PHY 5524: Statistical Mechanics

January $7^{\text {th }}, 2011$
Assignment \# 1
(Due Wednesday January $12^{\text {th }}$, 2011)

This problem is taken from Entropy, Order Parameters, and Complexity by James P. Sethna and goes under the name of Quantum dice. It deals with discrete distributions and serves as a preview/review to Bose and Fermi statistics. Here is how it goes.

You are given several unusual "three-sided" dice which, when rolled, show either one, two, or three spots. There are three games played with these dice: Distinguishable, Bosons, and Fermions. In each turn in these games, the player rolls one die at a time, starting over if required by the rules, until a legal combination occurs. In Distinguishable, all rolls are legal. In Bosons, a roll is legal only if the new number is larger or equal to the preceding number. In Fermions, a roll is legal only if the new number is strictly larger than the preceding number.

1. [5pt] Notice that our dice rules are the same that govern the quantum statistics of identical particles. Can you explain why? In other words: what is the role played by the dice and the role played by the sides of the dice?
2. [5pt] Build a table of possibilities after rolling two dice for each of the games, i.e. what are the possible legal combinations after rolling two dice when playing Distinguishable, Bosons, and Fermions?
3. [5pt] Presume that the dice are fair (i.e. each of the three numbers of dots shows up $1 / 3$ of the time). Among the legal Bosons turn rolling two dice, what is the probability $\rho(4)$ of rolling a 4. Similarly, what is $\rho(4)$ when playing Fermions?
4. [5pt] For a legal turn rolling three "three-sided" dice in Fermions, what is the probability $\rho(6)$ of rolling 6 ?
5. [10pt] When rolling M dice each with N sides, how many legal turns there are in Distinguishable, Bosons, Fermions.
6. [10pt] In a turn of three rolls, what is the factor by which the probability of getting triplets in Bosons is enhanced over that in Distinguishable? In a turn of M rolls, what is the enhancement factor for generating an M-tuple (all rolls having the same number of dots showing)?
Notice that the states of the dice tend to cluster together in Bosons. Examples of real bosons clustering into the same state include Bose condensation and lasers.
