PHY 5524: Statistical Mechanics

April $13^{\text {th }}, 2011$

Assignment \# 12

(Due Wednesday April $20^{t h}$, 2011)

Problem 1

Consider the problem of the vibrational modes in a solid satisfying the following dispersion relation,

$$
\omega(\mathbf{k})=A|\mathbf{k}|^{s} \equiv A k^{s},
$$

where A and s are positive constants, ω is the angular frequency, and k the wave number of the mode. Assume that there are N atoms in the solid so that the total number of modes is equal to $3 N$.
1.a) Compute the Debey wave number k_{D}. Does k_{D} depend on the assumed dispersion relation? What about the Debey frequency ω_{D} ?
1.b) Show that the specific heat of the solid at low temperatures is proportional to $T^{3 / s}$. Note that while $s=1$ corresponds to the case of elastic waves in a lattice (phonons), $s=2$ applies to spin waves (magnons) propagating in a ferromagnetic system.
1.c) Compute the specific heat of the solid at high temperatures and compare your result to the law of Dulong and Petit (classical result, i.e. $C_{V}=3 N k_{B}$).

Problem 2

In the one-dimensional Ising model N localized spins are fixed to the different sites of an evenly spaced one-dimensional lattice that is placed in a constant magnetic field B. The spins, which are limited to only two values $\left(s_{i}= \pm 1\right)$, interact with the magnetic field and with each other through a classical spin-spin interaction. The Ising Hamiltonian for such a system is given by,

$$
H=-\mu B \sum_{i=1}^{N} \frac{1}{2}\left(s_{i}+s_{i+1}\right)-J \sum_{i=1}^{N} s_{i} s_{i+1} .
$$

Here μ denotes the strength of the spin coupling to the external magnetic field and $J>0$ is the ferromagnetic coupling constant. Note that the lattice is assumed to be periodic so that the $(N+1)$ th spin is equal to the first one. i.e. $s_{N+1} \equiv s_{1}$.
2.a) Show that the partition function of the system may be written as the trace of the N th power of a (2×2) matrix. That is,

$$
Z(N, T, B)=\operatorname{Tr}\left(\hat{\mathcal{Z}}^{N}\right)
$$

where the matrix elements of the (2×2) transfer matrix $\hat{\mathcal{Z}}$ are given by,

$$
\left\langle s_{1}\right| \hat{\mathcal{Z}}\left|s_{2}\right\rangle \equiv \exp \left(\beta \mu B\left(s_{1}+s_{2}\right) / 2+\beta J s_{1} s_{2}\right)
$$

2.b) Use the fact that the trace of a matrix is independent of the choice of basis to show that $Z(N, T, B)$ may be written as,

$$
Z(N, T, B)=\lambda_{+}^{N}+\lambda_{-}^{N}
$$

where λ_{+}and λ_{-}are the larger and smaller eigenvalues of $\hat{\mathcal{Z}}$, respectively.
2.c) Show that in the thermodynamic $(N \rightarrow \infty)$ limit the Helmoltz free energy of the system may be written as,

$$
\frac{1}{N} F(N, T, B)=-k_{B} T \ln \lambda_{+}=-J-k_{B} T \ln \left[\cosh (\beta \mu B)+\sqrt{\sinh ^{2}(\beta \mu B)+e^{-4 \beta J}}\right] .
$$

2.d) Compute the average magnetization M of the system, i.e. the number of spins up $\left(N_{+}\right)$relative to the number of spins down $\left(N_{-}\right)$, using the relation,

$$
M=-\left(\frac{\partial F}{\partial B}\right)_{N, T}
$$

and study its leading behavior in the limit of $\beta \mu B \ll 1$ and $\beta \mu B \gg 1$. Conclude that there is no spontaneous magnetization by showing that $M \rightarrow 0$ as $B \rightarrow 0$ for all temperatures.

