PHY 5524: Statistical Mechanics

February $23^{\text {th }}, 2011$

Assignment \# 7

(Due Wednesday March $2^{\text {nd }}$, 2011)

Start reading sections 5.4, 6.1-6.2 of Pathria's book (you will need only parts of them) and think of how to approach the following problems. We will discuss both problems in class on Monday, February 28.

Problem 1

Two non-interacting particles inhabit a potential well such that the orbital motion of each particle gives rise to an energy spectrum $E(n)=n \epsilon$, the $n^{\text {th }}$ energy level having a degeneracy $g(n)=2 n+1$. Consider spin- 0 particles obeying Bose-Einstein statistics, spin- $\frac{1}{2}$ particles obeying Fermi-Dirac statistics, and spin- s particles obeying MaxwellBoltzmann statistics. Assuming that the energy is spin-independent,
1.a) find the microcanonical partition function of the system when the total energy has the fixed value $E=N \epsilon$,
1.b) find the canonical partition function of the system when it is in contact with a heat reservoir at fixed temperature T, and
1.c) investigate the relationship between the partition functions obtained for the three types of statistics.

Problem 2

Consider a system of non-interacting indistinguishable particles whose states can be specified in the following way.
(i) There are single particle states, labelled by an index i, with energy ϵ_{i}, which will be degenerate (ϵ_{i} may have the same value for several values of i) for particles with non-zero spin.
(ii) Each multiparticle state corresponds to a set of occupation numbers $\left\{n_{i}\right\}$, where n_{i} counts the number of particles occupying the $i^{\text {th }}$ single-particle state and has values from 0 to M. Each distinct set of occupation numbers corresponds to a distinct state.

Use the grand-canonical ensemble, and consider separately the cases in which the system obeys Bose-Einstein, Fermi-Dirac, or Maxwell-Boltzmann statistics.
2.a) Obtain the probability distribution(s) $P_{i}\left(n_{i}, T, \mu\right)$ for finding n_{i} particles in a given single-particle state, labelled by i, when the system is in equilibrium with a particle reservoir with temperature T and chemical potential μ.
2.b) Making use of the probability distribution(s) found in 2.a), find the average occupation number $\left\langle n_{i}\right\rangle$ and express P_{i} as a function of $\left\langle n_{i}\right\rangle$.

