September 23^{rd} , 2011 Assignment # 4

(Graded problems are due Friday September 30^{th} , 2011)

1 Graded problems

- 1. A spherical pendulum consists of a bob of mass m attached to a weightless, extensionless rod of length l. The end of the rod opposed to the bob pivots freely (in all directions) about some fixed point.
 - (1.a) Set up the Lagrangian function in spherical coordinates and derive the equations of motion. How can you interpret the equation for ϕ , the angle of rotation about the vertical axis?
 - (1.b) Discuss the limiting case $\phi = \phi_0$, i.e. $\phi = \text{constant}$.
 - (1.c) Discuss the case $\theta = \theta_0$, i.e. the case of a *conical pendulum* (θ is the angle with respect to the vertical). Which condition needs to be verified for the pendulum to move at $\theta = \theta_0$? Find the frequency of small oscillations about $\theta = \theta_0$.
- 2. A particle of mass m starts at rest on top of a smooth hemisphere of radius a. Find the force of constraint, and determine the angle at which the particle leaves the hemisphere.
- 3. Chapter 2, Problem 14 of your Textbook.
- 4. Chapter 2, Problem 21 of your Textbook.

2 Non-graded suggested problems

- 5. Chapter 2, Problem 2 of your Textbook.
- 6. Chapter 2, Problem 4 of your Textbook.