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PHY 5524: Statistical Mechanics, Spring 2013

April 1st, 2013

Midterm Exam # 2, Solutions

Always remember to write full work for what you do. This will help your grade in
case of incomplete or wrong answers. Also, no credit will be given for an answer, even if
correct, if you give no justification for it.

Write your final answers on the sheets provided. You may separate them as long as
you put your name on each of them. We will staple them when you hand them in. Ask
if you need extra sheets, they will be provided. Remember to put your name on each of
them and add them after the problem they refer to.
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Part 1

Answer in one or two sentences the following questions.

(1.a) Write (in terms of the temperature T and the chemical potential µ) the average
occupation number of a single-particle state of energy ε for a system of bosons.
Write the same for a system of fermions.

The average occupation number for a single-particle state of energy ε is,

n(ε) =
1

eβ(ε−µ) − 1
for bosons ,

n(ε) =
1

eβ(ε−µ) + 1
for fermions .

(1.b) Explain briefly the meaning of the chemical potential. What is the range of values
allowed for the chemical potential of a fermionic system? What is the range of
values if the system is made of bosons?

From a thermodynamical point of view, the basic relation,

dE = T dS − P dV + µ dN

defines µ as,

µ =

(
∂E

∂N

)
S,V

,

i.e. as the energy cost of adding a particle at constant entropy (and volume).

At the same time, in statistical mechanics we have seen the chemical potential arising
as a Lagrange multiplier introduced to satisfy the constraint of a fixed number of
particles, when maximizing the number of microstates available to the system, i.e.
the entropy of the system. Since the statistical description of the microscopic degrees
of freedom of a system is related to its macroscopic thermodynamics properties, the
two definitions are equivalent and complementary in a thorough understanding of
thermo-statistic properties of physical systems.

For fermions, since the denominator of n(ε) never vanishes, the chemical potential
can assume any values, i.e. −∞ < µ < ∞. On the other hand, for bosons, we
need to impose that the denominator in n(ε) be positive, and, as a consequence, the
chemical potential is constrained to be strictly negative, i.e. −∞ < µ < ε0, where
ε0 is the minimal single-particle energy of the system, conventionally chosen to be
zero (ε0 = 0).
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Part 2

Consider a degenerate ultra-relativistic (mc2 � cpF ) gas of N non-interacting electrons
in a volume V . In this limit, the energy of an electron is related to its momentum by
ε(p) = c|p| ≡ cp.

(2.a) Find the chemical potential µ and the Fermi momentum pF at zero temperature as
a function of N and V .

The chemical potential at T = 0 is µ = εF = cpF where pF is obtained as usual
from a counting argument (taking g = 2), i.e.

N = g
V

h3

∫
d3p θ(pF − |p|) =

4πgV

h3

∫ pF

0
p2 dp =

8πV

3h3
p3

F ,

such that,

pF =
(

3N

8πV

)1/3

h ,

and,

µ(T = 0) = εF = cpF =
(

3N

8πV

)1/3

hc .

(2.b) Find the total energy E of the system at zero temperature as a function of N and
V .

The total energy at zero temperature is,

E =
8πV

h3

∫ pF

0
(cp)p2dp =

8πV

h3

cp4
F

4
=

3

4
NcpF ,

and the energy per particle is,
E

N
=

3

4
cpF .

(2.c) Calculate the pressure P at zero temperature and show that PV = E/3. (Hint:
use P = −∂E/∂V for a T = 0 Fermi gas).

As suggested we use,

P = −
(

∂E

∂V

)
N

= −
(

∂E

∂pF

)(
∂pF

∂V

)
=

pF

3V

(
3

4
Nc
)

=
1

4
N

cpF

V
,

and we find that,

PV =
1

4
NcpF =

1

3

(
3

4
NcpF

)
=

E

3
.



(2.d) Find the expression for the grand canonical potential Q at finite temperature. Ex-
press your result as an integral over energy, function of T , V , and µ. You do not
have to evaluate the integral.

The grand canonical potential at finite temperature can be calculated as,

Q(T, V, µ) = −kBT lnZ(T, V, µ)

= −kBT
8πV

h3

∫ ∞
0

p2 ln[1 + ze−βε(p)] dp

= −kBT
8πV

(ch)3

∫ ∞
0

ε2 ln[1 + ze−βε] dε ,

where, integrating by parts we get,

Q(T, V, µ) = −kBT
8πV

(ch)3

{
ε3

3
ln
(
1 + z e−βε

)∣∣∣∣∣
∞

0

+ β
∫ ∞
0

ε3

3

dε

z−1eβε + 1

}

= −1

3

8πV

(hc)3

∫ ∞
0

ε3dε

z−1eβε + 1
.

(2.e) Find an expression for the total energy E of the system at finite temperature.
Express your result as an integral over the energy, function of T , V , and µ. You do
not have to evaluate the integral.

The total energy E at finite temperature can be calculated as,

E =
8πV

h3

∫ ∞
0

ε(p)
p2dp

eβ(ε−µ) + 1
=

8πV

(hc)3

∫ ∞
0

ε3dε

eβ(ε−µ) + 1
.

Notice that the same result could be obtained as,

E = −
(

∂ lnZ
∂β

)
z,X

,

where z and β are treated as independent variables.

(2.f) Show that the relation PV = E/3 also holds at finite temperature. (Hint: integrate
your expression for Q by parts).

Since Q = −PV we obtain that,

PV =
1

3

8πV

(hc)3

∫ ∞
0

ε3dε

z−1eβε + 1
=

E

3
.


