PHY 5667 : Quantum Field Theory A, Fall 2015

$$
\text { September } 24^{\text {th }}, 2015
$$

Assignment \# 4
(due Thursday October $8^{\text {th }}$, 2015)

1. Under a Lorentz transformation (Λ) Dirac (and Majorana) fields transform as,

$$
\psi^{\prime}(x)=D(\Lambda) \psi\left(\Lambda^{-1} x\right)
$$

where, denoting by $S^{\mu \nu}$ the generators of Lorentz transformations in the Dirac spinor representation, $D(\Lambda)$ for an infinitesimal transformation can be written as,

$$
D(\Lambda)=1+\frac{i}{2} \delta \omega_{\mu \nu} S^{\mu \nu}
$$

1.a Find the form of the generators $S^{\mu \nu}$.
1.b Find in this representation the explicit form of a finite rotation by angle θ about the z axis.
1.c Find in this representation the explicit form of a finite boost by rapidity η in the z direction.
2. Show that, for spinors $u^{s}(p)$ and $v^{s}(p)$,

$$
\sum_{s=1,2} u^{s}(p) \bar{u}^{s}(p)=\gamma \cdot p+m
$$

and

$$
\sum_{s=1,2} v^{s}(p) \bar{v}^{s}(p)=\gamma \cdot p-m
$$

3. Prove the Gordon identity:

$$
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{\left(p^{\prime}+p\right)^{\mu}}{2 m}+i \frac{\sigma^{\mu \nu} q_{\nu}}{2 m}\right] u(p)
$$

where $\sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right]$ and $q=\left(p^{\prime}-p\right)$.
4. Problem 3.4 of Peskin and Schroeder's book.
5. Problem 3.6 of Peskin and Schroeder's book.

