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Abstra
tWe present an introdu
tory dis
ussion of deep-inelasti
 lepton-proton s
attering as ameans to probe the substru
ture of the proton. A r�esum�e of QCD is given, emphasizingthe running of the 
oupling 
onstant and the DGLAP evolution equations for the partondensities. The determination of parton distributions is dis
ussed and their importan
efor predi
tions of pro
esses at the LHC is emphasized. Going beyond the pure DGLAPregime, we brie
y dis
uss the behaviour of parton densities at low x, and the eviden
e fornon-linear absorptive 
ontributions.1 Deep inelasti
 s
attering (DIS) introdu
edHigh energy ele
tron s
attering is an ideal probe of the stru
ture of a 
omposite obje
t. Forinstan
e, 
onsider the s
attering of a beam of ele
trons on a nu
lear target of mass MN . Thes
attering o

urs via the ex
hange of a virtual photon, see Fig. 1. Sin
e it is virtual, the photonis not on its mass shell. That is, its 4-momentum q does not satisfy q2 = 0. On the other hand,a real (ingoing or outgoing) parti
le or system must be on its mass shell. So the invariant massW of the outgoing system in Fig. 1 satis�esW 2 = (pN + q)2 = M2N + 2pN � q + q2; (1)
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Figure 1: Ele
tron-nu
leus s
attering, where pN and q are the 4-momenta of the in
omingnu
leus and virtual photon respe
tively, and W is the invariant mass of the outgoing hadroni
system. The lower three diagrams are a s
hemati
 illustration of the 
ross se
tion for ele
tron-nu
leus s
attering, eN ! eX, plotted as a fun
tion of the s
aling variable xN = Q2=2pN � q atthree di�erent values of Q2. In the lowest plot the wavelength � of the virtual photon probeis mu
h less that the nu
lear radius RN , and the photon probes a 
onstituent proton of thenu
leus.
1



where MN and pN are the mass and 4-momentum of the nu
leus. It follows that q2 is negative.So we de�ne Q2 � �q2.The wavelength of the probing photon � � 1=Q. Let us follow what happens as we in
reasethe ele
tron energy, so that the photon probe has a shorter and shorter wavelength �. We beginwith � � RN , where RN is the radius of the nu
leus. In this 
ase the photon sees a \point"nu
leus and we have elasti
 ele
tron-nu
leus s
attering with W = MN . Thus, from (1),xN � Q22pN � q =  Q22MN�!lab: = 1; (2)where � is the energy loss of the ele
tron. The expression in the laboratory frame showsimmediately that Q2 � �q2 is positive. We sket
h the 
orresponding elasti
 peak at xN = 1 inthe �rst of the three plots of Fig. 1. If we in
rease Q until � � RN then the outgoing systemmay be an ex
ited nu
lear state. Now W > MN and xN < 1, as shown in Fig. 1.Finally, if �� RN , the photon may probe deep within the nu
leus. The nu
leus is brokenup. We have deep (Q2 � M2N ) inelasti
 (W 2 � M2N) ele
tron-nu
leus s
attering. Indeed,the ele
tron may s
atter o� a 
onstituent proton of the nu
leus. In terms of xN , the resultingele
tron-proton elasti
 s
attering peak will o

ur atxN = MMN  Q22M�!lab: = 1A; (3)but will be smeared out due to the Fermi momentum of the proton bound in the nu
leus, seeFig. 1. M is the proton mass and A is the number of nu
leons in the nu
leus. The area underthe Fermi-smeared peak gives the number of protons in the nu
leus, and hen
e the positionof the peak determines the number of neutrons. The redu
tion of the eN elasti
 peak, within
reasing Q2, re
e
ts the small 
han
e of the A � 1 spe
tator nu
leons all happening to bemoving in the dire
tion of the outgoing stru
k proton and reforming the original nu
leus.Let us in
rease Q2 even further. Suppose that protons are made up of three point-likequarks, then high-energy ele
tron-proton s
attering will simply be a replay of ele
tron-nu
leuss
attering one layer of substru
ture down. We have an analogous sequen
e of diagrams to thoseshown in Fig. 1, but with RN repla
ed by the proton radius R. Also the s
attering probabilitiesshould now be plotted in terms of x =  Q22p � q! ; (4)where p is the 4-momentum of the proton. The 
ontinuous 
urve in Fig. 2 is the analogue ofthe lowest plot in Fig. 1. It shows the elasti
 eq-s
attering peak Fermi-smeared about x = 1=3,together with tra
es of the elasti
 ep peak at x � 1. If there were no further substru
ture, this
urve would persist as Q2 in
reases. We would have (Bjorken) s
aling; the s
attering dependsonly on the ratio x = Q2=2p � q, and not on the two variables, Q2 and p � q, individually. x isknown as the Bjorken s
aling variable. 2



Figure 2: S
hemati
 illustration of ele
tron-proton s
attering as a fun
tion of the Bjorkens
aling variable x � Q2=2p � q. The proton stru
ture fun
tion F2 is de�ned in the next se
tion.The hadrons N� are ex
ited states of the proton. If the proton 
onsisted of just three valen
epoint-like quarks the result would be the 
ontinuous 
urve independent of Q2. However within
reased resolution (higher Q2) the photon may probe one of a pair of sea quarks produ
edfrom a radiated gluon via g ! q�q. Indeed, as Q2 in
reases, the proton appears to have moreand more 
onstituents, whi
h all must share its momentum, and so the distribution skews moreand more towards small x. This trend from the 
ontinuous to the dashed 
urve is 
hara
teristi
of QCD s
aling violations.In summary, as Q2 in
reases, we �rst have `nu
lear' s
aling with a peak at xN = 1, thenviolations of s
aling, following by `proton' s
aling with a peak at x � 1, followed by violations,and then `quark' s
aling with a peak at x � 1=3. If the quarks themselves had substru
ture then,as Q2 in
reases even further, we would enter yet again a region of s
aling violations followedby another onset of s
aling. But history does not seem to repeat itself. S
aling violations areobserved but these re
e
t the �eld theory of quarks and gluons (QCD) with 
oupling �s. Thephoton \sees" the proton made up of the three quarks (
alled valen
e quarks) and an arbitrarynumber of q�q pairs (made up of sea quarks). The sea quarks originate from gluons, via g ! q�q,themselves radiated from quarks, see the sket
h on the right of Fig. 2. Suppose the photonprobes a quark 
arrying a fra
tion � of the proton's momentum p. Then for essentially masslessquarks we have (�p+ q)2 = m2q ' 0; that is � ' Q2=2p � q = x: (5)Consequently as Q2 in
reases, more and more partons (that is quarks and gluons) be
omeevident whi
h have to share the momentum of the parent proton. Ea
h 
arries a smallerfra
tion � = x of the momentum, and we get QCD s
aling violations (whi
h, as we will see,have the form �sP log(Q2=�2)) as indi
ated by the dashed line in Fig. 2. On hearing this forthe �rst time from Wil
zek, one of the dis
overers of QCD, a famous experimentalist said3



Figure 3: Neutral- and 
harged-
urrent DIS mediated by (
; Z) and W ex
hange respe
tively.\You expe
t us to measure logarithms? Not in your lifetime, young man". Yet today thehigh pre
ision DIS data from HERA and earlier �xed-target experiments show exa
tly theQCD logarithmi
 s
aling violations predi
ted. A 
olle
tion of plots (whi
h show the s
alingviolations) 
ompiled from these deep inelasti
 ep s
attering data 
an be found in Se
tion 16 ofthe Review of Parti
le Properties[1℄. Introdu
tory dis
ussions of DIS 
an be found, for example,in Refs.[2, 3, 4, 5, 6, 7, 8℄.2 The DIS observables: the stru
ture fun
tionsThe DIS pro
ess, ep ! eX, is shown in Fig. 3(a). We talk of the neutral 
urrent (NC) DISmediated by 
 and Z ex
hange. We also have 
harged-
urrent (CC) DIS mediated by Wex
hange, shown in the se
ond diagram. Re
all that by \deep" we mean Q2 � M2 and by\inelasti
" we mean W 2 = (p+ q)2 �M2.The NC 
ross se
tion is of the formd�dxdy = xs d�dxdQ2 = 2�y�2Q4 Xj �jL��j W j�� ; (6)where the sum is over j = 
; Z and 
Z representing photon and Z-boson ex
hange and theinterferen
e between them; and where�
 = 1; �
Z =  GFM2Z2p2��! Q2Q2 +M2Z! ; �Z = �2
Z : (7)We see the e�e
ts of the 
 and Z propagators, and of the QED 
oupling � and the Fermi
oupling GF . Besides x and Q2, asso
iated with the hadroni
 vertex, we have a variable (y ors) whi
h depends the energy of the whole ep systemy = p � qp � k = � �E�lab:frame ; s = (k + p)2 ' Q2xy : (8)Both x and y must lie in the range from 0 to 1. The physi
al interpretation of y is given in(18) below. 4



L�� is the tensor from the leptoni
 vertex known in terms of k and k0, andW�� is the unknowntensor des
ribing the hadroni
 vertex. Although W�� is unknown it must be 
onstru
ted fromthe 4-momenta p; q and the metri
 tensor g��. For unpolarised DIS, there are three tensorforms satisfying the requirements of 
urrent 
onservation q�W�� = q�W�� = 0. In this 
ase thegeneral form isW�� =  �g�� + q�q�q2 !F1(x;Q2) + P̂�P̂�p � q F2(x;Q2)� i����� q�p�2p � qF3(x;Q2); (9)where P̂� = p� � (p � q)q�=q2. The observable stru
ture fun
tions, Fi(x;Q2), are fun
tions oftwo s
alar variables x and Q2 whi
h 
an be 
onstru
ted from p and q. Note that the last term,with a ~q � ~p type stru
ture, does not 
onserve parity. Thus F3 = 0 if Z ex
hange is negligible.If we insert the general form (9) into (6) and use the known forms of L�� , then, after somealgebrai
 manipulation, we �ndd�dxdQ2 = 2��2xQ4 (Y+F2 � Y�xF3 � y2FL) (10)in the M2=Q2 ! 0 limit, whereY� = 1� (1� y)2 and FL = F2 � 2xF1: (11)A similar expression holds for CC DIS (that is eN ! �X or �N ! eX). For both NC andCC pro
esses, the � sign for Y� is taken for an in
oming e+ or �, and the + sign is taken foran in
oming e� or �. Complete expressions for the lepton and hadron tensors L�� ; W��, thestru
ture fun
tions and the 
ross se
tions, in
luding those for polarised DIS, 
an be found inSe
tion 16 of the Review of Parti
le Properties[1℄.For the moment let us fo
us on pure 
 ex
hange, so F3 = 0. Even then to determine bothF2 and FL as fun
tions of x and Q2 we need to measure the y dependen
e. That is we needto perform DIS experiments at a range of ep energies1. We will see that FL = F2 � 2xF1 ' 0,so often the experiments either used QCD to 
al
ulate FL or assumed that it was zero, andpresented results for F2(x;Q2). Nowadays, parti
ularly with the advent of high y data, thedata are presented in terms of the so-
alled redu
ed 
ross se
tion�red(x;Q2) = F2(x;Q2)� (y2=Y+)FL(x;Q2): (12)The HERA ma
hine at DESY 
ollided 30 GeV ele
trons head-on with 920 GeV protons,giving s ' 4EeEp � 105 GeV2: (13)Thus Q2 ' xys <� 105 GeV2, and x ' Q2=ys >� 10�4 for Q2 = 10 GeV2. We see from Fig. 4 thatthe (x;Q2) rea
h of HERA is about two orders of magnitude better than the earlier �xed-targetDIS data. So given the data how do we interpret it? Let us start with the Quark Parton Model.1Indeed, the �nal data runs of HERA were made at lower energies spe
i�
ally to enable dire
t measurementsof FL to be performed. These should be available for DIS2008.5
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Figure 4: Kinemati
 domains in x and Q2 probed by �xed-target and 
ollider experiments,shown together with the important 
onstraints they make on the various parton distributions.3 The Quark Parton ModelThe basi
 idea of the QPM is that in the DIS pro
ess, ep ! eX, the virtual proton intera
tswith one of the quark 
onstituents of the proton, see Fig. 5(a). We view the pro
ess froma frame in whi
h the proton is moving very fast so that the relativisti
 time dilation slowsdown the rate with whi
h the quarks intera
t with ea
h other. Thus the stru
k quark appearsessentially free during the short time (about 1=Q) that it intera
ts with the photon. As a resultthe ep intera
tion may be written as an in
oherent sum (of probabilities) of s
attering fromsingle free quarks d�dxdQ2 = Xq Z 10 d� fq(�) d�̂eqdxdQ2! ; (14)where fq(�) is the probability of �nding the quark q in the proton 
arrying a fra
tion � of itsmomentum. The ele
tron-quark 
ross se
tion has the formd�̂eqdxdQ2 = 2��2e2qŝ2  ŝ2 + û2t̂2 ! Æ(x� �); (15)6



Figure 5: (a) DIS via the Quark Parton Model; the subpro
ess eq ! eq o

urs at 
.m. energypŝ. (b) eq s
attering with equal (opposite) heli
ities o

urs with weighting 1 ((1� y)2) due toangular momentum e�e
ts. We also show the 
entre-of-mass s
attering angle �̂ and note thatfor essentially massless fermions all the parti
les have 3-momenta of magnitude j~kj.where ŝ; t̂ and û are the Mandelstam variables for the eq ! eq subpro
ess. Two sets ofalternative expressions areŝ = (xp + k)2 ' 2xp � k ' xs; ŝ ' 4~k 2;t̂ = �Q2 ' �xys t̂ = �2~k 2 (1� 
os �̂)û ' �ŝ� t̂ ' �x(1� y)s û = �2~k 2 (1 + 
os �̂); (16)where j~kj and �̂ are the magnitude of the e; q three-momenta and the s
attering angle in the eq
entre-of-mass frame. If we insert the �rst set into (15), then (14) be
omesd�dxdQ2 = 2��2Q4 Xq Z 10 d� fq(�) e2q h1 + (1� y)2i Æ(x� �): (17)Insight into the y dependen
e is obtained by 
omparing the two sets of equations for ŝ; t̂ andû. We see that y = 12(1� 
os �̂); (18)so y = 0 
orresponds to forward s
attering and y = 1 to ba
kward s
attering. If e and q haveopposite heli
ities then there 
an be no ba
kward (�̂ = �) s
attering by the 
onservation of Jz.This is the origin of the weighting (1 � y)2 in Fig. 5(b). Cru
ial to this argument is the fa
tthat at high energies (E � mfermion) the fermion heli
ity is 
onserved at a gauge boson vertex.If we re-write the QPM formula (17) in the formd�dxdQ2 = 2��2xQ4 Xq Z 10 d� fq(�) e2q xY+ Æ(x� �); (19)and then 
ompare with the general stru
ture fun
tion formula (10), assuming only 
-ex
hange,we obtain F2 = 2xF1 = Xq Z 10 d� fq(�) xe2q Æ(x� �) = Xq e2q xfq(x): (20)7



The �rst equality (i.e. FL = 0) is known as the Callan-Gross relation, and holds be
ause thequarks have spin 1/2. If the quarks had spin 0, then F1 would have been 0. Also noti
e thatin the QPM the stru
ture fun
tions s
ale, that is have no Q2 dependen
e.We have noted that the proton is made of valen
e quarks (uud) and sea quarks in q�q-pairs.When probed at a s
ale Q all quark 
avours with mq <� Q are a
tive. Usually the 
avour isused as a shortened notation for a parton distribution. So, for example,fu(x) � u(x) = uv(x) + usea(x);f�u(x) � �u(x) = usea(x): (21)We therefore have 
avour sum rulesZ 10 (u� �u)dx = Z 10 uvdx = 2; Z 10 (d� �d)dx = Z 10 dvdx = 1: (22)The stru
ture fun
tion measurements 
an be used to reveal the quark 
avour 
ompositionof the proton. From (20) we haveF ep2 = x�49u+ 19d+ 19s+ :::+ 49 �u+ 19 �d+ 19�s+ :::� : (23)Using isospin invarian
e it follows that the neutron stru
ture fun
tion isF en2 = x�49d+ 19u+ 19s+ ::: + 49 �d+ 19 �u+ 19�s + :::� : (24)Similar formulae 
an be obtained for CC DIS. For the ep! �X pro
esses we haved�(e�)dxdQ2 = G2F2�x  M2WQ2 +M2W !2 (Y+FW2 � Y�xFW3 � y2FWL ): (25)Let us 
onsider e�p! �X (or ��p! e+X); here the basi
 subpro
esses aree�u! �d; with \same" heli
itiese� �d! ��u; with \opposite" heli
ities: (26)If we now re
all that Y� � 1 � (1 � y)2, and use the heli
ity diagrams of Fig. 5(b), then itfollows that FW�2 = 2x(u+ �d+ 
+ �s:::); xFW�3 = 2x(u� �d+ 
� �s:::): (27)For e+p! ��X (and �p! e�X) the stru
ture fun
tions are obtained by the 
avour inter
hangesd $ u, s $ 
, while those for the neutron are obtained from those of the proton by theinter
hange u$ d. Thus at large x, where the valen
e quark distribution dominates, we have�CC(e�p) � xuv; and �CC(e+p) � (1� y)2xdv: (28)8



Figure 6: An histori
al plot of SLAC NC- and �xed-target muon neutrino CC-DIS data showingagreement with the QPM relations (29) and (30), but also indi
ating that only 50% of theproton's momentum is 
arried by quarks.It is informative to 
ompare F2(N) � (F p2 + F n2 )=2 for NC and CC DIS. For NC we havefrom (23) and (24) F 
2 (eN) = 518x(u+ �u+ d+ �d+ :::); (29)whereas for CC pro
esses, �N ! �X, it follows from (27) thatFW2 (�N) = x(u+ �u+ d+ �d+ :::): (30)An experimental 
omparison of DIS data in the early 1970s is shown in Fig. 6. The goodagreement with the QPM relations is evident, but the area under the 
urveZ 10 F2(�N)dx = Z 10 Xq;�q xq(x)dx ' 0:5; (31)shows that only 50% of the proton's momentum is 
arried by quarks. It provided the �rst(indire
t) eviden
e for the existen
e of the gluoni
 
omponent of the proton.Before the advent of QCD there was a big puzzle. In DIS the stru
k quark appears to a
t asif it were free inside the proton. Yet it is never seen. No matter how hard it is hit, a free quarknever emerges. It is 
on�ned within the proton. To say that a quark a
ts as if it were totallyfree, in a deep inelasti
 s
atter, is not quite 
orre
t. We need to allow for the intera
tionsof quarks and gluons (QCD), and to see how this improves the QPM des
ription of DIS. Atthe same time, we will see that QCD appears to be able to solve the big puzzle. It o�ers thepossibility of an explanation of quark 
on�nement.9



Figure 7: The lowest-order Feynman graphs for (a) the QED intera
tion between 
hargedele
trons and (b) the QCD intera
tion between 
oloured quarks via a 
oloured gluon, (RB).4 R�esum�e of QCDColour was �rst introdu
ed to over
ome the statisti
s problem in the quark model of hadronspe
tros
opy. Take for example the hadron �++, whi
h was dis
overed as a resonan
e in �+ps
attering. It has spin 3/2 and is made of three u quarks, whi
h 
an be in a state with all theirspins parallel. But quarks are fermions and, by the ex
lusion prin
iple, it should not be possibleto have three identi
al quarks in the same state. A way to over
ome the anomaly was soonproposed, whi
h only later was found to have profound impli
ations. The idea is to give quarksan additional attribute, 
olour, whi
h 
an take three possible values, say red, green and blue.Hadrons are postulated to be 
olourless or, to be pre
ise, 
olour singlets of the group SU(3)
onstru
ted from the fundamental 
olour triplet of quarks (qR; qG; qB). Baryons (qqq) andmesons (q�q) are 
learly allowed, but single free quarks are forbidden, sin
e they 
arry 
olour.In e�e
t the puzzle of quark 
on�nement (the experimental absen
e of free quarks) has beenrepla
ed by the puzzle of why 
olour should be 
on�ned.Re
all that the ele
tromagneti
 for
e between 
harged parti
les is mediated by the ex
hangeof photons, Fig. 7(a). The strength of the quantum ele
trodynami
 (QED) intera
tion isdetermined by the 
harge of the parti
les. QED 
an be obtained from a remarkably simplesymmetry prin
iple: invarian
e of the theory under lo
al phase transformations of the �elds forthe 
harged parti
les. Lo
al means that we 
an arbitrarily vary the phase from spa
e-time pointto point. Sin
e phase transformations 
ommute with ea
h other and form a U(1) symmetrygroup, we say that QED is a U(1) Abelian lo
al gauge theory. The parti
les whi
h emergenaturally from the theory to 
ompensate for the phase di�eren
es from point-to-point or, inother words, to ensure the lo
al gauge (i.e. phase) invarian
e of the theory, have zero mass andspin 1. These \
arriers" of the ele
tromagneti
 for
e, the so-
alled gauge bosons, have exa
tlythe properties of, and 
an be identi�ed with, the familiar photon.In analogy, in 1972, a lo
al SU(3) gauge theory, quantum 
hromodynami
s (QCD), wasproposed as the theory of the strong intera
tion. In QCD the intera
tion is mediated bythe ex
hange of zero-mass, spin-1 gluons between 
oloured quarks, Fig. 7(b). In QCD thereare three di�erent 
olour 
harges (red, green and blue) whi
h have to be 
onserved, so the10



most general phase transformation is slightly more 
ompli
ated. To be pre
ise, QCD is basedon invarian
e under the non-Abelian SU(3) group of lo
al phase transformations among thetriplet of 
olour 
harges, q = (qR; qG; qB). The gluons themselves 
arry 
olour. In fa
t, eightdi�erent 
olour 
ombinations of gluon are required to neutralize all possible phase di�eren
es:one 
olour 
ombination is made expli
it in Fig. 7(b).Note that the gluons have zero-mass and therefore in�nite range, and yet the strong for
ebetween hadrons has su
h a very short range. Indeed, it is ironi
 that the nu
lear for
e, whereit all began, is now relegated to a residual 
olour intera
tion, between 
olour neutral hadrons.The binding of 
olourless protons and neutrons into nu
lei is similar to the van der Waals for
ewhi
h binds ele
tri
ally neutral atoms into a mole
ule. Sin
e 
olour is 
on�ned, the nu
learfor
e must be short range and 
on�ned to hadroni
 dimensions.5 The running QCD 
ouplingThe most 
ru
ial feature of QCD is the dependen
e of the QCD 
oupling, �s � g2=4�, on Q2.At �rst sight, it appears that a dimensionless2 QCD observable R must, for energies Q� mq,be independent of Q2. The only energy s
ales in the QCD Lagrangian are the quark masses,and sin
e the relevant ones are very light we would expe
t this s
aling property to set in at lowQ2. However this argument is not true in a renormalizable �eld theory like QCD (or QED). As
ale enters when we use perturbation theory to 
al
ulate the observableR = Xn 
n�ns ; (32)sin
e we en
ounter (loop) Feynman diagrams whi
h diverge logarithmi
ally. We need to renor-malize (reparameterize) the theory, whi
h introdu
es a renormalisation s
ale �. As a 
onse-quen
e we �nd that the dimensionless observable R no longer s
ales, but has logarithmi
 s
alingviolations, that is, it has the fun
tional dependen
e R(log(Q2=�2); �s(�2)).First we dis
uss the QED 
oupling. Va
uum polarisation e�e
ts (i.e. polarised e+e�-pairs)s
reen the bare ele
tron 
harge. The s
reening is least at short photon wavelengths, whi
h
auses the QED 
oupling, � = e2=4�, to in
rease with the energy of the photon. The situationis shown in Fig. 8, whi
h also shows the relevant Feynman diagrams. Summing up thesediagrams we obtain, at large Q2,�(Q2) = �0 241 + �03� log Q2M2 +  �03� log Q2M2!2 + :::35 = �01� �03� log Q2M2 ; (33)where a 
ut-o�, M , on the loop momentum has been introdu
ed to prevent an in�nite 
ontri-bution. We may eliminate the dependen
e of � on this arbitrary parameter M by introdu
ingthe renormalisation s
ale �. From (33) we have1�(Q2) = 1�0 � 13� log Q2M2 ; and 1�(�2) = 1�0 � 13� log �2M2 : (34)2The stru
ture fun
tion F2 is su
h a dimensionless observable.11



Figure 8: The va
uum polarisation e�e
ts whi
h 
ause the QED 
oupling, � � e2=4�, to run.The shorter the wavelength of the probing photon the more of the bare ele
tron 
harge it sees.QED determines the running of the 
oupling �, but experiment �xes the normalisation, whi
his traditionally given in terms of �(0) ' 1=137.The M dependen
e 
an be eliminated by subtra
ting these two relations. In this way we obtain�(Q2) = �(�2)1� (�(�2)=3�) log(Q2=�2) : (35)In e�e
t, the in�nities of the theory have been removed at the pri
e of introdu
ing a renor-malisation s
ale �. QED predi
ts the \running" of �, but experiment is needed to predi
t itsabsolute value.Note that, due to basi
 properties of gauge �eld theories, the ultraviolet divergen
es of theFeynman diagrams of Fig. 9 mutually 
an
el, via the so-
alled Ward identities. This is just aswell, be
ause it ensures that the renormalized 
harge of the ele
tron, muon,... remain equal.Turning now to QCD we have a new vertex to 
onsider, the triple-gluon vertex, whi
harises sin
e the gluons themselves 
arry 
olour 
harge. This 
hanges everything, as Fig. 10shows. There is a new va
uum polarisation diagram with a gluon loop, whi
h antis
reens the
olour 
harge, whi
h dominates the s
reening arising from the nf quark-loop diagrams3. As a
onsequen
e the �1=3� in (35) be
omes +b0, with�s(Q2) = �s(�2)1 + b0 �s(�2) log(Q2=�2) : (36)3nf is the number of a
tive quark 
avours, that is the number of quarks with mq < Q.12



Figure 9: The Ward identities ensure that the ultraviolet divergen
es of these diagrams mutually
an
el.

Figure 10: In addition to the `s
reening' quark loop, QCD has `antis
reening' from the gluon-loop diagram, whi
h arises from the non-Abelian nature of the SU(3)-
olour gauge group whi
h,in turn, allows a triple-gluon vertex (as well as a quarti
-gluon 
oupling, see Fig. 11). As aresult the running of the QCD 
oupling 
onstant, �s, is the `opposite' of QED. It de
reaseswith energy, allowing the use of perturbation theory at high energies.where4 b0 = �nf6� + 3312� : (37)At a stroke, the non-Abelian nature of QCD has solved the puzzling dilemma of the quarkmodel. The big puzzle was that when the proton is hit hard in DIS, the quarks a
t as if theyare essentially free; and yet no free quark has ever been seen { they are 
on�ned within thehadron5. This asymptoti
 freedom and infrared slavery is pre
isely what the running of theQCD 
oupling indi
ates, see the �s plot in Fig. 10.The ultraviolet divergen
es of the QCD diagrams analogous to those in Fig. 9 
an
el due tothe Slavnov-Taylor identities of QCD. Moreover for a gauge theory the equality of the q�qg andggg 
ouplings is preserved by renormalization.Let us return to our dimensionless observable R, whi
h due to renormalization be
omes thefun
tion R(Q2=�2; �s(�2)). However R 
annot depend on the 
hoi
e of renormalization s
ale,4The �1=3� in (35) be
omes �1=6� for ea
h quark loop in (36) due to the 
onvention used to normalize theSU(3) matri
es.5Con�nement still has to be proven. Latti
e QCD is the te
hnique to des
ribe physi
s in the strong 
ouplingregime. 13



Figure 11: The diagrams whi
h spe
ify the two-loop �-fun
tion. Note that besides the triple-gluon vertex, QCD 
ontains a quarti
 gluon 
oupling whi
h gives rise to the �nal diagram.
so we have a renormalization group equation (RGE)dRdlog�2 =  ��log�2 + ��s�log�2 ���s!R = 0: (38)It 
an be shown that the solution of the RGE givesR(Q2=�2; �s(�2)) = R(1; �s(Q2)): (39)That is the running of �s determines the Q dependen
e of R. In general, the running isexpressed in terms of a �-fun
tion, de�ned by��s=�log �2 = �(�s): (40)So far we have introdu
ed the �-fun
tion at one-loop, in whi
h we have summed up the leadinglogs, that is all the (�slog(Q2=�2))n 
ontributions. From (36) it is easy to show that this gives�(�s) = � b0 �2s: (41)The two-loop �-fun
tion sums up the next-to-leading logs resulting from the two-loop diagramsshown in Fig. 11, whi
h are found to give an �3s term with 
oeÆ
ient b1 = (153� 19nf)=24�2.The �-fun
tion then be
omes �(�s) = � b0 �2s � b1 �3s: (42)Before returning to DIS and the stru
ture of the proton, let us make a few more notes aboutthe properties of the QCD 
oupling �s. First the 
oupling at two-loops is the solution of thetrans
endental equation1�s(Q2) � 1�s(�2) + b1b0 log �s(Q2)�s(�2) " b0 + b1�s(�2)b0 + b1�s(Q2)#! = b0logQ2�2 : (43)Next, the value of �s depends on the renormalization s
heme. Sin
e in two di�erent s
hemes thevalues are related by �0s = �s(1+
�s), it follows that b0 and b1 are s
heme independent, whereasthe higher 
oeÆ
ients are not. Nowadays, most 
al
ulations in �xed-order QCD perturbation14



Figure 12: The O(�s) diagrams whi
h 
ontribute to the proton stru
ture fun
tion. On the �rstdiagram we show new variables, the longitudinal momentum fra
tion y 
arried by the quarkand the transverse momentum kt of the emitted gluon, whi
h must be integrated over.theory are performed in the so-
alled modi�ed minimal subtra
tion (MS) s
heme. Thirdly, notethat the 
oeÆ
ients bi depend on the number of a
tive 
avours, nf . As Q in
reases througha 
avour threshold we will need to ensure the 
ontinuity6 of �s. For example at the b-quarkthreshold we will require �s(m2b ; 4) = �s(m2b ; 5). Finally, re
all that perturbative QCD tells ushow the 
oupling varies with s
ale, but not the absolute value itself. The latter is obtainedfrom experiment. Traditionally the value is quoted at Q = MZ in the MS s
heme for nf = 5;the 
urrent value, determined from many independent experiments is�s(M2Z) = 0:1176 � 0:002: (44)Latti
e QCD 
an also predi
t the value of the 
oupling. It is en
ouraging that these verydi�erent determinations are found to be 
onsistent with ea
h other.6 Running parton densities: DGLAP equationsIn terms of QCD perturbation theory, the QPM formula (20) may be regarded as the zeroth-order term in the expansion of F2 as a power series in �s. To in
lude the O(�s) QCD 
orre
tions,we have to 
al
ulate the photon-parton subpro
ess diagrams shown in Fig. 12. The QPM ofSe
tion 3 is the �rst diagram in the se
ond j:::j2. Due to the propagator of the virtual quark,the �rst diagram in the �rst j:::j2 is proportional to (yp�k)�2 / (2p �k)�1, for massless quarks.It therefore has a 
ollinear divergen
e when the gluon of 4-momentum k is emitted parallel tothe in
oming quark of 4-momentum yp.The partoni
 approa
h is only valid if the se
ond diagram in the �rst j:::j2 
an be negle
ted.Then, the emitted gluon 
an be 
onsidered as part of the proton stru
ture. It turns out thatboth diagrams are required to ensure gauge invarian
e, but that the se
ond only plays the roleof 
an
elling the 
ontributions from the unphysi
al polarization states of the gluon. Adoptinga physi
al gauge, in whi
h we sum only over transverse gluons, only the �rst diagram remains.6Beyond two-loops there are dis
ontinuities in �s at the 
avour thresholds. Of 
ourse, the observables are
ontinuous, sin
e the above dis
ontinuities are 
an
elled by ones o

urring in the 
oeÆ
ients fun
tions, see (75)below. 15



To evaluate its 
ontribution we need to sum over all the possible values of the new variables,y and kt, that are introdu
ed to des
ribe the gluon. First we write down the answer and thenexplain its stru
ture7. The result isF2(x;Q2)x =Xq Z 1x dyy fq(y)e2q "Æ  1� xy!+ �s2�  P  xy! logQ2�20 + C  xy!!# ; (45)where P and C are known fun
tions. These will be
ome the universal parton splitting fun
tions(here P � Pqq des
ribes the q ! qg splitting) and the pro
ess dependent 
oeÆ
ient fun
tionC. The Æ-fun
tion term in (45) is the zeroth-order QPM 
ontribution with y = x that wederived in Se
tion 3. The �rst order term in �s 
omes from the �rst diagram in Fig. 12. Astraightforward appli
ation of the Feynman rules shows thatP (z) = 43 1 + z21� z ; (46)and that the log(Q2=�20) originates from the integration over the gluon (bremsstrahlung) trans-verse momentum spe
trum Z Q2�20 dk2tk2t = log Q2�20 ! ; (47)where the upper limit is set by the virtuality of the photon whi
h s
atters o� a quark oftransverse size 1=Q. Really the lower limit of integration should be set to zero. We havetherefore arbitrarily 
ut-o� the integral at some s
ale �0. How do we make sense of (45)?Inspe
tion of (45) shows that, after in
luding the O(�s) 
ontribution, we may repla
e fq bya well-behaved8 running parton densityfq(x; �2) = fq(x) + Z 1x dyy fq(y) �s2�  P  xy! log �2�20!+ C1! ; (48)su
h that F2(x;Q2)x =Xq Z 1x dyy fq(y; �2)e2q "Æ  1� xy!+ �s2�  P  xy! logQ2�2 + C2!# ; (49)where the division of the known fun
tion C into C1+C2 depends on the 
hoi
e of (fa
torization)s
heme.The dependen
e of fq(x; �2) on the (non-perturbative) s
ale �0 
an be eliminated in ananalogous way to the dependen
e of the 
oupling � on the 
ut-o� M , see (34) and (40). From(48) we obtain �fq(x; �2)�log�2 = �s2� Z 1x dyy fq(y; �2) P  xy! ; (50)whi
h des
ribes the evolution of the parton density with �2. This is known as the DGLAPevolution equation [9℄. In e�e
t we have absorbed all the 
ollinear infrared sensitivity into awell de�ned running parton density fq(x; �2). We 
annot use perturbative QCD to 
al
ulate theabsolute value of fq(x; �2), but we 
an, via the DGLAP equation, determine its � dependen
e.7This will be a prolonged dis
ussion. Only in Se
tion 8 will we emphasize the important \fa
torizationtheorem" stru
ture of the formula.8This follows be
ause everything else in (49) is well-behaved.16



7 Further dis
ussion of the DGLAP evolution equationsOur O(�s) treatment is in
omplete. A hint that this is so, is the presen
e of a soft divergen
e,whi
h arises when the energy of the emitted gluon tends to zero, in addition to the 
ollineardivergen
e. This is re
e
ted in the z = 1 singularity of P (z) � Pqq(z), see (46). At this pointit is 
ru
ial to in
lude the virtual gluon diagrams of Fig. 12. The (O(�s)) 
ontribution is theinterferen
e of these three diagrams with the QPM diagram. This 
ontribution is also singularat z = 1. It turns out that the singularity exa
tly 
an
els the z = 1 singularity present in thereal 
ontribution. After the 
an
ellation of the singularity there remains a residual Æ(1 � z)
ontribution from the virtual diagrams. Instead of 
al
ulating this 
ontribution expli
itly, thereis an easy way to see what it must give. It must be su
h to satisfyZ 10 Pqq(z) dz = 0; (51)whi
h expresses the fa
t that the number of valen
e quarks is 
onserved during the evolution.The virtual diagrams regularize the 1=(1� z) singularity in Pqq so the 
onstraint holds. Thismodi�
ation to Pqq 
an be expressed in terms of the so-
alled \+ pres
ription" for regularizationin whi
h 1=(1� z) is repla
ed by 1=(1� z)+ de�ned so thatZ 10 dz f(z)(1� z)+ = Z 10 dzf(z)� f(1)(1� z) (52)where (1� z)+ = (1� z) for z < 1. Ensuring the 
onstraint (51) givesPqq = 43 1 + z2(1� z)+ + 2Æ(1� z): (53)Our O(�s) treatment is still not 
omplete. In addition to the 
q ! gq subpro
esses shownin Fig. 12, at O(�s), we need to in
lude the 
g ! q�q pro
esses. Then the DGLAP evolutionequation (50) for the quark density q � fq be
omes�q(x;Q2)�logQ2 = �s2� (Pqq 
 q + Pqg 
 g) (54)where g � fg is the gluon density, and Pqq � P is the q ! q(g) splitting fun
tion of (53). It
an be shown that the g ! q splitting fun
tionPqg = 12(z2 + (1� z)2): (55)In general Pab des
ribes the b! a parton splitting. Also in (54) we have used 
 to abbreviatethe 
onvolution integral P 
 f � Z 1x dyy fq(y) P  xy! : (56)17



Clearly we must also 
onsider the evolution of the gluon density�g(x;Q2)�logQ2 = �s2�  Xi Pgq 
 (qi + �qi) + Pgg 
 g! ; (57)where the sum is over the i quark 
avours, and where the q ! g and g ! g splitting fun
tions
an be shown to be Pgq = Pqq(1� z) = 43 1 + (1� z)2z ; (58)Pgg = 6 1� zz + z(1� z)+ + z(1� z)!+ �112 � nf3 � Æ(1� z): (59)Here the 
oeÆ
ient of the Æ(1 � z) term 
an be obtained from the 
onstraint that all of themomentum of the proton must be 
arried by its 
onstituentsZ 10 dz z  Xi (qi(z; Q2) + �qi(z; Q2)) + g(z; Q2)! = 1 (60)for all Q2.It is 
onvenient to introdu
e 
avour singlet (�) and non-singlet (qNS) quark distributions:� = Xi (qi + �qi): (61)An example of a non-singlet is the up valen
e distributionuv = u� �u: (62)Non-singlet evolution satis�es (50) and de
ouples from the singlet and gluon evolution equa-tions, whi
h are 
oupled together as follows��logQ2  �g ! = �s2�  Pqq 2nfPqgPgq Pgg !
  �g ! : (63)In general the splitting fun
tions 
an be expressed as a power series in �sPab(�s; z) = P LOab (z) + �sPNLOab (z) + �2sPNNLOab (z) + ::: (64)where the NLO expressions were 
omputed in the period 1977-80 and the NNLO in the periodending 2004. Leading order (LO) DGLAP evolution, whi
h we have outlined, sums up the lead-ing log 
ontributions (�slogQ2)n, and next-to-leading order evolution in
ludes the summationof the �s(�slogQ2)n�1 terms.If we are given the x dependen
e of the parton densities at some input s
ale Q20 then we maysolve the evolution equations to determine them at higher Q2. Frequently this is performedsimply by step-by-step integration up in Q2. 18



An alternative pro
edure is to rewrite the equations in terms of moments, whi
h for anarbitrary fun
tion f(z) are de�ned asf (n) = Z 10 dzz znf(z): (65)If we now multiply the DGLAP equation (50) by xn�1, and integrate over x, we obtain��logQ2 Z 10 xn�1qNS(x;Q2)dx = �s2� Z 10 yn�1qNS(y;Q2)dy Z 10 zn�1Pqq(z)dz (66)using x = yz. That is, the evolution equation then turns into an ordinary linear di�erentialequation for the moments, �q(n)NS�logQ2 = �s2�P (n)qq q(n)NS : (67)For �xed �s the solution isq(n)NS (Q2) = 
n exp �
(n)logQ2� = 
n [Q2℄
(n) ; (68)where 
(n) � �sP (n)qq =2� is known as the `anomalous dimension'. If we in
orporate the runningof �s, (36), then it is easy to show thatq(n)NS (Q2) = 
n [�s(Q2)℄�
(n)=2�b0 : (69)This is the LO behaviour. In analogy with (38) and (39), the general result may be obtainedfrom the RGE dq(n)dlog�2 =  ��log�2 + �(�s) ���s + 
(n)(�s)! q(n) = 0; (70)whi
h 
an be shown to have the solutionq(n)(Q2=�2; �s(�2)) = q(n)(1; �s(Q2)) exp Z �s(Q2)�s(�2) 
(n)(�s)�(�s) d�s! : (71)In addition to (67) we have��logQ2  �(n)g(n) ! = �s2�  P (n)qq 2nfP (n)qgP (n)gq P (n)gg ! �(n)g(n) ! : (72)On
e we have the analyti
 solutions of these equations for the moments, we 
an obtain the zdistributions of the partons by the inverse Mellin transformsfi(z; Q2) = 12�i Z 
+i1
�i1 dn z�nfi(n;Q2); (73)where the 
ontour is to the right of all the singularities of the integrand.19



8 Observables: the fa
torization theoremWe return to the equation for F2(x;Q2), eq.(49). We have des
ribed how the 
ollinear singu-larities of the formula have been swept into well-de�ned running parton densities, fi(y; �2F ),evaluated at some (fa
torization) s
ale9 �F in the perturbative region. A 
onvenient 
hoi
e isto set �F = Q, so that the log(Q2=�2F ) term disappears. We then have, in
luding the 
g ! q�q
ontribution, F2(x;Q2)x = Xq;�q e2q Z 10 dyy "fq(y;Q2) Æ  1� xy!+ �s2�C2;q  xy!!+ fg(y;Q2)�s2�C2;g  xy!# ; (74)where the C2;i are the 
oeÆ
ient fun
tions for the observable F2. Although all the 
ollinearsingularities are absorbed by the running of the fi, re
all that the pres
ription is not unique.We 
an add any �nite term. So we must spe
ify a s
heme. The MS fa
torization s
heme isfavoured. It was mentioned at the end of Se
tion 5 as also the 
hoi
e of renormalization s
heme.We 
an generalize this result to des
ribe the stru
ture fun
tions of all DIS pro
esses. For thestru
ture fun
tions Fa, des
ribing the deep inelasti
 pro
esses `+ p! `0+X, the fa
torizationformula, whi
h holds to all orders in perturbation theory, has the generi
 formFa(x;Q2) = Xi=q;�q;g Z 10 dyy fi(y;Q2) Ca;i  xy ; �s(Q2)! + O �2QCDQ2 ! : (75)The �nal term denotes non-perturbative 
ontributions, su
h as hadronization e�e
ts, multipar-ton intera
tions et
. For suÆ
iently high Q2 these e�e
ts are negligible, and the expression forthe observable fa
torizes into� universal parton densities (of the proton), fi, whi
h absorb the long distan
e 
ollinearsingularities. They 
annot be 
al
ulated in perturbative QCD, but their Q2 dependen
eis 
al
ulable using the DGLAP evolution equations, in whi
h the splitting fun
tions are
al
ulable as power series in �s.� 
oeÆ
ient fun
tions, Ca;i, whi
h des
ribe the short distan
e subpro
ess. They are 
al
u-lable from perturbative QCD as a power series in �s, but are unique to the parti
ularobservable, Fa.The fa
torization is displayed visually in Fig. 13A similar fa
torization applies to in
lusive `hard' hadron-hadron 
ollisions. For instan
e,
onsider the LHC pro
ess p(p1) + p(p2) ! H(Q; ::) + X (76)9The subs
ript F is added to distinguish it from the renormalization s
ale introdu
ed in Se
tion 5. In pra
ti
ethese s
ales are often 
hosen to be equal. 20



Figure 13: S
hemati
 pi
ture of the fa
torization theorem for a deep inelasti
 stru
ture fun
tionof the proton.where H denotes the triggered hard system, su
h as a weak boson, a pair of jets, a Higgs bosonet
. The typi
al hard s
ale Q 
ould be the invariant mass of H or the transverse momentumof a jet. Then a

ording to the fa
torization theorem the 
ross se
tion is of the form� = Xi;j Z 1xmin dx1dx2 fi(x1; �2F )fj(x2; �2F ) �̂ij(x1p1; x2p2; Q:::;�2F ); (77)where typi
ally xmin >� Q2=s where s = (p1+p2)2. For the produ
tion of a system H of invariantmass M and rapidity y, the momentum fra
tions x1;2 = Me�y=ps. The fi and �̂ depend onthe renormalization s
ale �R via �s(�2R). For instan
e�̂ij = �ks nXm=0C(m)ij �ms (78)where LO, NLO... 
orrespond to n=1,2...; note that, for example, k=0,2,.. for W , dijet,...produ
tion. We should work to the same order in the series expansion of the splitting fun
tions.In pra
ti
al appli
ations it is usual to 
hoose �F = �R � Q and to use variations about thisvalue to estimate the un
ertainty in the predi
tions. Of 
ourse the physi
al 
ross se
tion �does not depend on the s
ales, but the trun
ation of the perturbative series brings in s
aledependen
e. If we trun
ate at order �ns , then the un
ertainty is of order �n+1s .9 Global parton analysesTwo groups (CTEQ [10℄ and MRST [11℄) have used all available deep inelasti
 and related hards
attering data involving in
oming protons (and antiprotons) to determine the parton densities,fi, of the proton. The pro
edure is to parametrize the x dependen
e of fi(x;Q20) at some low,yet perturbative, s
ale Q20. Then to use the DGLAP equations to evolve the fi up in Q2, andto �t to all the available data (DIS stru
ture fun
tions, Drell-Yan produ
tion, Tevatron jet andW produ
tion...) to determine the values of the input parameters. In prin
iple there are 11parton distributions (u; �u; d; �d; s; �s; 
; �
; b;�b; g). However m
; mb � �QCD. So 
 = �
 and b = �bare 
al
ulated from perturbative QCD via g ! Q �Q. Also the eviden
e from neutrino-produ
eddimuon data, �N ! �+��X, is that10 s ' �s ' 0:2(�u+ �d) at Q2 ' 1 GeV2.10Analysis of NuTeV data for � and �� beams indi
ates some x dependen
e of the fa
tor \0.2", and that s > �sfor x � 0:01. 21



A 
ommon 
hoi
e of parametrization of the parton densities isxf(x;Q20) = A(1� x)�x�(1 + �px + 
x) (79)with up to �ve parameters (A; �; �; �; 
) for ea
h parton. Three of the A's are determined fromsum rules. The input partons must satisfy the two valen
e quark sum rulesZ 10 dx(u� �u) = 2; Z 10 dx(d� �d) = 1; (80)and also we must satisfy the momentum sum rule (60).We 
an obtain some idea of what to expe
t for the values of the �i parameters from thespe
tator 
ounting rules. As x! 1 physi
al arguments indi
ate thatf(x) ! (1� x)2ns�1 (81)where ns is the minimum number of spe
tator quarks whi
h share between them the residual,vanishingly small momentum of the proton. The greater the number of spe
tators, the smallerthe 
han
e of produ
ing a parton with a large fra
tion of the proton's momentum. For a valen
equark, gluon and sea quark it is easy to see that we have ns = 2; 3 and 4 respe
tively. So wemay expe
t �v � 3; �g � 5 and �sea � 7.For a rough guide to the anti
ipated values of the �i parameters, we might appeal to Reggebehaviour, sin
e the limit x = Q2=2p � q ! 0 
orresponds to s
p ' 2p � q !1. In this limit the
p 
ross se
tion is approximately proportional toX e2ixfi(x) � (rP s�P (0)�1
p + rRs�R(0)�1
p ) � (rPx1��P (0) + rRx1��R(0)): (82)The naive expe
tations are that the Pomeron and the leading se
ondary Reggeons have traje
-tories with inter
epts �P (0) ' 1:08 and �R(0) ' 0:5. The Pomeron 
orresponds to 
avourlessex
hange so we expe
t the parameters �sea;g � �0:08, whereas the valen
e density 
orrespondsto 
avour ex
hange with �v � 0:5. So, in summary, we might naively expe
txfv � x0:5(1� x)3; xfg � x�0:08(1� x)5; xfsea � x�0:08(1� x)7 (83)types of behaviour.In pra
ti
e, the heavy quark densities, 
; b, require spe
ial treatment. These are parti
ularlyimportant at small x, espe
ially as Q2 in
reases. We 
an see the problem by noting that forQ2 � m2
 the 
harm quark does not a
t like a parton, but instead is 
reated in the �nal stateby photon-gluon fusion, 
g ! 
�
. On the other hand for Q2 � m2
, 
learly 
 behaves likea massless parton. It is therefore ne
essary to use a variable 
avour number s
heme [12℄ inwhi
h we mat
h a 3- to a 4-
avour parton des
ription as we evolve up through the 
harm quarkthreshold, Q2 � m2
 .Table 1 highlights some pro
esses used in the global �ts, and their primary sensitivity tothe parton densities. The kinemati
 ranges of the �xed-target and 
ollider experiments are22



Figure 14: Parton densities, xfi(x; �2), at �2 = 20 and 104 GeV2, obtained in a re
ent NNLOglobal analysis [11℄. The dominan
e of the gluon at small x and of the valen
e quarks at largex is 
learly evident. The un
ertainties shown only re
e
t the errors of the experimental data.A dis
ussion of the theoreti
al errors 
an be found in [13℄.

Figure 15: The un
ertainty in the q�q and gg parton luminosities for produ
ing a state of massMat the LHC, arising from the experimental errors of the data �tted in a global parton analysis.23



Table 1: Lepton-nu
leon and related hard-s
attering pro
esses (whose data are used in theglobal parton analyses) and their primary sensitivity to the parton distributions that are probed.Main PDFsPro
ess Subpro
ess probed`�N ! `�X 
�q ! q g(x <� 0:01); q; q`+(`�)N ! �(�)X W �q ! q0 "�(�)N ! `�(`+)X W �q ! q0 "� N ! �+��X W �s! 
! �+ s`N ! `QX 
�Q! Q Q = 
; b
�g ! QQ g(x <� 0:01)pp! 
X qg ! 
q gpN ! �+��X qq ! 
� qpp; pn! �+��X uu; dd! 
� u� dud; du! 
�ep; en! e�X 
�q ! qpp!W ! `�X ud! W u; d; u=dpp! jet +X gg; qg; qq! 2j q; g(0:01 <� x <� 0:5)
omplementary (as is shown in Fig. 4) whi
h enables the parton densities to be determinedover a wide range in x and Q2. The analyses 
an now be done to NNLO. An example11 of theresulting parton distributions is shown in Fig. 14.The gluon density is the most poorly known parton distribution. At small x ( <� 0:01) it is
onstrained by the HERA DIS s
aling violations, and for values of x up to about 0.5 by theTevatron jet data. The momentum sum rule also gives an important 
onstraint.Thanks to the HERA experiments, the parton densities are well-known12 down to about x �10�3. Also they are well-known up to x � 0:5. What are the impli
ations of the un
ertainties13in the parton densities for the LHC experiments? Some idea 
an be obtained from Fig. 15,whi
h shows the un
ertainties in the Lq�q and Lgg parton luminosities relevant to the produ
tionof a state of mass M at the LHC. The parton luminosities are de�ned asLab = Cab Z 1� dxaxa fa(xa)fb(�=xa) (84)11Comprehensive sets of parton densities available as programme-
allable fun
tions 
an be found inhttp://durpdg.dur.a
.uk/HEPDATA/PDF.12We dis
uss possible 
orre
tions arising from the resummation of log1=x terms and from absorptive e�e
ts,both of whi
h lie outside pure DGLAP, in Se
tions 10 and 11 respe
tively. We shall see that, at low s
ales, theparton densities have large un
ertainties for x <� 10�3.13Detailed dis
ussions of the un
ertainties arising in the global analyses 
an be found in [14, 15, 16, 13℄.24



Figure 16: Partoni
 x;Q2 domains sampled by the LHC and HERA, as well as �xed-target DISexperiments. The rapidity interval for the produ
tion of a Higgs boson of mass 120 GeV at theLHC is indi
ated by an open arrow; the relevant parton distributions should be reliable fromDGLAP evolution of global analyses of HERA, �xed-target DIS, and Tevatron jet data. Thepossibility of the LHC experiments probing the region x <� 10�4; Q2 >� 10 GeV2 is mentionedat the end of Se
tion 12.where Cab is a 
olour fa
tor. Sin
e xaxbs ' M2 we see xb = �=xa where � =M2=s. Due to thefa
torization theorem, the 
ross se
tion for the produ
tion of the state of mass M is� = Xa;b Lab �̂(ab!M ; ŝ = �s): (85)The widening of the gg ! M error band in Fig. 15 for M > 1 TeV is due to the la
k ofknowledge of the gluon at high x. This plot does not in
lude the theoreti
al errors in a pureDGLAP parton analysis. Nevertheless, for the predi
tions of the 
ross se
tions of the 
entralprodu
tion of high mass systems at the LHC, the un
ertainty 
oming from parton densities isless than �10%. This is also 
lear from an inspe
tion of Fig. 16.As an example, we show in Fig. 17 the predi
ted 
ross se
tions[17℄ for W� produ
tion atthe LHC. At zeroth order we only have the q�q-driven subpro
esses u �d ! W+ and d�u ! W�;so we expe
t the parton luminosity errors to be relatively small. The 
ross se
tion inequality25



Figure 17: LO, NLO and NNLO predi
tions for the rapidity distribution of W� produ
tionat the LHC. The width of the bands re
e
ts the un
ertainty 
oming from the variation of thes
ale in the interval MW=2 � � � 2MW . The NNLO predi
tion is the very narrow band lyingwithin the NLO error band.�(W+) > �(W�) re
e
ts uv > dv. Also note the rapid de
rease in the un
ertainty due to s
ale
hanges as we pro
eed from LO!NLO!NNLO. Allowing for un
ertainties from all sour
es,the W� produ
tion 
ross se
tion is predi
ted to an a

ura
y of �5%, whi
h enables it to be
onsidered as a luminosity monitor for the LHC.In Fig. 18 we show the 
ross se
tions in nb for various pro
esses at the Tevatron and at theLHC. If the 
ollider luminosities were 1033 
m�2s�1, then the s
ale on the plot also gives thenumber of events whi
h would o

ur ea
h se
ond. Note that eventually the LHC is planned toa
hieve a luminosity some 10 times greater than this.10 Beyond DGLAP: low x partons and BFKLFig. 19 shows the physi
al phenomena we expe
t to be appropriate in various regions of thelog(1=x) { log(Q2) plane. We shall dis
uss them here and in the next Se
tion. Overlaid is a lineindi
ating the rea
h a
hieved by the HERA experiments. Of 
ourse the position of this line iswell known, see Fig. 4. However the positions of the various domains relative to this line arenot well established. Certainly HERA has opened up the small x domain, with DIS stru
turefun
tion measurements rea
hing down to x � 10�4 while Q2 is still in the perturbative domain.So far our approa
h has been to work with DGLAP evolution trun
ated at a �xed per-turbative order. This pure DGLAP approa
h has been phenomenologi
ally su

essful, even,surprisingly, down to x � 10�4 with Q2 � 2 GeV2. Nevertheless, although the global parton26



Figure 18: The 
ross se
tions (in nb) for various pro
esses at the Tevatron and the LHC. Forthe LHC luminosity quoted, the s
ale also 
orresponds to the number of events/se
ond. Wealso give an indi
ation of the physi
s whi
h may be probed by the pro
esses at the LHC. Notethat the rates of Higgs and SUSY parti
le produ
tion do not in
lude the dilution of a possiblesignal due to the bran
hing fra
tion of the parti
ular 
hannel investigated. Moreover notehow important it is to redu
e the huge ba
kground and to over
ome \pile-up" from multipleevents per bun
h 
rossing at the higher luminosity. Of 
ourse it would be even more ex
itingto dis
over something totally unexpe
ted.
27



Figure 19: S
hemati
 sket
h of the physi
al phenomena in various regions of the log(1=x) {log(Q2) plane, 
ompared to the kinemati
 rea
h of HERA. The gluoni
 
ontent of the proton,as resolved by a Q2 probe, is also indi
ated. DGLAP evolution takes us up in Q2 and so thepartoni
 
onstituents are resolved more �nely. The BFKL equation takes us to small x, withthe gluon density xg growing as x��, but the resolution in the transverse plane remaining atapproximately 1=Q. As x de
reases, the partoni
 
ontent in
reases, and at some stage thepartons re
ombine (absorptive e�e
ts), and eventually saturate.analyses des
ribe the data satisfa
torily in this regime14, it does not mean that the partondistributions are reliable here. We know pure DGLAP is in
omplete at small enough x.To explore the small x regime, we �rst note that DGLAP is equivalent to assuming thatthe dominant dynami
al me
hanism leading to DIS s
aling violations is the evolution of partonemissions strongly-ordered in transverse momenta. However, at small x the evolution o

ursover large rapidity intervals (� ln1=x). The higher-order 
orre
tions to the splitting (and
oeÆ
ient) fun
tions 
ontain one additional power of ln1=x for ea
h additional power of �s. Ifwe keep just the leading ln1=x terms then the small x behaviour of the Pgg splitting fun
tion,for example, has the formxPgg(x) ! A10 �s + A21 �2sln1=x+ A32 �3sln21=x+ A43 �4sln31=x+ ::: ; (86)14The gluon has a valen
e-like behaviour, although the un
ertainties are large in this domain. Neverthelessits behaviour is quite di�erent to the growth of the sea-quark distributions as x! 0. Su
h a result looks strangefrom the Regge viewpoint where the same va
uum singularity (Pomeron) should drive both the sea quarks andthe gluons; i.e. the same small x behaviour is expe
ted for sea quark and gluon distributions.28



whereas in NNLO DGLAP, for example, Pgg 
ontains only the terms up to �3s. Clearly, atsmall x, when �s ln1=x � 1, a resummation of all of the terms in the series is ne
essary.The resummation of the leading log (LLx) terms, �ns logn�11=x, is a

omplished by the BFKLequation15. The BFKL equation [18℄ will be dis
ussed in detail in the le
tures of Vi
tor Fadin[19℄, Lev Lipatov [20℄ and Al Mueller [21℄. Here we will just in
lude some introdu
tory remarks.At low x we have di�usion or \random walk" in the logarithm of transverse momenta as wepro
eed along the emission 
hain. We no longer have the strong ordering in kt whi
h is truein DGLAP evolution. For this reason the BFKL equation is for the gluon density, f(x; k2t ),unintegrated over kt. Re
all that the gluon dominates at low x. The BFKL equation has thestru
ture �fg�ln(1=x) = K 
 fg = �fg (87)whi
h, at small x, has the the solutionfg � e�ln(1=x) � x�� � � ss0�� ; (88)where � = 12�sln2=� is the leading eigenvalue of the BFKL kernel K. This has an analogousform to the Regge-pole ex
hange behaviour of the amplitude,A(s; t) � XR �R(t)� ss0��R(t) ; (89)whi
h is the 
ornerstone of the des
ription of high-energy \soft" hadron-hadron intera
tions;�R(t) is the traje
tory of Reggeon R in the 
omplex angular momentum plane. For 
olour-o
tet ex
hange the BFKL equation des
ribes a Reggeized gluon with traje
tory �g(t), while for
olour-singlet ex
hange, whi
h is relevant to this dis
ussion, it leads to a 
ut in the 
omplexangular momentum, j, plane 
orresponding to two Reggeized gluons ex
hanged { often 
alledthe perturbative Pomeron. Note that the generalized gluon distribution fg 
orresponds to thetwo-gluon ex
hange amplitude. Its behaviour at low x is driven by the rightmost singularity(bran
h point), j = 1+�, produ
ed by the two-gluon 
ut, where the value of � obtained from theBFKL equation is given above. Sin
e the behaviour of fg is driven by a 
ut (and not an isolatedpole) in the j-plane, a prefa
tor 1=plns will appear in (88). The possible 
onne
tion between(89) and (88) is indi
ated by a horizontal `blo
k' arrow in Fig. 19. In the \soft" regime thehadrons are Reggeized, while in the perturbative QCD BFKL regime the 
onstituent partonsare Reggeized. How to go from one regime to the other has not been solved. For example,15DGLAP and BFKL are di�erent limits of a more general evolution of parton densities, whi
h is an orderedevolution in the angles of the emitted partons. At LO we have strong ordering of the emission angles,...�i ��i+1...; on the other hand if, at one step of the evolution �i � �i+1, then this 
ontribution is in
luded insidethe NLO splitting fun
tion. In the 
ollinear approximation of DGLAP the angle in
reases due to the growthof the transverse momentum kt, while in BFKL the angle (� ' kt=kk) grows due to the de
reasing longitudinalmomentum fra
tion as we pro
eed along the emission 
hain from the proton. Introdu
tory dis
ussions of theBFKL equation 
an be found, for example, in Refs.[25, 26℄.29



what is the relation16 of the BFKL or perturbative QCD `Pomeron' (given by a ladder diagramformed from the ex
hange of two t-
hannel Reggeized gluons) to the `Pomeron' des
ribing softhigh-energy proton-proton intera
tions?Coming ba
k to the dis
ussion 
entred on the perturbative expansion of equation (86),we note that in the small x region the gluon dominates, and only Pgg and Pqg 
ontain LLx
ontributions. These are positive but smaller than naively expe
ted; it turns out that A21 =A32 = 0, and even A54 = 0, in (86). Now the next-to-leading (NLLx) terms, �ns logn�21=x, havealso been 
al
ulated [23℄. These give a large, negative, 
ontribution to the gluon, leading toinstability at small x. In fa
t � of (88) is now given by� = 12�sln2=� (1� 6:5�s): (90)This problem has been the subje
t of 
onsiderable investigation. Clearly, the higher-order
ontributions, NNLLx, NNNLLx,... are important. However it took about 10 years to 
al
ulatethe NLLx 
ontributions, so to 
ompute the next order or two appears unrealisti
, and eventhen may not 
onverge to a stable result. Instead, the pro
edure that has been followed is toidentify a few physi
al QCD e�e
ts that lead to large higher-order 
orre
tions and then to resumthem. Indeed, this all-order resummation of the main e�e
ts is found to tame the wild (LLx! NLLx) behaviour; a readable review is given in [24℄. The approa
hes of the various groupshave rea
hed similar 
on
lusions: the approximate all-order resummed BFKL framework leadsto the behaviour that xg � x�0:3 as x! 0 (91)at low s
ales17.In pra
ti
e, it is found that this power-like growth only sets in at very small x. In terms ofDGLAP evolution all the BFKL e�e
ts should be in
luded in the resummed splitting fun
tionsused to des
ribe the transition between two quite di�erent s
ales, that is between partons whosetransverse momentum are very di�erent. In su
h a 
ase the power growth (91) will be in
ludedin the resummed Pgg. However the resummed xPgg has a dip 
entred at x � 10�3, and thepower growth is only evident below x � 10�5. Indeed the resummed xPgg and the NNLODGLAP xPgg are in good agreement down to x � 10�3.To make quantitative predi
tions in the small x domain, x <� 10�4 with Q2 � 2 GeV2, whereno data exist, is extremely diÆ
ult. We need to obtain the resummed ln(1=x) solution startingfrom some non-perturbative amplitude at Q = Q0. This non-perturbative distribution (whi
his analogous to the `input' in the DGLAP approa
h) is not known theoreti
ally. Either one hasto �t it to data (but again low x data are needed) or to use some phenomenologi
al model (forexample, based on a Regge parametrization).16See [22℄ for a phenomenologi
al study.17What do the data say? If the F2 data are �tted to the form x�� for x < 0:01, then it is found that �grows approximately linearly with logQ2 from � ' 0:1 passing through � = 0:3 at Q2 � 40 GeV2. The simpleassumption that this re
e
ts the behaviour of the gluon, with F2 driven by the g ! q�q transition is mu
h toonaive. Indeed the global analyses give a gluon whi
h is valen
e-like at small x at the input s
ale.30



We 
on
lude that the parton densities are unknown in the region x <� 10�4. At very smallx we have the estimate that gluon density might behave as xg � x�� with � ' 0:3. However,as x de
reases, at some stage this behaviour will violate unitarity. Here the re
ombination ofgluons (absorptive e�e
ts) 
ome to the res
ue, and tame the violations of unitarity. To this wenow turn.11 Absorptive e�e
tsThe saturation of parton densities (� = 0) may be obtained using the Gribov-Levin-Ryskin(GLR) equation [27℄ or the more pre
ise Balitski-Kov
hegov (BK) equation [28℄. These equa-tions sum up the set of so-
alled fan diagrams whi
h des
ribe the res
attering of intermediatepartons on the target nu
leon. The s
reening 
aused by these res
atterings prohibits the powergrowth of the parton densities.The GLR equation for the gluon may be written in the symboli
 form�(xg)�lnQ2 = Pgg 
 g + Pgq 
 q � 81�2s16R2Q2 Z dx0x0 [x0g(x0; Q2)℄2: (92)The non-linear shadowing term, �[g℄2, des
ribes the re
ombination of gluons. It arises fromperturbative QCD diagrams whi
h 
ouple 4g to 2g | that is two gluon ladders re
ombininginto a single gluon ladder, whi
h is 
alled a fan diagram. The minus sign o

urs be
ausethe s
attering amplitude 
orresponding to a gluon ladder is predominantly imaginary. Theparameter R is a measure of the transverse area �R2 where the gluons are 
on
entrated.The BK equation is an improved version of the GLR equation. It a

ounts for a more pre
iseform of the triple-pomeron vertex and 
an be used for the non-forward amplitude. The GLRequation, based on DGLAP evolution, was in momentum spa
e; whereas the BK equation,based on the BFKL equation, is written in 
oordinate spa
e in terms of the dipole s
atteringamplitude N(x;y; Y ) � Nxy(Y ). Here x and y are the transverse 
oordinates of the twot-
hannel gluons whi
h form the 
olour-singlet dipole, and Y = ln(1=x) is the rapidity. TheBK equation reads�Nxy�Y = 3�s� Z d2z2� (x� y)2(x� z)2(y � z)2 fNxz +Nyz �Nxy �NxzNyzg ; (93)where, interestingly, the non-linear and linear terms have the same BFKL kernel K, whi
h isshown expli
itly in (93). For small dipole densities, N , the quadrati
 term in the bra
kets maybe negle
ted, and, indeed, (93) reprodu
es the 
onventional BFKL equation. However for largeN , that is N ! 1, the r.h.s. of (93) vanishes, and we rea
h saturation when N = 1. Theequation sums up the set of fan diagrams where at the lower (small Y ) end the target emitsany number of pomerons (i.e. linear BFKL amplitudes), while at the upper (large Y ) end wehave only one BFKL dipole. 31



In prin
iple, it would appear more appropriate to use the BFKL-based BK equation todes
ribe the parton densities at low x. It is an attempt to des
ribe saturation phenomena.However it is just a model and 
annot, at present, be used to reliably estimate absorptivee�e
ts at small x.Is there any eviden
e of the onset of absorptive e�e
ts in the experimental data? Theseshould o

ur �rst at low x and low Q2, see Fig. 19. However, there is no 
on
lusive eviden
e thatabsorptive e�e
ts are important in the HERA data in the perturbative regime, Q2 >� 1 GeV2.The various 
laims that are frequently made have been re
ently 
omprehensively dis
ussed in[29℄. It is seen that none of them, in
luding the observed `
at' ratio of (di�ra
tive DIS/in
lusiveDIS) or the observation of geometri
 s
aling, provide any 
ompelling eviden
e of saturatione�e
ts.Of 
ourse, as x de
reases we know that ultimately absorptive e�e
ts must be present. Inprin
iple, we should be able to estimate their 
ontribution from knowledge of the stru
turefun
tions for di�ra
tive DIS, via �F abs2 � � FD2 ; (94)where FD2 is the stru
ture fun
tion for the pro
ess 
�p! X + p in whi
h the slightly de
e
tedproton and the 
luster X of outgoing hadrons are well separated in rapidity [30℄.12 Con
lusionsThe great improvement in the pre
ision and range of deep inelasti
 and related hard s
at-tering data over the last few years has enabled the partoni
 stru
ture of the proton to bewell determined in the 10�3 <� x <� 0:5 interval, so we are able to make reliable predi
tions forthe produ
tion of new massive states at the LHC. Global analyses are now available at NNLO.These analyses require parti
ularly 
areful treatment at the heavy quark thresholds, see Thorne[12℄ and referen
es therein. A surprise is that a pure DGLAP des
ription is able to des
ribeall features of the data down to Q2 = 2 GeV2, in spite of the fa
t that the global �ts are nowquite tightly 
onstrained. The allowan
e of beyond-DGLAP e�e
ts is not found to improve thedes
ription, see, for example [13℄.Another surprise is that the global analyses reveal that the gluon has a valen
e-like smallx behaviour at the low input s
ale, unlike the sea quark distribution whi
h behaves as ex-pe
ted, see (83). Su
h a result looks strange from the Regge viewpoint where the same va
uumsingularity (Pomeron) should drive both the sea quarks and the gluons; i.e. the same power�g = �sea is expe
ted for sea quarks and gluons. Note that global analyses are only reliabledown to x � 10�3.The low x domain, x <� 10�4, is un
hartered territory. Is it possible for the LHC experimentsto determine the behaviour of partons in the important low x region below 10�4 at low s
ales?One possibility is �+�� Drell-Yan produ
tion in whi
h events are observed with the �+��32



invariant mass as low as possible and the rapidity as large as possible. For example, forM�� = 4 GeV and y�� = 3, we sample quarks at x = 1:4 � 10�5, see Fig. 16. This pro
esssamples predominantly the sea quark distributions. To study the small x behaviour of thegluon at low s
ales we may 
onsider �
 produ
tion18, or prompt photon produ
tion driven bythe subpro
ess gq ! 
q, or perhaps gg ! b�b. These studies may also require an improvementin theoreti
al formalism.A
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