; (3)but will be smeared out due to the Fermi momentum of the proton bound in the nuleus, seeFig. 1. M is the proton mass and A is the number of nuleons in the nuleus. The area underthe Fermi-smeared peak gives the number of protons in the nuleus, and hene the positionof the peak determines the number of neutrons. The redution of the eN elasti peak, withinreasing Q2, reets the small hane of the A � 1 spetator nuleons all happening to bemoving in the diretion of the outgoing struk proton and reforming the original nuleus.Let us inrease Q2 even further. Suppose that protons are made up of three point-likequarks, then high-energy eletron-proton sattering will simply be a replay of eletron-nuleussattering one layer of substruture down. We have an analogous sequene of diagrams to thoseshown in Fig. 1, but with RN replaed by the proton radius R. Also the sattering probabilitiesshould now be plotted in terms of x =  Q22p � q! ; (4)where p is the 4-momentum of the proton. The ontinuous urve in Fig. 2 is the analogue ofthe lowest plot in Fig. 1. It shows the elasti eq-sattering peak Fermi-smeared about x = 1=3,together with traes of the elasti ep peak at x � 1. If there were no further substruture, thisurve would persist as Q2 inreases. We would have (Bjorken) saling; the sattering dependsonly on the ratio x = Q2=2p � q, and not on the two variables, Q2 and p � q, individually. x isknown as the Bjorken saling variable. 2



Figure 2: Shemati illustration of eletron-proton sattering as a funtion of the Bjorkensaling variable x � Q2=2p � q. The proton struture funtion F2 is de�ned in the next setion.The hadrons N� are exited states of the proton. If the proton onsisted of just three valenepoint-like quarks the result would be the ontinuous urve independent of Q2. However withinreased resolution (higher Q2) the photon may probe one of a pair of sea quarks produedfrom a radiated gluon via g ! q�q. Indeed, as Q2 inreases, the proton appears to have moreand more onstituents, whih all must share its momentum, and so the distribution skews moreand more towards small x. This trend from the ontinuous to the dashed urve is harateristiof QCD saling violations.In summary, as Q2 inreases, we �rst have `nulear' saling with a peak at xN = 1, thenviolations of saling, following by `proton' saling with a peak at x � 1, followed by violations,and then `quark' saling with a peak at x � 1=3. If the quarks themselves had substruture then,as Q2 inreases even further, we would enter yet again a region of saling violations followedby another onset of saling. But history does not seem to repeat itself. Saling violations areobserved but these reet the �eld theory of quarks and gluons (QCD) with oupling �s. Thephoton \sees" the proton made up of the three quarks (alled valene quarks) and an arbitrarynumber of q�q pairs (made up of sea quarks). The sea quarks originate from gluons, via g ! q�q,themselves radiated from quarks, see the sketh on the right of Fig. 2. Suppose the photonprobes a quark arrying a fration � of the proton's momentum p. Then for essentially masslessquarks we have (�p+ q)2 = m2q ' 0; that is � ' Q2=2p � q = x: (5)Consequently as Q2 inreases, more and more partons (that is quarks and gluons) beomeevident whih have to share the momentum of the parent proton. Eah arries a smallerfration � = x of the momentum, and we get QCD saling violations (whih, as we will see,have the form �sP log(Q2=�2)) as indiated by the dashed line in Fig. 2. On hearing this forthe �rst time from Wilzek, one of the disoverers of QCD, a famous experimentalist said3



Figure 3: Neutral- and harged-urrent DIS mediated by (; Z) and W exhange respetively.\You expet us to measure logarithms? Not in your lifetime, young man". Yet today thehigh preision DIS data from HERA and earlier �xed-target experiments show exatly theQCD logarithmi saling violations predited. A olletion of plots (whih show the salingviolations) ompiled from these deep inelasti ep sattering data an be found in Setion 16 ofthe Review of Partile Properties[1℄. Introdutory disussions of DIS an be found, for example,in Refs.[2, 3, 4, 5, 6, 7, 8℄.2 The DIS observables: the struture funtionsThe DIS proess, ep ! eX, is shown in Fig. 3(a). We talk of the neutral urrent (NC) DISmediated by  and Z exhange. We also have harged-urrent (CC) DIS mediated by Wexhange, shown in the seond diagram. Reall that by \deep" we mean Q2 � M2 and by\inelasti" we mean W 2 = (p+ q)2 �M2.The NC ross setion is of the formd�dxdy = xs d�dxdQ2 = 2�y�2Q4 Xj �jL��j W j�� ; (6)where the sum is over j = ; Z and Z representing photon and Z-boson exhange and theinterferene between them; and where� = 1; �Z =  GFM2Z2p2��! Q2Q2 +M2Z! ; �Z = �2Z : (7)We see the e�ets of the  and Z propagators, and of the QED oupling � and the Fermioupling GF . Besides x and Q2, assoiated with the hadroni vertex, we have a variable (y ors) whih depends the energy of the whole ep systemy = p � qp � k = � �E�lab:frame ; s = (k + p)2 ' Q2xy : (8)Both x and y must lie in the range from 0 to 1. The physial interpretation of y is given in(18) below. 4



L�� is the tensor from the leptoni vertex known in terms of k and k0, andW�� is the unknowntensor desribing the hadroni vertex. Although W�� is unknown it must be onstruted fromthe 4-momenta p; q and the metri tensor g��. For unpolarised DIS, there are three tensorforms satisfying the requirements of urrent onservation q�W�� = q�W�� = 0. In this ase thegeneral form isW�� =  �g�� + q�q�q2 !F1(x;Q2) + P̂�P̂�p � q F2(x;Q2)� i����� q�p�2p � qF3(x;Q2); (9)where P̂� = p� � (p � q)q�=q2. The observable struture funtions, Fi(x;Q2), are funtions oftwo salar variables x and Q2 whih an be onstruted from p and q. Note that the last term,with a ~q � ~p type struture, does not onserve parity. Thus F3 = 0 if Z exhange is negligible.If we insert the general form (9) into (6) and use the known forms of L�� , then, after somealgebrai manipulation, we �ndd�dxdQ2 = 2��2xQ4 (Y+F2 � Y�xF3 � y2FL) (10)in the M2=Q2 ! 0 limit, whereY� = 1� (1� y)2 and FL = F2 � 2xF1: (11)A similar expression holds for CC DIS (that is eN ! �X or �N ! eX). For both NC andCC proesses, the � sign for Y� is taken for an inoming e+ or �, and the + sign is taken foran inoming e� or �. Complete expressions for the lepton and hadron tensors L�� ; W��, thestruture funtions and the ross setions, inluding those for polarised DIS, an be found inSetion 16 of the Review of Partile Properties[1℄.For the moment let us fous on pure  exhange, so F3 = 0. Even then to determine bothF2 and FL as funtions of x and Q2 we need to measure the y dependene. That is we needto perform DIS experiments at a range of ep energies1. We will see that FL = F2 � 2xF1 ' 0,so often the experiments either used QCD to alulate FL or assumed that it was zero, andpresented results for F2(x;Q2). Nowadays, partiularly with the advent of high y data, thedata are presented in terms of the so-alled redued ross setion�red(x;Q2) = F2(x;Q2)� (y2=Y+)FL(x;Q2): (12)The HERA mahine at DESY ollided 30 GeV eletrons head-on with 920 GeV protons,giving s ' 4EeEp � 105 GeV2: (13)Thus Q2 ' xys <� 105 GeV2, and x ' Q2=ys >� 10�4 for Q2 = 10 GeV2. We see from Fig. 4 thatthe (x;Q2) reah of HERA is about two orders of magnitude better than the earlier �xed-targetDIS data. So given the data how do we interpret it? Let us start with the Quark Parton Model.1Indeed, the �nal data runs of HERA were made at lower energies spei�ally to enable diret measurementsof FL to be performed. These should be available for DIS2008.5
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Figure 4: Kinemati domains in x and Q2 probed by �xed-target and ollider experiments,shown together with the important onstraints they make on the various parton distributions.3 The Quark Parton ModelThe basi idea of the QPM is that in the DIS proess, ep ! eX, the virtual proton interatswith one of the quark onstituents of the proton, see Fig. 5(a). We view the proess froma frame in whih the proton is moving very fast so that the relativisti time dilation slowsdown the rate with whih the quarks interat with eah other. Thus the struk quark appearsessentially free during the short time (about 1=Q) that it interats with the photon. As a resultthe ep interation may be written as an inoherent sum (of probabilities) of sattering fromsingle free quarks d�dxdQ2 = Xq Z 10 d� fq(�) d�̂eqdxdQ2! ; (14)where fq(�) is the probability of �nding the quark q in the proton arrying a fration � of itsmomentum. The eletron-quark ross setion has the formd�̂eqdxdQ2 = 2��2e2qŝ2  ŝ2 + û2t̂2 ! Æ(x� �); (15)6



Figure 5: (a) DIS via the Quark Parton Model; the subproess eq ! eq ours at .m. energypŝ. (b) eq sattering with equal (opposite) heliities ours with weighting 1 ((1� y)2) due toangular momentum e�ets. We also show the entre-of-mass sattering angle �̂ and note thatfor essentially massless fermions all the partiles have 3-momenta of magnitude j~kj.where ŝ; t̂ and û are the Mandelstam variables for the eq ! eq subproess. Two sets ofalternative expressions areŝ = (xp + k)2 ' 2xp � k ' xs; ŝ ' 4~k 2;t̂ = �Q2 ' �xys t̂ = �2~k 2 (1� os �̂)û ' �ŝ� t̂ ' �x(1� y)s û = �2~k 2 (1 + os �̂); (16)where j~kj and �̂ are the magnitude of the e; q three-momenta and the sattering angle in the eqentre-of-mass frame. If we insert the �rst set into (15), then (14) beomesd�dxdQ2 = 2��2Q4 Xq Z 10 d� fq(�) e2q h1 + (1� y)2i Æ(x� �): (17)Insight into the y dependene is obtained by omparing the two sets of equations for ŝ; t̂ andû. We see that y = 12(1� os �̂); (18)so y = 0 orresponds to forward sattering and y = 1 to bakward sattering. If e and q haveopposite heliities then there an be no bakward (�̂ = �) sattering by the onservation of Jz.This is the origin of the weighting (1 � y)2 in Fig. 5(b). Cruial to this argument is the fatthat at high energies (E � mfermion) the fermion heliity is onserved at a gauge boson vertex.If we re-write the QPM formula (17) in the formd�dxdQ2 = 2��2xQ4 Xq Z 10 d� fq(�) e2q xY+ Æ(x� �); (19)and then ompare with the general struture funtion formula (10), assuming only -exhange,we obtain F2 = 2xF1 = Xq Z 10 d� fq(�) xe2q Æ(x� �) = Xq e2q xfq(x): (20)7



The �rst equality (i.e. FL = 0) is known as the Callan-Gross relation, and holds beause thequarks have spin 1/2. If the quarks had spin 0, then F1 would have been 0. Also notie thatin the QPM the struture funtions sale, that is have no Q2 dependene.We have noted that the proton is made of valene quarks (uud) and sea quarks in q�q-pairs.When probed at a sale Q all quark avours with mq <� Q are ative. Usually the avour isused as a shortened notation for a parton distribution. So, for example,fu(x) � u(x) = uv(x) + usea(x);f�u(x) � �u(x) = usea(x): (21)We therefore have avour sum rulesZ 10 (u� �u)dx = Z 10 uvdx = 2; Z 10 (d� �d)dx = Z 10 dvdx = 1: (22)The struture funtion measurements an be used to reveal the quark avour ompositionof the proton. From (20) we haveF ep2 = x�49u+ 19d+ 19s+ :::+ 49 �u+ 19 �d+ 19�s+ :::� : (23)Using isospin invariane it follows that the neutron struture funtion isF en2 = x�49d+ 19u+ 19s+ ::: + 49 �d+ 19 �u+ 19�s + :::� : (24)Similar formulae an be obtained for CC DIS. For the ep! �X proesses we haved�(e�)dxdQ2 = G2F2�x  M2WQ2 +M2W !2 (Y+FW2 � Y�xFW3 � y2FWL ): (25)Let us onsider e�p! �X (or ��p! e+X); here the basi subproesses aree�u! �d; with \same" heliitiese� �d! ��u; with \opposite" heliities: (26)If we now reall that Y� � 1 � (1 � y)2, and use the heliity diagrams of Fig. 5(b), then itfollows that FW�2 = 2x(u+ �d+ + �s:::); xFW�3 = 2x(u� �d+ � �s:::): (27)For e+p! ��X (and �p! e�X) the struture funtions are obtained by the avour interhangesd $ u, s $ , while those for the neutron are obtained from those of the proton by theinterhange u$ d. Thus at large x, where the valene quark distribution dominates, we have�CC(e�p) � xuv; and �CC(e+p) � (1� y)2xdv: (28)8



Figure 6: An historial plot of SLAC NC- and �xed-target muon neutrino CC-DIS data showingagreement with the QPM relations (29) and (30), but also indiating that only 50% of theproton's momentum is arried by quarks.It is informative to ompare F2(N) � (F p2 + F n2 )=2 for NC and CC DIS. For NC we havefrom (23) and (24) F 2 (eN) = 518x(u+ �u+ d+ �d+ :::); (29)whereas for CC proesses, �N ! �X, it follows from (27) thatFW2 (�N) = x(u+ �u+ d+ �d+ :::): (30)An experimental omparison of DIS data in the early 1970s is shown in Fig. 6. The goodagreement with the QPM relations is evident, but the area under the urveZ 10 F2(�N)dx = Z 10 Xq;�q xq(x)dx ' 0:5; (31)shows that only 50% of the proton's momentum is arried by quarks. It provided the �rst(indiret) evidene for the existene of the gluoni omponent of the proton.Before the advent of QCD there was a big puzzle. In DIS the struk quark appears to at asif it were free inside the proton. Yet it is never seen. No matter how hard it is hit, a free quarknever emerges. It is on�ned within the proton. To say that a quark ats as if it were totallyfree, in a deep inelasti satter, is not quite orret. We need to allow for the interationsof quarks and gluons (QCD), and to see how this improves the QPM desription of DIS. Atthe same time, we will see that QCD appears to be able to solve the big puzzle. It o�ers thepossibility of an explanation of quark on�nement.9



Figure 7: The lowest-order Feynman graphs for (a) the QED interation between hargedeletrons and (b) the QCD interation between oloured quarks via a oloured gluon, (RB).4 R�esum�e of QCDColour was �rst introdued to overome the statistis problem in the quark model of hadronspetrosopy. Take for example the hadron �++, whih was disovered as a resonane in �+psattering. It has spin 3/2 and is made of three u quarks, whih an be in a state with all theirspins parallel. But quarks are fermions and, by the exlusion priniple, it should not be possibleto have three idential quarks in the same state. A way to overome the anomaly was soonproposed, whih only later was found to have profound impliations. The idea is to give quarksan additional attribute, olour, whih an take three possible values, say red, green and blue.Hadrons are postulated to be olourless or, to be preise, olour singlets of the group SU(3)onstruted from the fundamental olour triplet of quarks (qR; qG; qB). Baryons (qqq) andmesons (q�q) are learly allowed, but single free quarks are forbidden, sine they arry olour.In e�et the puzzle of quark on�nement (the experimental absene of free quarks) has beenreplaed by the puzzle of why olour should be on�ned.Reall that the eletromagneti fore between harged partiles is mediated by the exhangeof photons, Fig. 7(a). The strength of the quantum eletrodynami (QED) interation isdetermined by the harge of the partiles. QED an be obtained from a remarkably simplesymmetry priniple: invariane of the theory under loal phase transformations of the �elds forthe harged partiles. Loal means that we an arbitrarily vary the phase from spae-time pointto point. Sine phase transformations ommute with eah other and form a U(1) symmetrygroup, we say that QED is a U(1) Abelian loal gauge theory. The partiles whih emergenaturally from the theory to ompensate for the phase di�erenes from point-to-point or, inother words, to ensure the loal gauge (i.e. phase) invariane of the theory, have zero mass andspin 1. These \arriers" of the eletromagneti fore, the so-alled gauge bosons, have exatlythe properties of, and an be identi�ed with, the familiar photon.In analogy, in 1972, a loal SU(3) gauge theory, quantum hromodynamis (QCD), wasproposed as the theory of the strong interation. In QCD the interation is mediated bythe exhange of zero-mass, spin-1 gluons between oloured quarks, Fig. 7(b). In QCD thereare three di�erent olour harges (red, green and blue) whih have to be onserved, so the10



most general phase transformation is slightly more ompliated. To be preise, QCD is basedon invariane under the non-Abelian SU(3) group of loal phase transformations among thetriplet of olour harges, q = (qR; qG; qB). The gluons themselves arry olour. In fat, eightdi�erent olour ombinations of gluon are required to neutralize all possible phase di�erenes:one olour ombination is made expliit in Fig. 7(b).Note that the gluons have zero-mass and therefore in�nite range, and yet the strong forebetween hadrons has suh a very short range. Indeed, it is ironi that the nulear fore, whereit all began, is now relegated to a residual olour interation, between olour neutral hadrons.The binding of olourless protons and neutrons into nulei is similar to the van der Waals forewhih binds eletrially neutral atoms into a moleule. Sine olour is on�ned, the nulearfore must be short range and on�ned to hadroni dimensions.5 The running QCD ouplingThe most ruial feature of QCD is the dependene of the QCD oupling, �s � g2=4�, on Q2.At �rst sight, it appears that a dimensionless2 QCD observable R must, for energies Q� mq,be independent of Q2. The only energy sales in the QCD Lagrangian are the quark masses,and sine the relevant ones are very light we would expet this saling property to set in at lowQ2. However this argument is not true in a renormalizable �eld theory like QCD (or QED). Asale enters when we use perturbation theory to alulate the observableR = Xn n�ns ; (32)sine we enounter (loop) Feynman diagrams whih diverge logarithmially. We need to renor-malize (reparameterize) the theory, whih introdues a renormalisation sale �. As a onse-quene we �nd that the dimensionless observable R no longer sales, but has logarithmi salingviolations, that is, it has the funtional dependene R(log(Q2=�2); �s(�2)).First we disuss the QED oupling. Vauum polarisation e�ets (i.e. polarised e+e�-pairs)sreen the bare eletron harge. The sreening is least at short photon wavelengths, whihauses the QED oupling, � = e2=4�, to inrease with the energy of the photon. The situationis shown in Fig. 8, whih also shows the relevant Feynman diagrams. Summing up thesediagrams we obtain, at large Q2,�(Q2) = �0 241 + �03� log Q2M2 +  �03� log Q2M2!2 + :::35 = �01� �03� log Q2M2 ; (33)where a ut-o�, M , on the loop momentum has been introdued to prevent an in�nite ontri-bution. We may eliminate the dependene of � on this arbitrary parameter M by introduingthe renormalisation sale �. From (33) we have1�(Q2) = 1�0 � 13� log Q2M2 ; and 1�(�2) = 1�0 � 13� log �2M2 : (34)2The struture funtion F2 is suh a dimensionless observable.11



Figure 8: The vauum polarisation e�ets whih ause the QED oupling, � � e2=4�, to run.The shorter the wavelength of the probing photon the more of the bare eletron harge it sees.QED determines the running of the oupling �, but experiment �xes the normalisation, whihis traditionally given in terms of �(0) ' 1=137.The M dependene an be eliminated by subtrating these two relations. In this way we obtain�(Q2) = �(�2)1� (�(�2)=3�) log(Q2=�2) : (35)In e�et, the in�nities of the theory have been removed at the prie of introduing a renor-malisation sale �. QED predits the \running" of �, but experiment is needed to predit itsabsolute value.Note that, due to basi properties of gauge �eld theories, the ultraviolet divergenes of theFeynman diagrams of Fig. 9 mutually anel, via the so-alled Ward identities. This is just aswell, beause it ensures that the renormalized harge of the eletron, muon,... remain equal.Turning now to QCD we have a new vertex to onsider, the triple-gluon vertex, whiharises sine the gluons themselves arry olour harge. This hanges everything, as Fig. 10shows. There is a new vauum polarisation diagram with a gluon loop, whih antisreens theolour harge, whih dominates the sreening arising from the nf quark-loop diagrams3. As aonsequene the �1=3� in (35) beomes +b0, with�s(Q2) = �s(�2)1 + b0 �s(�2) log(Q2=�2) : (36)3nf is the number of ative quark avours, that is the number of quarks with mq < Q.12



Figure 9: The Ward identities ensure that the ultraviolet divergenes of these diagrams mutuallyanel.

Figure 10: In addition to the `sreening' quark loop, QCD has `antisreening' from the gluon-loop diagram, whih arises from the non-Abelian nature of the SU(3)-olour gauge group whih,in turn, allows a triple-gluon vertex (as well as a quarti-gluon oupling, see Fig. 11). As aresult the running of the QCD oupling onstant, �s, is the `opposite' of QED. It dereaseswith energy, allowing the use of perturbation theory at high energies.where4 b0 = �nf6� + 3312� : (37)At a stroke, the non-Abelian nature of QCD has solved the puzzling dilemma of the quarkmodel. The big puzzle was that when the proton is hit hard in DIS, the quarks at as if theyare essentially free; and yet no free quark has ever been seen { they are on�ned within thehadron5. This asymptoti freedom and infrared slavery is preisely what the running of theQCD oupling indiates, see the �s plot in Fig. 10.The ultraviolet divergenes of the QCD diagrams analogous to those in Fig. 9 anel due tothe Slavnov-Taylor identities of QCD. Moreover for a gauge theory the equality of the q�qg andggg ouplings is preserved by renormalization.Let us return to our dimensionless observable R, whih due to renormalization beomes thefuntion R(Q2=�2; �s(�2)). However R annot depend on the hoie of renormalization sale,4The �1=3� in (35) beomes �1=6� for eah quark loop in (36) due to the onvention used to normalize theSU(3) matries.5Con�nement still has to be proven. Lattie QCD is the tehnique to desribe physis in the strong ouplingregime. 13



Figure 11: The diagrams whih speify the two-loop �-funtion. Note that besides the triple-gluon vertex, QCD ontains a quarti gluon oupling whih gives rise to the �nal diagram.
so we have a renormalization group equation (RGE)dRdlog�2 =  ��log�2 + ��s�log�2 ���s!R = 0: (38)It an be shown that the solution of the RGE givesR(Q2=�2; �s(�2)) = R(1; �s(Q2)): (39)That is the running of �s determines the Q dependene of R. In general, the running isexpressed in terms of a �-funtion, de�ned by��s=�log �2 = �(�s): (40)So far we have introdued the �-funtion at one-loop, in whih we have summed up the leadinglogs, that is all the (�slog(Q2=�2))n ontributions. From (36) it is easy to show that this gives�(�s) = � b0 �2s: (41)The two-loop �-funtion sums up the next-to-leading logs resulting from the two-loop diagramsshown in Fig. 11, whih are found to give an �3s term with oeÆient b1 = (153� 19nf)=24�2.The �-funtion then beomes �(�s) = � b0 �2s � b1 �3s: (42)Before returning to DIS and the struture of the proton, let us make a few more notes aboutthe properties of the QCD oupling �s. First the oupling at two-loops is the solution of thetransendental equation1�s(Q2) � 1�s(�2) + b1b0 log �s(Q2)�s(�2) " b0 + b1�s(�2)b0 + b1�s(Q2)#! = b0logQ2�2 : (43)Next, the value of �s depends on the renormalization sheme. Sine in two di�erent shemes thevalues are related by �0s = �s(1+�s), it follows that b0 and b1 are sheme independent, whereasthe higher oeÆients are not. Nowadays, most alulations in �xed-order QCD perturbation14



Figure 12: The O(�s) diagrams whih ontribute to the proton struture funtion. On the �rstdiagram we show new variables, the longitudinal momentum fration y arried by the quarkand the transverse momentum kt of the emitted gluon, whih must be integrated over.theory are performed in the so-alled modi�ed minimal subtration (MS) sheme. Thirdly, notethat the oeÆients bi depend on the number of ative avours, nf . As Q inreases througha avour threshold we will need to ensure the ontinuity6 of �s. For example at the b-quarkthreshold we will require �s(m2b ; 4) = �s(m2b ; 5). Finally, reall that perturbative QCD tells ushow the oupling varies with sale, but not the absolute value itself. The latter is obtainedfrom experiment. Traditionally the value is quoted at Q = MZ in the MS sheme for nf = 5;the urrent value, determined from many independent experiments is�s(M2Z) = 0:1176 � 0:002: (44)Lattie QCD an also predit the value of the oupling. It is enouraging that these verydi�erent determinations are found to be onsistent with eah other.6 Running parton densities: DGLAP equationsIn terms of QCD perturbation theory, the QPM formula (20) may be regarded as the zeroth-order term in the expansion of F2 as a power series in �s. To inlude the O(�s) QCD orretions,we have to alulate the photon-parton subproess diagrams shown in Fig. 12. The QPM ofSetion 3 is the �rst diagram in the seond j:::j2. Due to the propagator of the virtual quark,the �rst diagram in the �rst j:::j2 is proportional to (yp�k)�2 / (2p �k)�1, for massless quarks.It therefore has a ollinear divergene when the gluon of 4-momentum k is emitted parallel tothe inoming quark of 4-momentum yp.The partoni approah is only valid if the seond diagram in the �rst j:::j2 an be negleted.Then, the emitted gluon an be onsidered as part of the proton struture. It turns out thatboth diagrams are required to ensure gauge invariane, but that the seond only plays the roleof anelling the ontributions from the unphysial polarization states of the gluon. Adoptinga physial gauge, in whih we sum only over transverse gluons, only the �rst diagram remains.6Beyond two-loops there are disontinuities in �s at the avour thresholds. Of ourse, the observables areontinuous, sine the above disontinuities are anelled by ones ourring in the oeÆients funtions, see (75)below. 15



To evaluate its ontribution we need to sum over all the possible values of the new variables,y and kt, that are introdued to desribe the gluon. First we write down the answer and thenexplain its struture7. The result isF2(x;Q2)x =Xq Z 1x dyy fq(y)e2q "Æ  1� xy!+ �s2�  P  xy! logQ2�20 + C  xy!!# ; (45)where P and C are known funtions. These will beome the universal parton splitting funtions(here P � Pqq desribes the q ! qg splitting) and the proess dependent oeÆient funtionC. The Æ-funtion term in (45) is the zeroth-order QPM ontribution with y = x that wederived in Setion 3. The �rst order term in �s omes from the �rst diagram in Fig. 12. Astraightforward appliation of the Feynman rules shows thatP (z) = 43 1 + z21� z ; (46)and that the log(Q2=�20) originates from the integration over the gluon (bremsstrahlung) trans-verse momentum spetrum Z Q2�20 dk2tk2t = log Q2�20 ! ; (47)where the upper limit is set by the virtuality of the photon whih satters o� a quark oftransverse size 1=Q. Really the lower limit of integration should be set to zero. We havetherefore arbitrarily ut-o� the integral at some sale �0. How do we make sense of (45)?Inspetion of (45) shows that, after inluding the O(�s) ontribution, we may replae fq bya well-behaved8 running parton densityfq(x; �2) = fq(x) + Z 1x dyy fq(y) �s2�  P  xy! log �2�20!+ C1! ; (48)suh that F2(x;Q2)x =Xq Z 1x dyy fq(y; �2)e2q "Æ  1� xy!+ �s2�  P  xy! logQ2�2 + C2!# ; (49)where the division of the known funtion C into C1+C2 depends on the hoie of (fatorization)sheme.The dependene of fq(x; �2) on the (non-perturbative) sale �0 an be eliminated in ananalogous way to the dependene of the oupling � on the ut-o� M , see (34) and (40). From(48) we obtain �fq(x; �2)�log�2 = �s2� Z 1x dyy fq(y; �2) P  xy! ; (50)whih desribes the evolution of the parton density with �2. This is known as the DGLAPevolution equation [9℄. In e�et we have absorbed all the ollinear infrared sensitivity into awell de�ned running parton density fq(x; �2). We annot use perturbative QCD to alulate theabsolute value of fq(x; �2), but we an, via the DGLAP equation, determine its � dependene.7This will be a prolonged disussion. Only in Setion 8 will we emphasize the important \fatorizationtheorem" struture of the formula.8This follows beause everything else in (49) is well-behaved.16



7 Further disussion of the DGLAP evolution equationsOur O(�s) treatment is inomplete. A hint that this is so, is the presene of a soft divergene,whih arises when the energy of the emitted gluon tends to zero, in addition to the ollineardivergene. This is reeted in the z = 1 singularity of P (z) � Pqq(z), see (46). At this pointit is ruial to inlude the virtual gluon diagrams of Fig. 12. The (O(�s)) ontribution is theinterferene of these three diagrams with the QPM diagram. This ontribution is also singularat z = 1. It turns out that the singularity exatly anels the z = 1 singularity present in thereal ontribution. After the anellation of the singularity there remains a residual Æ(1 � z)ontribution from the virtual diagrams. Instead of alulating this ontribution expliitly, thereis an easy way to see what it must give. It must be suh to satisfyZ 10 Pqq(z) dz = 0; (51)whih expresses the fat that the number of valene quarks is onserved during the evolution.The virtual diagrams regularize the 1=(1� z) singularity in Pqq so the onstraint holds. Thismodi�ation to Pqq an be expressed in terms of the so-alled \+ presription" for regularizationin whih 1=(1� z) is replaed by 1=(1� z)+ de�ned so thatZ 10 dz f(z)(1� z)+ = Z 10 dzf(z)� f(1)(1� z) (52)where (1� z)+ = (1� z) for z < 1. Ensuring the onstraint (51) givesPqq = 43 1 + z2(1� z)+ + 2Æ(1� z): (53)Our O(�s) treatment is still not omplete. In addition to the q ! gq subproesses shownin Fig. 12, at O(�s), we need to inlude the g ! q�q proesses. Then the DGLAP evolutionequation (50) for the quark density q � fq beomes�q(x;Q2)�logQ2 = �s2� (Pqq 
 q + Pqg 
 g) (54)where g � fg is the gluon density, and Pqq � P is the q ! q(g) splitting funtion of (53). Itan be shown that the g ! q splitting funtionPqg = 12(z2 + (1� z)2): (55)In general Pab desribes the b! a parton splitting. Also in (54) we have used 
 to abbreviatethe onvolution integral P 
 f � Z 1x dyy fq(y) P  xy! : (56)17



Clearly we must also onsider the evolution of the gluon density�g(x;Q2)�logQ2 = �s2�  Xi Pgq 
 (qi + �qi) + Pgg 
 g! ; (57)where the sum is over the i quark avours, and where the q ! g and g ! g splitting funtionsan be shown to be Pgq = Pqq(1� z) = 43 1 + (1� z)2z ; (58)Pgg = 6 1� zz + z(1� z)+ + z(1� z)!+ �112 � nf3 � Æ(1� z): (59)Here the oeÆient of the Æ(1 � z) term an be obtained from the onstraint that all of themomentum of the proton must be arried by its onstituentsZ 10 dz z  Xi (qi(z; Q2) + �qi(z; Q2)) + g(z; Q2)! = 1 (60)for all Q2.It is onvenient to introdue avour singlet (�) and non-singlet (qNS) quark distributions:� = Xi (qi + �qi): (61)An example of a non-singlet is the up valene distributionuv = u� �u: (62)Non-singlet evolution satis�es (50) and deouples from the singlet and gluon evolution equa-tions, whih are oupled together as follows��logQ2  �g ! = �s2�  Pqq 2nfPqgPgq Pgg !
  �g ! : (63)In general the splitting funtions an be expressed as a power series in �sPab(�s; z) = P LOab (z) + �sPNLOab (z) + �2sPNNLOab (z) + ::: (64)where the NLO expressions were omputed in the period 1977-80 and the NNLO in the periodending 2004. Leading order (LO) DGLAP evolution, whih we have outlined, sums up the lead-ing log ontributions (�slogQ2)n, and next-to-leading order evolution inludes the summationof the �s(�slogQ2)n�1 terms.If we are given the x dependene of the parton densities at some input sale Q20 then we maysolve the evolution equations to determine them at higher Q2. Frequently this is performedsimply by step-by-step integration up in Q2. 18



An alternative proedure is to rewrite the equations in terms of moments, whih for anarbitrary funtion f(z) are de�ned asf (n) = Z 10 dzz znf(z): (65)If we now multiply the DGLAP equation (50) by xn�1, and integrate over x, we obtain��logQ2 Z 10 xn�1qNS(x;Q2)dx = �s2� Z 10 yn�1qNS(y;Q2)dy Z 10 zn�1Pqq(z)dz (66)using x = yz. That is, the evolution equation then turns into an ordinary linear di�erentialequation for the moments, �q(n)NS�logQ2 = �s2�P (n)qq q(n)NS : (67)For �xed �s the solution isq(n)NS (Q2) = n exp �(n)logQ2� = n [Q2℄(n) ; (68)where (n) � �sP (n)qq =2� is known as the `anomalous dimension'. If we inorporate the runningof �s, (36), then it is easy to show thatq(n)NS (Q2) = n [�s(Q2)℄�(n)=2�b0 : (69)This is the LO behaviour. In analogy with (38) and (39), the general result may be obtainedfrom the RGE dq(n)dlog�2 =  ��log�2 + �(�s) ���s + (n)(�s)! q(n) = 0; (70)whih an be shown to have the solutionq(n)(Q2=�2; �s(�2)) = q(n)(1; �s(Q2)) exp Z �s(Q2)�s(�2) (n)(�s)�(�s) d�s! : (71)In addition to (67) we have��logQ2  �(n)g(n) ! = �s2�  P (n)qq 2nfP (n)qgP (n)gq P (n)gg ! �(n)g(n) ! : (72)One we have the analyti solutions of these equations for the moments, we an obtain the zdistributions of the partons by the inverse Mellin transformsfi(z; Q2) = 12�i Z +i1�i1 dn z�nfi(n;Q2); (73)where the ontour is to the right of all the singularities of the integrand.19



8 Observables: the fatorization theoremWe return to the equation for F2(x;Q2), eq.(49). We have desribed how the ollinear singu-larities of the formula have been swept into well-de�ned running parton densities, fi(y; �2F ),evaluated at some (fatorization) sale9 �F in the perturbative region. A onvenient hoie isto set �F = Q, so that the log(Q2=�2F ) term disappears. We then have, inluding the g ! q�qontribution, F2(x;Q2)x = Xq;�q e2q Z 10 dyy "fq(y;Q2) Æ  1� xy!+ �s2�C2;q  xy!!+ fg(y;Q2)�s2�C2;g  xy!# ; (74)where the C2;i are the oeÆient funtions for the observable F2. Although all the ollinearsingularities are absorbed by the running of the fi, reall that the presription is not unique.We an add any �nite term. So we must speify a sheme. The MS fatorization sheme isfavoured. It was mentioned at the end of Setion 5 as also the hoie of renormalization sheme.We an generalize this result to desribe the struture funtions of all DIS proesses. For thestruture funtions Fa, desribing the deep inelasti proesses `+ p! `0+X, the fatorizationformula, whih holds to all orders in perturbation theory, has the generi formFa(x;Q2) = Xi=q;�q;g Z 10 dyy fi(y;Q2) Ca;i  xy ; �s(Q2)! + O �2QCDQ2 ! : (75)The �nal term denotes non-perturbative ontributions, suh as hadronization e�ets, multipar-ton interations et. For suÆiently high Q2 these e�ets are negligible, and the expression forthe observable fatorizes into� universal parton densities (of the proton), fi, whih absorb the long distane ollinearsingularities. They annot be alulated in perturbative QCD, but their Q2 dependeneis alulable using the DGLAP evolution equations, in whih the splitting funtions arealulable as power series in �s.� oeÆient funtions, Ca;i, whih desribe the short distane subproess. They are alu-lable from perturbative QCD as a power series in �s, but are unique to the partiularobservable, Fa.The fatorization is displayed visually in Fig. 13A similar fatorization applies to inlusive `hard' hadron-hadron ollisions. For instane,onsider the LHC proess p(p1) + p(p2) ! H(Q; ::) + X (76)9The subsript F is added to distinguish it from the renormalization sale introdued in Setion 5. In pratiethese sales are often hosen to be equal. 20



Figure 13: Shemati piture of the fatorization theorem for a deep inelasti struture funtionof the proton.where H denotes the triggered hard system, suh as a weak boson, a pair of jets, a Higgs bosonet. The typial hard sale Q ould be the invariant mass of H or the transverse momentumof a jet. Then aording to the fatorization theorem the ross setion is of the form� = Xi;j Z 1xmin dx1dx2 fi(x1; �2F )fj(x2; �2F ) �̂ij(x1p1; x2p2; Q:::;�2F ); (77)where typially xmin >� Q2=s where s = (p1+p2)2. For the prodution of a system H of invariantmass M and rapidity y, the momentum frations x1;2 = Me�y=ps. The fi and �̂ depend onthe renormalization sale �R via �s(�2R). For instane�̂ij = �ks nXm=0C(m)ij �ms (78)where LO, NLO... orrespond to n=1,2...; note that, for example, k=0,2,.. for W , dijet,...prodution. We should work to the same order in the series expansion of the splitting funtions.In pratial appliations it is usual to hoose �F = �R � Q and to use variations about thisvalue to estimate the unertainty in the preditions. Of ourse the physial ross setion �does not depend on the sales, but the trunation of the perturbative series brings in saledependene. If we trunate at order �ns , then the unertainty is of order �n+1s .9 Global parton analysesTwo groups (CTEQ [10℄ and MRST [11℄) have used all available deep inelasti and related hardsattering data involving inoming protons (and antiprotons) to determine the parton densities,fi, of the proton. The proedure is to parametrize the x dependene of fi(x;Q20) at some low,yet perturbative, sale Q20. Then to use the DGLAP equations to evolve the fi up in Q2, andto �t to all the available data (DIS struture funtions, Drell-Yan prodution, Tevatron jet andW prodution...) to determine the values of the input parameters. In priniple there are 11parton distributions (u; �u; d; �d; s; �s; ; �; b;�b; g). However m; mb � �QCD. So  = � and b = �bare alulated from perturbative QCD via g ! Q �Q. Also the evidene from neutrino-produeddimuon data, �N ! �+��X, is that10 s ' �s ' 0:2(�u+ �d) at Q2 ' 1 GeV2.10Analysis of NuTeV data for � and �� beams indiates some x dependene of the fator \0.2", and that s > �sfor x � 0:01. 21



A ommon hoie of parametrization of the parton densities isxf(x;Q20) = A(1� x)�x�(1 + �px + x) (79)with up to �ve parameters (A; �; �; �; ) for eah parton. Three of the A's are determined fromsum rules. The input partons must satisfy the two valene quark sum rulesZ 10 dx(u� �u) = 2; Z 10 dx(d� �d) = 1; (80)and also we must satisfy the momentum sum rule (60).We an obtain some idea of what to expet for the values of the �i parameters from thespetator ounting rules. As x! 1 physial arguments indiate thatf(x) ! (1� x)2ns�1 (81)where ns is the minimum number of spetator quarks whih share between them the residual,vanishingly small momentum of the proton. The greater the number of spetators, the smallerthe hane of produing a parton with a large fration of the proton's momentum. For a valenequark, gluon and sea quark it is easy to see that we have ns = 2; 3 and 4 respetively. So wemay expet �v � 3; �g � 5 and �sea � 7.For a rough guide to the antiipated values of the �i parameters, we might appeal to Reggebehaviour, sine the limit x = Q2=2p � q ! 0 orresponds to sp ' 2p � q !1. In this limit thep ross setion is approximately proportional toX e2ixfi(x) � (rP s�P (0)�1p + rRs�R(0)�1p ) � (rPx1��P (0) + rRx1��R(0)): (82)The naive expetations are that the Pomeron and the leading seondary Reggeons have traje-tories with interepts �P (0) ' 1:08 and �R(0) ' 0:5. The Pomeron orresponds to avourlessexhange so we expet the parameters �sea;g � �0:08, whereas the valene density orrespondsto avour exhange with �v � 0:5. So, in summary, we might naively expetxfv � x0:5(1� x)3; xfg � x�0:08(1� x)5; xfsea � x�0:08(1� x)7 (83)types of behaviour.In pratie, the heavy quark densities, ; b, require speial treatment. These are partiularlyimportant at small x, espeially as Q2 inreases. We an see the problem by noting that forQ2 � m2 the harm quark does not at like a parton, but instead is reated in the �nal stateby photon-gluon fusion, g ! �. On the other hand for Q2 � m2, learly  behaves likea massless parton. It is therefore neessary to use a variable avour number sheme [12℄ inwhih we math a 3- to a 4-avour parton desription as we evolve up through the harm quarkthreshold, Q2 � m2 .Table 1 highlights some proesses used in the global �ts, and their primary sensitivity tothe parton densities. The kinemati ranges of the �xed-target and ollider experiments are22



Figure 14: Parton densities, xfi(x; �2), at �2 = 20 and 104 GeV2, obtained in a reent NNLOglobal analysis [11℄. The dominane of the gluon at small x and of the valene quarks at largex is learly evident. The unertainties shown only reet the errors of the experimental data.A disussion of the theoretial errors an be found in [13℄.

Figure 15: The unertainty in the q�q and gg parton luminosities for produing a state of massMat the LHC, arising from the experimental errors of the data �tted in a global parton analysis.23



Table 1: Lepton-nuleon and related hard-sattering proesses (whose data are used in theglobal parton analyses) and their primary sensitivity to the parton distributions that are probed.Main PDFsProess Subproess probed`�N ! `�X �q ! q g(x <� 0:01); q; q`+(`�)N ! �(�)X W �q ! q0 "�(�)N ! `�(`+)X W �q ! q0 "� N ! �+��X W �s! ! �+ s`N ! `QX �Q! Q Q = ; b�g ! QQ g(x <� 0:01)pp! X qg ! q gpN ! �+��X qq ! � qpp; pn! �+��X uu; dd! � u� dud; du! �ep; en! e�X �q ! qpp!W ! `�X ud! W u; d; u=dpp! jet +X gg; qg; qq! 2j q; g(0:01 <� x <� 0:5)omplementary (as is shown in Fig. 4) whih enables the parton densities to be determinedover a wide range in x and Q2. The analyses an now be done to NNLO. An example11 of theresulting parton distributions is shown in Fig. 14.The gluon density is the most poorly known parton distribution. At small x ( <� 0:01) it isonstrained by the HERA DIS saling violations, and for values of x up to about 0.5 by theTevatron jet data. The momentum sum rule also gives an important onstraint.Thanks to the HERA experiments, the parton densities are well-known12 down to about x �10�3. Also they are well-known up to x � 0:5. What are the impliations of the unertainties13in the parton densities for the LHC experiments? Some idea an be obtained from Fig. 15,whih shows the unertainties in the Lq�q and Lgg parton luminosities relevant to the produtionof a state of mass M at the LHC. The parton luminosities are de�ned asLab = Cab Z 1� dxaxa fa(xa)fb(�=xa) (84)11Comprehensive sets of parton densities available as programme-allable funtions an be found inhttp://durpdg.dur.a.uk/HEPDATA/PDF.12We disuss possible orretions arising from the resummation of log1=x terms and from absorptive e�ets,both of whih lie outside pure DGLAP, in Setions 10 and 11 respetively. We shall see that, at low sales, theparton densities have large unertainties for x <� 10�3.13Detailed disussions of the unertainties arising in the global analyses an be found in [14, 15, 16, 13℄.24



Figure 16: Partoni x;Q2 domains sampled by the LHC and HERA, as well as �xed-target DISexperiments. The rapidity interval for the prodution of a Higgs boson of mass 120 GeV at theLHC is indiated by an open arrow; the relevant parton distributions should be reliable fromDGLAP evolution of global analyses of HERA, �xed-target DIS, and Tevatron jet data. Thepossibility of the LHC experiments probing the region x <� 10�4; Q2 >� 10 GeV2 is mentionedat the end of Setion 12.where Cab is a olour fator. Sine xaxbs ' M2 we see xb = �=xa where � =M2=s. Due to thefatorization theorem, the ross setion for the prodution of the state of mass M is� = Xa;b Lab �̂(ab!M ; ŝ = �s): (85)The widening of the gg ! M error band in Fig. 15 for M > 1 TeV is due to the lak ofknowledge of the gluon at high x. This plot does not inlude the theoretial errors in a pureDGLAP parton analysis. Nevertheless, for the preditions of the ross setions of the entralprodution of high mass systems at the LHC, the unertainty oming from parton densities isless than �10%. This is also lear from an inspetion of Fig. 16.As an example, we show in Fig. 17 the predited ross setions[17℄ for W� prodution atthe LHC. At zeroth order we only have the q�q-driven subproesses u �d ! W+ and d�u ! W�;so we expet the parton luminosity errors to be relatively small. The ross setion inequality25



Figure 17: LO, NLO and NNLO preditions for the rapidity distribution of W� produtionat the LHC. The width of the bands reets the unertainty oming from the variation of thesale in the interval MW=2 � � � 2MW . The NNLO predition is the very narrow band lyingwithin the NLO error band.�(W+) > �(W�) reets uv > dv. Also note the rapid derease in the unertainty due to salehanges as we proeed from LO!NLO!NNLO. Allowing for unertainties from all soures,the W� prodution ross setion is predited to an auray of �5%, whih enables it to beonsidered as a luminosity monitor for the LHC.In Fig. 18 we show the ross setions in nb for various proesses at the Tevatron and at theLHC. If the ollider luminosities were 1033 m�2s�1, then the sale on the plot also gives thenumber of events whih would our eah seond. Note that eventually the LHC is planned toahieve a luminosity some 10 times greater than this.10 Beyond DGLAP: low x partons and BFKLFig. 19 shows the physial phenomena we expet to be appropriate in various regions of thelog(1=x) { log(Q2) plane. We shall disuss them here and in the next Setion. Overlaid is a lineindiating the reah ahieved by the HERA experiments. Of ourse the position of this line iswell known, see Fig. 4. However the positions of the various domains relative to this line arenot well established. Certainly HERA has opened up the small x domain, with DIS struturefuntion measurements reahing down to x � 10�4 while Q2 is still in the perturbative domain.So far our approah has been to work with DGLAP evolution trunated at a �xed per-turbative order. This pure DGLAP approah has been phenomenologially suessful, even,surprisingly, down to x � 10�4 with Q2 � 2 GeV2. Nevertheless, although the global parton26



Figure 18: The ross setions (in nb) for various proesses at the Tevatron and the LHC. Forthe LHC luminosity quoted, the sale also orresponds to the number of events/seond. Wealso give an indiation of the physis whih may be probed by the proesses at the LHC. Notethat the rates of Higgs and SUSY partile prodution do not inlude the dilution of a possiblesignal due to the branhing fration of the partiular hannel investigated. Moreover notehow important it is to redue the huge bakground and to overome \pile-up" from multipleevents per bunh rossing at the higher luminosity. Of ourse it would be even more exitingto disover something totally unexpeted.
27



Figure 19: Shemati sketh of the physial phenomena in various regions of the log(1=x) {log(Q2) plane, ompared to the kinemati reah of HERA. The gluoni ontent of the proton,as resolved by a Q2 probe, is also indiated. DGLAP evolution takes us up in Q2 and so thepartoni onstituents are resolved more �nely. The BFKL equation takes us to small x, withthe gluon density xg growing as x��, but the resolution in the transverse plane remaining atapproximately 1=Q. As x dereases, the partoni ontent inreases, and at some stage thepartons reombine (absorptive e�ets), and eventually saturate.analyses desribe the data satisfatorily in this regime14, it does not mean that the partondistributions are reliable here. We know pure DGLAP is inomplete at small enough x.To explore the small x regime, we �rst note that DGLAP is equivalent to assuming thatthe dominant dynamial mehanism leading to DIS saling violations is the evolution of partonemissions strongly-ordered in transverse momenta. However, at small x the evolution oursover large rapidity intervals (� ln1=x). The higher-order orretions to the splitting (andoeÆient) funtions ontain one additional power of ln1=x for eah additional power of �s. Ifwe keep just the leading ln1=x terms then the small x behaviour of the Pgg splitting funtion,for example, has the formxPgg(x) ! A10 �s + A21 �2sln1=x+ A32 �3sln21=x+ A43 �4sln31=x+ ::: ; (86)14The gluon has a valene-like behaviour, although the unertainties are large in this domain. Neverthelessits behaviour is quite di�erent to the growth of the sea-quark distributions as x! 0. Suh a result looks strangefrom the Regge viewpoint where the same vauum singularity (Pomeron) should drive both the sea quarks andthe gluons; i.e. the same small x behaviour is expeted for sea quark and gluon distributions.28



whereas in NNLO DGLAP, for example, Pgg ontains only the terms up to �3s. Clearly, atsmall x, when �s ln1=x � 1, a resummation of all of the terms in the series is neessary.The resummation of the leading log (LLx) terms, �ns logn�11=x, is aomplished by the BFKLequation15. The BFKL equation [18℄ will be disussed in detail in the letures of Vitor Fadin[19℄, Lev Lipatov [20℄ and Al Mueller [21℄. Here we will just inlude some introdutory remarks.At low x we have di�usion or \random walk" in the logarithm of transverse momenta as weproeed along the emission hain. We no longer have the strong ordering in kt whih is truein DGLAP evolution. For this reason the BFKL equation is for the gluon density, f(x; k2t ),unintegrated over kt. Reall that the gluon dominates at low x. The BFKL equation has thestruture �fg�ln(1=x) = K 
 fg = �fg (87)whih, at small x, has the the solutionfg � e�ln(1=x) � x�� � � ss0�� ; (88)where � = 12�sln2=� is the leading eigenvalue of the BFKL kernel K. This has an analogousform to the Regge-pole exhange behaviour of the amplitude,A(s; t) � XR �R(t)� ss0��R(t) ; (89)whih is the ornerstone of the desription of high-energy \soft" hadron-hadron interations;�R(t) is the trajetory of Reggeon R in the omplex angular momentum plane. For olour-otet exhange the BFKL equation desribes a Reggeized gluon with trajetory �g(t), while forolour-singlet exhange, whih is relevant to this disussion, it leads to a ut in the omplexangular momentum, j, plane orresponding to two Reggeized gluons exhanged { often alledthe perturbative Pomeron. Note that the generalized gluon distribution fg orresponds to thetwo-gluon exhange amplitude. Its behaviour at low x is driven by the rightmost singularity(branh point), j = 1+�, produed by the two-gluon ut, where the value of � obtained from theBFKL equation is given above. Sine the behaviour of fg is driven by a ut (and not an isolatedpole) in the j-plane, a prefator 1=plns will appear in (88). The possible onnetion between(89) and (88) is indiated by a horizontal `blok' arrow in Fig. 19. In the \soft" regime thehadrons are Reggeized, while in the perturbative QCD BFKL regime the onstituent partonsare Reggeized. How to go from one regime to the other has not been solved. For example,15DGLAP and BFKL are di�erent limits of a more general evolution of parton densities, whih is an orderedevolution in the angles of the emitted partons. At LO we have strong ordering of the emission angles,...�i ��i+1...; on the other hand if, at one step of the evolution �i � �i+1, then this ontribution is inluded insidethe NLO splitting funtion. In the ollinear approximation of DGLAP the angle inreases due to the growthof the transverse momentum kt, while in BFKL the angle (� ' kt=kk) grows due to the dereasing longitudinalmomentum fration as we proeed along the emission hain from the proton. Introdutory disussions of theBFKL equation an be found, for example, in Refs.[25, 26℄.29



what is the relation16 of the BFKL or perturbative QCD `Pomeron' (given by a ladder diagramformed from the exhange of two t-hannel Reggeized gluons) to the `Pomeron' desribing softhigh-energy proton-proton interations?Coming bak to the disussion entred on the perturbative expansion of equation (86),we note that in the small x region the gluon dominates, and only Pgg and Pqg ontain LLxontributions. These are positive but smaller than naively expeted; it turns out that A21 =A32 = 0, and even A54 = 0, in (86). Now the next-to-leading (NLLx) terms, �ns logn�21=x, havealso been alulated [23℄. These give a large, negative, ontribution to the gluon, leading toinstability at small x. In fat � of (88) is now given by� = 12�sln2=� (1� 6:5�s): (90)This problem has been the subjet of onsiderable investigation. Clearly, the higher-orderontributions, NNLLx, NNNLLx,... are important. However it took about 10 years to alulatethe NLLx ontributions, so to ompute the next order or two appears unrealisti, and eventhen may not onverge to a stable result. Instead, the proedure that has been followed is toidentify a few physial QCD e�ets that lead to large higher-order orretions and then to resumthem. Indeed, this all-order resummation of the main e�ets is found to tame the wild (LLx! NLLx) behaviour; a readable review is given in [24℄. The approahes of the various groupshave reahed similar onlusions: the approximate all-order resummed BFKL framework leadsto the behaviour that xg � x�0:3 as x! 0 (91)at low sales17.In pratie, it is found that this power-like growth only sets in at very small x. In terms ofDGLAP evolution all the BFKL e�ets should be inluded in the resummed splitting funtionsused to desribe the transition between two quite di�erent sales, that is between partons whosetransverse momentum are very di�erent. In suh a ase the power growth (91) will be inludedin the resummed Pgg. However the resummed xPgg has a dip entred at x � 10�3, and thepower growth is only evident below x � 10�5. Indeed the resummed xPgg and the NNLODGLAP xPgg are in good agreement down to x � 10�3.To make quantitative preditions in the small x domain, x <� 10�4 with Q2 � 2 GeV2, whereno data exist, is extremely diÆult. We need to obtain the resummed ln(1=x) solution startingfrom some non-perturbative amplitude at Q = Q0. This non-perturbative distribution (whihis analogous to the `input' in the DGLAP approah) is not known theoretially. Either one hasto �t it to data (but again low x data are needed) or to use some phenomenologial model (forexample, based on a Regge parametrization).16See [22℄ for a phenomenologial study.17What do the data say? If the F2 data are �tted to the form x�� for x < 0:01, then it is found that �grows approximately linearly with logQ2 from � ' 0:1 passing through � = 0:3 at Q2 � 40 GeV2. The simpleassumption that this reets the behaviour of the gluon, with F2 driven by the g ! q�q transition is muh toonaive. Indeed the global analyses give a gluon whih is valene-like at small x at the input sale.30



We onlude that the parton densities are unknown in the region x <� 10�4. At very smallx we have the estimate that gluon density might behave as xg � x�� with � ' 0:3. However,as x dereases, at some stage this behaviour will violate unitarity. Here the reombination ofgluons (absorptive e�ets) ome to the resue, and tame the violations of unitarity. To this wenow turn.11 Absorptive e�etsThe saturation of parton densities (� = 0) may be obtained using the Gribov-Levin-Ryskin(GLR) equation [27℄ or the more preise Balitski-Kovhegov (BK) equation [28℄. These equa-tions sum up the set of so-alled fan diagrams whih desribe the resattering of intermediatepartons on the target nuleon. The sreening aused by these resatterings prohibits the powergrowth of the parton densities.The GLR equation for the gluon may be written in the symboli form�(xg)�lnQ2 = Pgg 
 g + Pgq 
 q � 81�2s16R2Q2 Z dx0x0 [x0g(x0; Q2)℄2: (92)The non-linear shadowing term, �[g℄2, desribes the reombination of gluons. It arises fromperturbative QCD diagrams whih ouple 4g to 2g | that is two gluon ladders reombininginto a single gluon ladder, whih is alled a fan diagram. The minus sign ours beausethe sattering amplitude orresponding to a gluon ladder is predominantly imaginary. Theparameter R is a measure of the transverse area �R2 where the gluons are onentrated.The BK equation is an improved version of the GLR equation. It aounts for a more preiseform of the triple-pomeron vertex and an be used for the non-forward amplitude. The GLRequation, based on DGLAP evolution, was in momentum spae; whereas the BK equation,based on the BFKL equation, is written in oordinate spae in terms of the dipole satteringamplitude N(x;y; Y ) � Nxy(Y ). Here x and y are the transverse oordinates of the twot-hannel gluons whih form the olour-singlet dipole, and Y = ln(1=x) is the rapidity. TheBK equation reads�Nxy�Y = 3�s� Z d2z2� (x� y)2(x� z)2(y � z)2 fNxz +Nyz �Nxy �NxzNyzg ; (93)where, interestingly, the non-linear and linear terms have the same BFKL kernel K, whih isshown expliitly in (93). For small dipole densities, N , the quadrati term in the brakets maybe negleted, and, indeed, (93) reprodues the onventional BFKL equation. However for largeN , that is N ! 1, the r.h.s. of (93) vanishes, and we reah saturation when N = 1. Theequation sums up the set of fan diagrams where at the lower (small Y ) end the target emitsany number of pomerons (i.e. linear BFKL amplitudes), while at the upper (large Y ) end wehave only one BFKL dipole. 31



In priniple, it would appear more appropriate to use the BFKL-based BK equation todesribe the parton densities at low x. It is an attempt to desribe saturation phenomena.However it is just a model and annot, at present, be used to reliably estimate absorptivee�ets at small x.Is there any evidene of the onset of absorptive e�ets in the experimental data? Theseshould our �rst at low x and low Q2, see Fig. 19. However, there is no onlusive evidene thatabsorptive e�ets are important in the HERA data in the perturbative regime, Q2 >� 1 GeV2.The various laims that are frequently made have been reently omprehensively disussed in[29℄. It is seen that none of them, inluding the observed `at' ratio of (di�rative DIS/inlusiveDIS) or the observation of geometri saling, provide any ompelling evidene of saturatione�ets.Of ourse, as x dereases we know that ultimately absorptive e�ets must be present. Inpriniple, we should be able to estimate their ontribution from knowledge of the struturefuntions for di�rative DIS, via �F abs2 � � FD2 ; (94)where FD2 is the struture funtion for the proess �p! X + p in whih the slightly deetedproton and the luster X of outgoing hadrons are well separated in rapidity [30℄.12 ConlusionsThe great improvement in the preision and range of deep inelasti and related hard sat-tering data over the last few years has enabled the partoni struture of the proton to bewell determined in the 10�3 <� x <� 0:5 interval, so we are able to make reliable preditions forthe prodution of new massive states at the LHC. Global analyses are now available at NNLO.These analyses require partiularly areful treatment at the heavy quark thresholds, see Thorne[12℄ and referenes therein. A surprise is that a pure DGLAP desription is able to desribeall features of the data down to Q2 = 2 GeV2, in spite of the fat that the global �ts are nowquite tightly onstrained. The allowane of beyond-DGLAP e�ets is not found to improve thedesription, see, for example [13℄.Another surprise is that the global analyses reveal that the gluon has a valene-like smallx behaviour at the low input sale, unlike the sea quark distribution whih behaves as ex-peted, see (83). Suh a result looks strange from the Regge viewpoint where the same vauumsingularity (Pomeron) should drive both the sea quarks and the gluons; i.e. the same power�g = �sea is expeted for sea quarks and gluons. Note that global analyses are only reliabledown to x � 10�3.The low x domain, x <� 10�4, is unhartered territory. Is it possible for the LHC experimentsto determine the behaviour of partons in the important low x region below 10�4 at low sales?One possibility is �+�� Drell-Yan prodution in whih events are observed with the �+��32
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