February 7th, 2003 Assignment # 5 (due Friday February 14th, 2003, at the beginning of class)

- 1. Consider a damped harmonic oscillator with m = 0.05 Kg and k = 5 N/m. Find its motion and graph it using the initial conditions $x_0 = 0.01$ and $v_0 = 0$, for the following three values of the damping constant (remember that the damping parameter is $\beta = \frac{b}{2m}$):
 - (a) b = 0.1,
 - (b) b = 1.0,
 - (c) b = 5.0,
- 2. Problem 3.12 of Marion and Thornton's book.
- 3. Problem 3.22 of Marion and Thornton's book.
- 4. A damped harmonic oscillator with m = 10 Kg, k = 250 N/m, and b = 60 Kg/s is subject to a driving force given by $F_0 \cos(\omega t)$, where $F_0 = 48$ N.
 - (a) What value of ω results in steady-state oscillations with maximum amplitude? Under this condition:
 - (b) What is the maximum amplitude?
 - (c) What is the phase shift?
- 5. Problem 3.24 of Marion and Thornton's book.