PHY 5667 : Quantum Field Theory A, Fall 2006

October 19 ${ }^{\text {th }}, 2006$
Assignment \# 4
(due Thursday November $2^{\text {nd }}$, 2006)

1. Using the same technique applied to prove Eq. (4.37) of Peskin and Schroeder's book, show explicitly how to obtain Eq.(4.39). Also, show that $\langle 0| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right)\right\}|0\rangle=0$.
2. The following Feynman diagram:

represents a contribution to $\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle$. Explain from which term of the perturbative expansion of $\langle\Omega| T\{\phi(x) \phi(y)\}|\Omega\rangle$ does it come from and write the corresponding analytical contribution both in position-space and in momentum-space.
3. Show that at $\mathcal{O}\left(\lambda^{2}\right)$ the four point correlation function $\langle\Omega| T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \phi\left(x_{3}\right) \phi\left(x_{4}\right)\right\}|\Omega\rangle$ corresponds to the series of diagrams in Eq. (4.58). Which of the diagrams in Eq. (4.58) contribute to the invariant matrix element $\mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{3}, p_{4}\right)$ at $\mathcal{O}\left(\lambda^{2}\right)$? Write the explicit expression of $\mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{3}, p_{4}\right)$ at $\mathcal{O}\left(\lambda^{2}\right)$ in momentum space.
4. Problem 4.2 of Peskin and Schroeder's book.
