PHY 5667 : Quantum Field Theory A, Fall 2006

November $2^{\text {nd }}, 2006$
Assignment \# 5
(due Thursday November $16^{\text {th }}$, 2006)

1. Which of the diagrams in Eq. (4.58) contribute to the invariant matrix element $\mathcal{M}\left(p_{1}, p_{2} \rightarrow\right.$ $\left.p_{3}, p_{4}\right)$ at $\mathcal{O}\left(\lambda^{2}\right)$? Write the explicit expression of $\mathcal{M}\left(p_{1}, p_{2} \rightarrow p_{3}, p_{4}\right)$ at $\mathcal{O}\left(\lambda^{2}\right)$ in momentum space.
2. Problem 4.2 of Peskin and Schroeder's book.
3. Consider the two fermion scattering:

$$
\text { fermion }(p)+\operatorname{fermion}(k) \rightarrow \operatorname{fermion}\left(p^{\prime}\right)+\text { fermion }\left(k^{\prime}\right)
$$

in the context of the Yukawa theory. We have derived the lowest order or tree level invariant matrix element \mathcal{M} for this scattering process in class. Using that result, complete our discussion by calculating the differential cross section $\left(\frac{d \sigma}{d \Omega}\right)_{C M}$ and the total cross section σ.
4. Problem 5.2 of Peskin and Schroder's book.
5. Extra Credit : Problem 5.1 of Peskin and Schroeder's book.

