Cosmology and Large Scale Structure

Prof. Kevin Huffenberger Dept. of Physics

Expanding universe & the Big Bang

Hubble Ultra Deep Field

In Fornax, $11.0 \operatorname{arcmin}^2$

I mm² @ I m

13 million such patches to cover sky.

CMB fluctuations

~ few hundred μK around mean T

Probing gravitational potential

Cosmic Web

On the largest scales, single galaxies, groups, and clusters are most common along filamentary structures called the **cosmic web**.

Galaxies tend to avoid the **voids**.

Structure is natural consequence of gravitational collapse from Big Bang initial conditions, and can be simulated on a computer.

Cosmic web

Figure 24-23 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Cosmological matter simulation

Figure 27-15 *Universe, Eighth Edition* © 2008 W.H. Freeman and Company

Leo cluster

~ 100 Galaxies 330 Mly away

Coma cluster

~ 1000 galaxies 320 Mly away 10^14-10^15 solar masses

Virgo cluster

~ 1500 Galaxies 54 Mly away 10^15 solar masses

The Dark-Matter Problem

- Visible mass in *galaxy clusters* too small for galaxy motions.

Need large amounts of **dark matter**.

Gravitational lensing by a cluster gives information about the distribution of matter in the foreground cluster.

Luminous matter insufficient to explain galactic motions in clusters

How gravitational lensing happens

Figure 24-30a Universe, Eighth Edition © 2008 W. H. Freeman and Company

Lensing

All of these blue arcs are images of the same distant galaxy.

Figure 24-31 Universe, Eighth Edition © 2008 W.H. Freeman and Company

Clusters with strong lensing arcs

Mass map

0

Coe et al 2010

Lensing mass map

weak lensing mass contours (Clowe in prep.) **Remember this one!**

СМВ

(Hu & Okamoto 2001)

CMB lensed

(Hu & Okamoto 2001)

Cluster X-rays

The large accumulation of matter in a galaxy cluster makes a very **deep gravitational potential well**.

Gas falls in from outside, collides with cluster gas, heats to **millions of degrees**.

Glows in X-rays.

X-rays observed by satellite

XMM-Newton ROSAT Integral...

Coma cluster

Virgo cluster

"Bullet cluster"

0.5 Mpc

z=0.3

Bullet cluster

Composite image of galaxy cluster 1E0657-56 R I V U X G showing visible galaxies, X-ray-emitting gas (red) and dark matter (blue)

Figure 24-32a Universe, Eighth Edition © 2008 W.H. Freeman and Company

Bullet cluster model

A model of how the gas and dark matter in 1E0657-56 could have become separated

Figure 24-32b Universe, Eighth Edition © 2008 W. H. Freeman and Company

Sunyaev-Zeldovich effect

SZ distorts CMB blackbody

Ground / balloon based telescopes

Atacama Cosmology Telescope

QUiet telescope

Boomerang

South Pole Telescope

From ACT

Coma in SZ, by Planck

Planck early data: ~30 New cluster candidates, ~ 20 confirmed

ACT + SPT (to date): ~ 50-60 confirmed