
PHY 5524: Statistical Mechanics

March 21st, 2012

Assignment # 11

(Due Wednesday March 28th, 2012)

Problem 1

An ideal Bose gas that is in contact with a thermal/particle reservoir at a temperature
T and chemical potential µ obeys the following dispersion relation,

ε(p) = A|p|α ≡ Apα ,

where A and α are positive constants. In answering the following questions you might
ignore the degeneracy factor (i.e. assume g = 1).

1.a) Derive an integral expression for the number density (N/LD) of the system,
by using the following expression for the volume element of phase space in D-
dimensions,

dDp dDx

hD
= ΩD

LD pD−1 dp

hD
.

1.b) Keeping the number density fixed, discuss the limit µ → 0 (or z = 1) and
determine the onset (or lack) of Bose condensation as a function of α and D.
For those cases in which the system condenses, obtain the critical temperature
Tc and determine the fraction of particles in the condensate for T < Tc. Note
that you do not need to explicitly evaluate any integrals.

Problem 2

An ideal Bose gas that is in contact with a thermal/particle reservoir at temperature
T and chemical potential µ obeys the following non-relativistic dispersion relation,

ε(p) =
|p|2

2m
=

p2

2m
.

2.a) Compute the energy E as a function of µ (or z), T , and V .

2.b) Obtain an exact expression for the specific heat of the system in terms of the
Bose functions gν(z). Do not attempt to evaluate the integrals exactly.

2.c) Using Maple, Mathematica, or any tool of your choice, plot the specific heat of
the system as a function of T/Tc.



2.d) Show that the specific heat of the system vanishes as T 3/2.

2.e) Find an explicit value for the specific heat of the system at T = Tc in terms of
ratios of two ζ functions and show that it exceeds the classical value.

2.f) Finally show that the specif heat of the system approaches its classical value for
T � Tc.

Problem 3

This problem will not be graded. It is just for you to read more about the
experimental evidence for Bose-Einstein condensation and understand it. Attached to
this homework is the original paper that describes how Anderson, Ensher, Matthews,
Wieman, and Cornell (in 1995) were able to get a dilute gas of rubidium-87 to Bose-
condense. We will discuss some points of statistical mechanical interest during problem
session on Monday, March 28th. It would be very useful if you could read it before
then and try to estimate some of the quantities described in the following itemized
points (from J. P. Sethna’s book Entropy, order parameters, and complexity, Oxford
University Press).

Also, I suggest you visit the official BEC site of the University of Colorado at Boul-
der (http://jila.colorado.edu/bec/), where you will be able to learn everything
about this cool phenomenon!

3.a) Is rubidium-87 (37 protons and electrons, 50 neutrons) a boson or a fermion?

3.b) At their quoted maximum number density of 2.5 × 1012/cm3, at what tempera-
ture T predict

c do you expect the onset of Bose condensation in free space? They
claim that they found Bose condensation starting at a temperature of Tmeasured

c =
170 nK. Is that above or below your estimate? (Useful constants: h = 6.6262 ×
10−27 erg s, mn ≈ mp = 1.6726× 10−24 g, kB = 1.3807× 10−16 erg/K.)

3.c) The trap had an effective potential energy that was harmonic in the three di-
mensions, but anisotropic with cylindrical symmetry. The frequency along the
cylindrical axis was f0 = 120 Hz, so ω0 ≈ 750 Hz, and the two other frequencies
were smaller by a factor

√
8, i.e. ω1 ≈ 265 Hz. The Bose condensation was ob-

served by abruptly removing the trap potential and letting the gas atoms spread
out; the spreading cloud was imaged 60 ms later by shining a laser on them and
using a CCD to image the shadow (see Fig. 2 in the paper or the beautiful 3D
rendering on the webpage cited above). For your convenience, the ground state
of a particle of mass m in a one-dimensional harmonic oscillator potential with
frequency ω is ψ0(x) = (mω/πh̄)1/4e−mωx2/(2h̄), and the momentum-space wave-
function is ψ̃0(p) = (1/(πh̄mω))1/4e−p2/(2mh̄ω). The 3D wavefunctions are then
the product of the corresponding 1D wavefunctions along the three axes.

Will the momentum distribution be broader along the high-frequency axis (ω0)
or one of the low-frequency axes (ω1)? Assume that you may ignore the small



width in the initial position distribution, and that the positions in Fig. 2 reflect
the velocity distribution times the time elapsed. Which axis, x or y in Fig.
2, corresponds to the high-frequency cylinder axis? What anisotropy does one
expect in the momentum distribution at high temperatures (classical statistical
mechanics)?

3.d) Their Bose condensation is not in free space; the atoms are in a harmonic oscil-
lator potential. In the calculation in free space, we approximated the quantum
states as a continuum density of states g(E). That is only sensible if kBT is large
compared to the level spacing near the ground state. Compare h̄ω to kBT at the
Bose condensation point Tmeasured

c in their experiment

3.e) For bosons on a one-dimensional harmonic oscillator potential of frequency ω0,
it is clear that g(E) = 1/(h̄ω0); the number of states in a small range ∆E is the
number of h̄ω0s it contains. Compute the density of single-particle eigenstates,

g(E) =
∫ ∞
0

dε1 dε2 dε3 g1(ε1) g2(ε2) g3(ε3)δ(E − ε1 − ε2 − ε3) ,

for a three-dimensional harmonic oscillator, with one frequency ω0 and two fre-
quencies ω1.

3.f) Their experiment has N = 2 × 104 atoms in the trap as it condenses. By work-
ing in analogy with the calculation in free space, find the maximum number of
atoms that can occupy the three-dimensional harmonic oscillator potential in part
(3.e) without Bose condensation at temperature T . (You will need to know that∫∞
0 x2/(ex − 1) dx = 2 ζ(3) = 2.40411.) According to your calculation, at what

temperature THO
c should the real experimental trap have Bose condensed?


