PHY 5246: Theoretical Dynamics, Fall 2011
September $9^{\text {th }}, 2011$
Assignment \# 2
(Graded problems are due Friday September $16{ }^{\text {th }}$, 2011)

1 Graded problems

1. A bead of mass m slides without friction in a uniform gravitational field on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity ω about its vertical diameter. Let θ be the position of the bead on the hoop measured from the lowest point.
(1.a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
(1.b) Find how the equilibrium values of θ depends on ω. Which are stable, which unstable?
(1.c) Find the frequencies of small oscillations about the stable equilibrium positions. Say something concerning the motion about the only stable equilibrium point when $\omega=$ $\sqrt{g / R}$.
2. Consider a stretchable plane pendulum, that is, a mass m suspended from a spring of spring constant k and unstretched length l, constrained to move in a vertical plane. Write down the Lagrangian and obtain the Euler-Lagrange equations.
3. Chapter 1, Problem 14 of your Textbook.
4. Chapter 1, Problem 21 of your Textbook.

2 Non-graded suggested problems

5. Chapter 1, Problem 15 of your Textbook.
6. Chapter 1, Problem 18 of your Textbook.
7. Chapter 1, Problem 22 of your Textbook.
