PHY 5246: Theoretical Dynamics, Fall 2011

September 30^{th} , 2011 Assignment # 5

(Graded problems are due Friday October 14^{th} , 2011)

1 Graded problems

- 1. Consider a particle that moves in a logarithmic spiral orbit given by $r = ke^{\alpha\theta}$, where k and α are constants.
 - (1.a) Find the force law that allows the particle to move in this orbit.
 - (1.b) Determine r(t) and $\theta(t)$.
 - (1.c) What is the total energy of the orbit?
- 2. A particle of mass m moves in a potential given by $V(r) = \beta r^k$, where β and k are constants. Let the angular momentum be l.
 - (2.a) Find the radius r_0 of the circular orbit.
 - (2.b) If the particle is given a tiny kick so that the radius oscillates around r_0 , find the frequency, ω_r , of these small oscillations in r.
 - (2.c) What is the ratio of the frequency ω_r to the frequency of the (nearly) circular motion, $\omega_{\theta} = \dot{\theta}$? Describe the cases: $k = -1, 2, 7, -\frac{7}{4}$, for which the ratio ω_r/ω_{θ} is rational, that is, for which the path of the nearly circular motion closes back on itself. Can you roughly plot the orbits for these four cases?
- **3.** Chapter 3, Problem 11 of your Textbook.
- 4. Chapter 3, Problem 14 of your Textbook.

2 Non-graded suggested problems

- 5. Chapter 3, Problem 10 of your Textbook.
- 6. Chapter 3, Problem 19 of your Textbook.