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/r’; Introduction

The purpose of this paper is to discuss recent work on the renormalization group and its
applications to critical phenomena and field theory. These ideas are illustrated using the other
recent idea of defining critical phenomena and field theory in a space of dimension 4 —¢ (space-
time dimension 4 —¢ for field theory) and expanding in powers of €. The emphasis is on critical
phenomena; basic ideas will be stressed rather than special results. The presentation is incomplete;
this review is not a substitute for current literature. The first section is general and philosophical.
Most of the subsequent sections are more pragmatic, being concerned with specific problems and
calculations.

Associated with this section there is a list of recent references on the renormalization group
and the € expansion.

For a precise list of topics discussed in this paper, see the contents.

1.1. The renormalization group and coherence problems in physics

In this section a philosophical discussion of the renormalization group will be given. (One
should reread this introduction after studying the rest of the paper.) Toward the end of the first
section we begin the review of critical phenomena.

The renormalization group is a method for dealing with some of the most difficult problems
of physics. These problems include relativistic quantum field theory, critical phenomena, the
Kondo effect [e.g. 1-7] and others. These problems are all characterized by involving a large
number of degrees of freedom, in an essential way.

Most of the problems one deals with in physics involve a very large number of degrees of
freedom. For example, a crystal, liquid, or gas in macroscopic quantities involves more than 1023
electrons, and each coordinate of each electron is a degree of freedom.

In contrast, most theoretical methods work only when one has only one independent variable.
i.e. only one degree of freedom. For example, consider the Schrddinger equation for a wave
function y (x, ¥, z) for one electron. It is infinitely easier to calculate ¥ if one can separate
variables in the Schrodinger equation (e.g., write Y = ¢ () ¥,{0)¥3() in spherical polar
coordinates). It is obviously hopeless to compute a wave function for 10%® electrons without
extraordinary simplifications, justified or otherwise.

Under normal circumstances the 102* or so degrees of freedom can be reduced enormously.
The intensive or extensive character of observables (energy is extensive, density is intensive)
allows one to reconstruct the properties of a macroscopic system given only a microscopic sample
of it. Thus a liquid of only 1000 atoms, say, would probably have approximately the same energy
per unit volume and density as the same liquid (at the same temperature and pressure) with 1023
atoms.

How far can one reduce the size of a gas, say, wathout qualitatively changing its properties?
The minimum size one can reach without change is called the correlation length. The correlation
Iength_‘;’_depends on the state of the system. For a gas ¢ depends on pressure and temperature. In
favorable circumstances £ is only one or two atomic spacings. When § is this small there exist a _
variety of methods for calculating properties of the system: virial expansions, perturbatton
expansions, Hartree-Fock methods, etc. These methods involve a variety of approximations; but
they have one feature in common. They all assume that the properties of matter in bulk can be
related to _tml_lgpropernes of small clusters of atoms. They involve further assumptions because
even a cluster of only three atoms involves too many degrees of freedom to be soluble without
considerable simplification.
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In special cases the correlation length is much larger than the atomic spacing. The critical point

| marking the onset of a phase transition is a prime example. Liquid-gas transitions, ferromagnetic
transitions, order-disorder transitions in alloys, etc., all exhibit critical points for special values of
the thermodynamic variables. (The liquid-gas critical point occurs for critical values T. and P, of
temperature and pressure.) Precisely at the critical point, £ is infinite; near the critical point £ is
large.

There are a class of problems, including critical phenomena, which are characterized by having
very many degrees of freedom in a region the size of a correlation length. “Very many” means
not just 3 or 4, but hundreds or millions if not an infinite number. Other problems of this type
besides critical phenomena are the Kondo problem (a magnetic impurity in a metal), the binding
of large molecules, and the entire subject of relativistic quantum field theory In the case of a
quantum field, say $(x), the field ¢ at each point x is a separate degree of freedom, so any region
of finite size contains an infinite number of degrees of freedom. The correlation length of a _
quantum field is usually the Compton wavelength of the lowest mass particle. In the case of

| quantum electrodynamics it is the electron Compton wavelength (107! cm) rather than the
photon Compton wavelength (=) which acts as the correlation length in practice. One can
relatively easily relate quantum electrodynamics in a box of size >107!! ¢m to quantum electro-
i dynamics in all space. Boxes of size €107'! cm cause gross distortions of the interactions of
lelectrons and photons. _

The problems listed above are all noted for their intransigence. The binding of molecules is
hardly better understood today than it was in 1932. There has been fitful progress in critical
phenomena over the last 70 years. There has been sensational progress in calculating quantum
electrodynamics, but very little progress in understanding it: and strong interactions are neither
calculable nor understood. The Kondo problem has only recently been studied, and may be closer
to solution [2, 3, 7].

;  Studies of renormalization in quantum field theory and critical phenomena in statistical

{ mechanics both suggest that the behavior of systems with many degrees of freedom within a |
;' correlation length is qualitatively different from those with only a few degrees of freedomina |
' correlation length. The systems we are interested in are usually defined by means of a -
- Hamiltonian, and one would normally have expected that the behavior of the system is deter-

* mined mainly by the type of interactions present in the Hamiltonian and the strengths of the

© corresponding coupling constants. This is certainly the case when § is small. However, in the

problems discussed here, where many degrees of freedom are behaving cooperatively, it appears |
that the behavior of the system is determined primarily by the fact that there is cooperative |
behavior, plus the nature of the degrees of freedom themselves. The interaction Hamiltonian
plays only a secondary role. Thus, in critical phenomena there has developed the notion of
universality, i.e. that all interaction Hamiltonjans show the same critical behavior. The idea of ,i{
universality originates in the “law of corresponding states™, which is the hypothesis that all fluids
and gases have the same equation of state apart from a renormalization of length and energy scales.
For a comparatively recent reference on this law see Guggenheim [8]. Recently the idea of
universality has been formulated more generally to relate critical behavior in different systems

with arbitrary interactions. See for example Kadanoff [9]. Universality will be discussed further
below and in section 12.

The renormalization group approach has two objectives. The first 1s the practical one of
simplifying the task of solving systems with many degrees of freedom contained within a correla-
tion length. The basic idea is the same as in hydrodynamics. In hydrodynamics one introduces
new variables such as the density p(x) which represents an average over the original microscopic

degrees of freedom. All microscopic fluctuations are eliminated in the hydrodynamic equations;

|
i
]
|
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p(x) is supposed to show only macroscopic fluctuations. What this means in effect is that the
hydrodynamic degrees of freedom are the values of p(x) at macroscopically separated points.
Thus, there are far fewer hydrodynamic degrees of freedom per unit volume than original micro-
scopic degrees of freedom per unit volume.

The renormalization group approach is similar to the hydrodynamic approach in that again the
original microscopic degrees of freedom are replaced by a smaller set of effective degrees of
freedom. This is done in steps; in each step the linear density of degrees of freedom is reduced by
a factor 2. ' '

. 4

s ot mardo F o -

\175:00 original system was a System of spins with spacing Lo. The new effective degrees of freedom might -/cc o'ou

be spins with spacing 2L,. Alternatively the new degrees of freedom might be a magnetization

density M(x) depending on a continuous variable x (just as hydrodynamics replaces discrete atoms

by a density p(x)). Then to limit the degrees of freedom one imposes the restriction that M(x)

only contains fluctuations with wavelengths greater than 2L,. These ideas will be formulated

more precisely in later sections of this review. (The factor of 2 is arbitrary. In particular, it is

often useful to change the density of degrees of freedom only infinitesimally instead of by a

factor 2. See later sections.) o
This reduction in the degrees of freedom is carried out repeatedly. To start with, the spacing . s

of degrees of freedom is Lo ; after | step the spacing is 2L,, after 2 steps the spacing is 4L,,etc.. . 2Ly il

One proceeds with further steps until the separation of effective degrees of freedom is of order ==

the correlation length &. In each step one has to construct an effective interaction for'the effective.tri o Trs

degrees of freedom, just as in hydrodynamics one has to construct the hydrodynamic equations (v 777/ Te

for p(x). The simplification of the renormalization group lies in the hope that these effective Lavtler Bis

ritiet

i interactions ¥(,, 3(,, etc. a&e' local interactions, i.e. the interactions should couple directly only  +i¢ e

nearby degrees of freedom. This of course assumes that the initial interaction was local, but this

is true for the problems of interest here. Thus we assume that the range of interaction in the .
initial interaction is of order Lo even when £ > L,. The hope is that the range of interaction in gou lage

e ek e I,! dg ‘ii(fs‘;v
f}f-' L € e

range of interaction is & even for 3(;, which would be disastrous for the renormalization group i ,-2¢°° "¢~
approach. This disaster is avoided in the examples that have been worked out so far, but may bea .
problem in other cases.

If it is true that the range of interaction in ¥, is only of order 2L,, then one can imagine
(again by analogy to hydrodynamics) that the coupling constants in J(, gg_qm_b_fefdgt_g_gﬁir_lm@"by
studying the behaviour of the system confined to a region of size (of order) 2L, ; i.e. one does
not have to discuss regions of size £. Thus one no longer has a huge number of degrees of freedom
to worry about. To determine the coupling constants in ', requires a larger region of size 4L,.
However, the idea here is to determine JC; starting from ¥, whose degrees of freedom are spaced
by 2L,, instead of the original interaction #, with spacing Lo. Then one still has a limited
number of degrees of freedom to consider. In the same way one constructs K3 from K,, ¥, from
(5, etc., until one obtains the 3, for which 2"L, ~ £. At this stage one has only a few degrees of
freedom per correlation length and the problem can hopefully be solved by other methods. In
general, when calculating J(; one has to consider 2 region of size 2/L,, but one starts from ;- 15\

(%)

whose degrees of freedom have spacing 2/ 'L, . Thus for any [ one can consider a region contain-

ing only a few effective degrees of freedom. S
Unfortunately, the general renormalization group techniques do not reduce the problem to

1 degree of freedom. One can easily imagine that one needs to consider 60 or more effective

degrees of freedom when determining #; from ;. Suppose for example that the effective

degrees of freedom in ¥, are discrete spins, and that one has to discuss a three-dimensional

i< oy cogldu T e the Rt Trew o, trravee doy cortoled 7 Sruely Fld
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cube of width 4 spins: this cube will contain 64 spins. This is not very practical. One must
simplify the calculation further so that ¥; can be computed from #(;-, using only one degree of
freedom. The practical applications of the renormalization group described in later lectures
involve either special circumstances (the case d = 4 — e with small €) or crude approximations

3 (the “approximate recursion formula™) such that only one degree of freedom is needed for the

calculation of ¥(;. (See, however, the supplemental list of references.)
(chHJ aL tect i

£, The second aim of the renormalization group approach is to explain how the qualitativ ures

v { 4
Mf :z Lfg; f ’Q“‘ ?f, ff,:,of cooperative behavior arise. In the renormalization group framework, these quahtatwe features

i ot (oo ievot . result from the iterative character of the renormalization group. Namely, there is a transformation
jrhesoor or . g ] which converts ¥, to 3(;, 3, to ¥(,, etc. The transformation is the same whether one is con-
structing (; from }CO or ¥, from ¥, ; in each case one is thinning the degrees of freedom by a
factor 2. The only difference is in the lengthscale (L, versus 2L,) wh1ch is easily transformed

s ‘away. So one has a transformation T which is to be applied repeatedly:
T(}CO):J{'M T(}C ):}Cg, T(J’Cg)zg{';; efc. (I I)
This transformation is to be iterated.n times where 2"L, is of order& When £ is large, the number
of iterations is large. 2
When one has a transformation 7 which is iterated many times, the simplest result we can
obtain is that the sequence &'C; approaches a fixed point of 7, namely an interaction J(* satisfying
f(:}c*) =%, } (1.2)
Ve ......

fe™ ic (1o bt oot ? A fixed point of a transformatlon is a property of the transformation  itself. That is, to find
im,c’“‘z' af Ho.rie poss1b1e fixed point Hamiltonians #* one must solve the fixed point equation (1.2). These_‘r )
- equatlons make no reference to the choice of initial Hamiltonian ¥{,, 7
The pos31ble types of Cooperat:ve beh;mor in the renormalization group picture, are deter-

~"("”r'c ]}-, Tehevoormined by the possible fixed points #* of 7. Suppose for example that there are three fixed points _

olt e yiu i mial “d J0E, J{'B, and J'CC Then one would have three possible forms of cooperative behavior. If a particu-
pourll gixes pS system has an initial mteract1on ¥y, one has to construct the sequence ¥(,, ¥(,, etc. in order to
find out which of %, H§, or I(} gives the limit of the sequence. If 5} is the limit of the -
sequence, then the cooperdtive behdvior resulting from ¥ will be the cooperative behavior
determined by # }. In this example the set of all possible initial interactions }Co would divide into
three subsets’ (called “domams“l one for each fixed point. Umversahty would now hold separately
for each domam See section 12 for further discussion.

' Th1s is how one derives a form of universality in the renormalization group picture. It is not so
bold ‘as previous formulations [9]. Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
“has to define domains of initial Hamiltonians associated with each fixed point, and only within A,
given domain is the critical behavior independent of the initial interaction.

£ There is no a priori requirement that the sequence ¥; approach a fixed pomt for! = oo, In
) principle the sequence for large / could show limit cycle, ergodic or turbulent behavior; in such
cases it would be difficult to do much calculation. See [10] for an illustration of ergodic and

&
-
=]
"'{'S"If’"‘.‘,‘ﬁ ~

a

that €, for Iarge n is a smooth function of the parameters m }CO The trouble is that small changes
in the parameters in }(, tend to be amphﬁed or deamphﬁed by the transformation r, and WhE]’_l T

is iterated many times these amphﬁcahon or deamplification factors become very Iarg (one

would guess of ordEr\/_ n from random walk arguments). Thus if u, is a coupling constant in ¥,
one would expect large ranges of 1y which are deamplified (3(, depends very little on ug)

|
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separated by small ranges of u, which are amplified (¥, changes very rapidly with uy). In the case
that all sequences approach fixed points, the ranges of uy for which amplification occurs are those
values of u, for which ¥, is near the boundary between two domains, while deamplification
occurs when ¥, is well inside a particular domain.
In summary, the basic ideas of the renormalization group are, first, to generate a sequence of

effective local interactions 7(;. That is, if the spacing of degrees of freedom in (; is a; then the
interactions should have range a; not £; and by choosing a;., = 2a; one should be able to construct
|34, from J(; considering regions of size about a;,, rather than £. Secondly, the existence of a

"transformation 7 which is iterated repeatedly to construct J(; from I(, suggests that the nature of
- 3¢, for large [ will be largely or wholly determined by 7 itself rather than ,, thereby leading to at
| least a limited form of universality.
=——To conclude this introduction we outline briefly the history of the renormalization group
method. This discussion is not complete and probably not very accurate. Landau [11] proposed
a hydrodynamic approach to critical phenomena in the late 1930’s. His specific theory gave the
same results as earlier mean field theory, which is experimentally false. However, the renormaliza-
tion group approach is best seen as a more sophisticated realization of Landau’s ideas.

The specific ideas of the renormalization group approach appeared in two papers of the early
1950, in connection with quantum field theory. A formulation of the renormalization group
transformation 7 was given by Stueckelberg and Petermann [12]. Gell-Mann and Low [13],ina
remarkable paper, discussed the idea of a fixed point of the transformation and some of its o

would corresp_m}dft'o all (sufficiently small) values of the renormalized charge e. This is the

amplification effect discussed earlier. In the limit of infinite cutoff (i.e. in the limit of infinitesimal

infinite amplification, e.g. a continuous range of values of e corresponding to one value of e,. The
recipes for renormalization group calculations were reviewed in Bogoliubov and Shirkov [14].

The early work on the renormalization group had two defects. It had no calculable experimental
consequences, so no one had to take it seriously. Secondly, the intuitive ideas were encased in a B
thick shell of formalism; it has required many years to peel off the shell. S

In the 1960°s an extraordinary paper by Kadanoff [15] on critical phenomena contained an
intuitive discussion of the idea of thinning the degrees of freedom. Kadanoff assumed that one
could discuss blocks of spins in a ferromagnet as if they were single effective spins with very
simple interactions. Kadanoff showed that this assumption | implied a set of “scaling laws” relating
critical exponents which had been postulated earlier by Widom and others (see [16] for
references). Kadanoff did not have a shred’of justification for his assumption; the importance of
his work was that it provided a simple but ideal picture of what an effective degree of freedom
would be and how it would interact. This picture is surely unrealizable in practice. What one
doeslis try to come as close as one can to this picture. One tries to define effective degrees of
freedom which are roughly describable as block spins, and interactions which have a simple form
(not necessarily Ising-like), at least approximately. In summary, Kadanoff has defined a much
more profitable goal to work towards than the elaborate formalisms of the earlier work..

The differential equations of the renormalization group resurfaced in the Kondo problem in the
work of Anderson et al. and others [2—7]. Anderson [4] was the first to derive these equations
explicitly using the idea of reducing the number of degrees of freedom. The previous field theoretic
work had a much less transparent justification.

Until recently all formulations of the renormalization group involved a transformation 7 acting
on a very restricted space of interactions. Gell-Mann and Low considered the standard electro-

dynamic interaction with the charge e, as the only free parameter. Kadanoff allowed only

implications: they showed that a unique value of the bare charge e, in quantum electrodynamics ¢

spacing of the original degrees of freedom) 7 is iterated an infinite number of times. Thus one canoct

P Aty s st g
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nearest neighbor Ising-type interactions. A heavy price is paid for this restriction: one can only
define 7 when the solution of the problem is known. For example, Gell-Mann and Low define r
in terms of the exact electron propagator, which is not known until electrodynamics is solved.
Thus there is only a limited possibility of using the renormalization group to help in solving the
theory. A study of the fixed source model of the nucleon, in simplified form, showed that this
problem disappears if one is. willing to let #(; contain all possible interactions, not just one or two
[17]. It is then relatively easy to construct examples of the transformation without solving the
theory (see later lectures). Now one pays a different price: one cannot keep track of all possible
interactions at once because there are too many of them. So one has to have only a few dominant
interactions if the renormalization group approach is to be practical. There can be many more
interactions with small coupling constants, as long as these can be handled by perturbation
methods. This was precisely the situation in the fixed source model. It is also true in the examples
discussed later in this review, but it is not at all certain to be true in general.

Current work on the renormalization group will be summarized below.

There have been other ideas for dealing with problems such as critical phenomena. We mention
specifically the Migdal-Polyakov bootstrap approach to critical phenomena and field theory
[18—26] and the Johnson-Baker-Willey formulation of electrodynamics [27—-29] because these
ideas are sometimes confused with the renormalization group approach. There is no transformation
like 7 in either the Migdal-Polyakov or Johnson-Baker-Willey theories; these authors make no
attempt to thin the degrees of freedom. So their ideas cannot be classified as renormalization
group methods. In place of consciously reducing the number of degrees of freedom, these authors
substitute a prayer that an infinite sum of graphs can be replaced by a calculable subset. See
below for further comments.

Another recent development is the Callan-Symanzik equations [30, 31 |. Closely related to the
original GeIIéMann{Low formulation of the renormalization group, these equations are proving to
be valuable tools for analyzing the short distance behavior of Feynman graphs [e.g. 32]. At
present the Callan-Symanzik equations are too formal to be practical outside of perturbation
theory. They will remain so unless some intuition can be added the way Kadanoff added an
intuitive picture to the renormalization group approach.

1.2. Current references

Current literature on the renormalization group will now be classified, briefly. See also the
supplemental list at the end of this review. First, papers on critical phenomena will be listed. The
approximate renormalization group recursion formula is derived in [33]. Numerical solutions
of the recursion formula for the Ising case are in [33]. Grover, Kadanoff, and Wegner solved the
Heisenberg case numerically [34]. Grover solved the X—Y model numerically [35]. Baker [36]
and Dyson [37] have described “hierarchical” models for which the recursion formula js exact,
Golner [38] has proposed a form of the recursion formula which gives a non-zero value of 5 (n
is defined in section 2). Golner [39] has solved the recursion formula for an example with three-
fold symmetry. The € expansion-about 4 dimensions was developed by Fisher and Wilson [40]
A calculation of the scaling properties of all perturbations about the critical point, within the
€ expansion, is given by Wegner [41]; Fisher and Pfeuty [42] investigate slightly anisotropic
Heisenberg models. The recursion formula has been applied to tricritical points (such as
3He—%He mixtures) by Riedel and Wegner [43]. The methods of ref. [33] have been applied to
the problem of phase separation by Langer and Bar-on [44].

The Feynman graph method for calculating critical exponents in powers of € (section 8) was
developed in [45]. It was applied to the “excluded volume™ problem by De Gennes [46].
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Nickel [47] has calculated the exponent +y to order e?. The € expansion for the equation of state
near the critical point has been obtained by Brézin, Wallace and Wilson [48], [49]. The charged
and neutral Bose gas is discussed by Ma [S0]. Exponents in the presence of long range forces are
computed by Suzuki [51, 52] and Fisher, Ma, and Nickel [53].

The Gell-Mann—Low formulation of the renormalization group was used by Larkin and
Khmel'nitskii [54] to discuss the logarithmic behavior of critical phenomena in four dimensions
(e = 0) and uniaxial ferroelectrics in three dimensions. De Pasquale, Di Castro and Jona-Lasinio
[55—57] and Migdal [58] have discussed qualitative implications for critical phenomena of the
Gell-Mann—Low formulation. Di Castro [59] has used the Gell-Mann—Low theory to confirm
some results of [45]. Wegner [60] has given an extensive discussion of all kinds of perturbations
about the critical point with emphasis on corrections to the scaling laws, using the modern
formulation (see also section 12). Several questions have been discussed by Hubbard [61]; the
problem of liquids is discussed by Hubbard and Schofield [62]. The Gaussian model with long
range forces is discussed by Niemeijer and Van Lesuwen [63].

The work of Dyson [37], Larkin and Khmel'nitskii [54] and Di Castro and Jona-Lasinio
[55—57] preceded the work described in this report. For a good survey of critical phenomena
just prior to the new developments, see the entire volume of ref. [56]. The new work is
summarized briefly in [64].

Many of the references listed above report specific applications of the renormalization group
approach which are omitted from this review.

There is another (earlier, but incomplete) paper (set of lecture notes) on the renormalization
group [65]1. They concern the ideas of the modern renormalization group approach with less
emphasis on calculation than the present report.

The close mathematical analogy between critical phenomena and quantum field theory has
been emphasized by Gribov and Migdal [66, 67] and Polyakov [68—70] in terms of Feynman
diagrams; Moore [71] compares the Feynman path integral to the partition function; Suri [72]
makes the connection using the transfer matrix formalism of statistical mechanics (see
section 10).

For a review of work on the renormalization group in quantum field theory using the
Gell-Mann—Low formulation see [73]. For a field theoretic formulation of the approximate
recursion formula, see [74]. See likewise Golner [75].

The idea of a noninteger dimension d and an expansion about d = 4 is a useful theoretical device
without physical significance: the physics is only in integer dimension d. Nonintegral dimensions
will be introduced by analytic continuation in renormalization group equations (section 4) or
Feynman graphs (section 8). The idea of nonintegral dimensions in statistical mechanics is not
new: see [76] for example. More recently, Widom has studied | + e dimensions [77]. Noninteger
d has been used recently in field theory to regularize Feynman graphs [78—80]; a thorough
discussion is given in ‘t Hooft and Veltman [78]. Quantum field theory for noninteger d is
discussed in [81] where the € expansion is used to compute anomalous dimensions (see also
section 9).

Another expansion technique in both critical phenomena and field theory is the 1/N expansion
where N is the number of internal components of a spin (critical phenomena) or the number of
internal components of a quantum field. Stanley [82] discovered that the limit N = oo for a spin
system reduces to the soluble spherical model of Berlin and Kac [83]. This was discussed further
by Kac and Thomson [84]. Techniques for expanding exponents in 1/N were discovered by Abe
[85] and Wilson [81]. They have been exploited by Abe and Hikami [86], [87], Suzuki [51],
(521, Ma [50], [88], Fisher et al. [53], and Ferrell and Scalapino [89]. Brézin and Wallace [90]
and Suzuki [52] have computed the equation of state using this expansion. The expansion is
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te probably not very useful for N = 1 to 3, the cases of most physical interest. This is because the €
:d expansion (valid for any N) has denominators of the form N + 8 (see section 8) suggesting the
re I/N expansion is valid only for N > 8. However it is instructive to study models with large NV as

models in their own right. The application of the 1/N expansion to field theories in less than four
space-time dimension is discussed in [81].

ns There is a special situation where the problem of a large number of degrees of freedom within

) a correlation length is trivial, namely free field theories (quantum field theory) or the Gaussian

e model in statistical mechanics (see section 3). These theories are trivial because the interaction
can be diagonalized in momentum space. There exist a variety of graphical methods for treating

ns small perturbations about these trivial theories. The € expansion makes it possible to do successful

calculations in critical phenomena by perturbation methods. There are now a bewildering variety
of methods for setting up the € expansion: besides the methods discussed in this paper, De Castro
[59] has used the old Gell-Mann—Low methods and Mack [26] has used the Migdal—Polyakov
approach. The new renormalization group method is emphasized in this paper because of its
potential for handling nonperturbative problems (see refs. [33, 60] and sections 12 and 13). By
comparison, for problems which cannot be reduced to a few diagrams, it is hopeless to calculate
anything using the Gell-Mann—Low theory. Even for questions of principle the Gell-Mann—Low
theory is not satisfactory because it involves assumptions which are technical and not physically

[PE

p motivated [73]. It is hard to believe these assumptions are always valid, although they appear to
be true order by order in a diagrammatic expansion [e.g. 73]. The Migdal—Polyakov bootstrap
n (with conformal invariance assumed) is more interesting although not very practical unless only a

few diagrams are important. For field theorists an interesting and unique feature of the Migdal—
3 L Polyakov bootstrap is Polyakov’s “‘stream unitarity” [91].
i ;”;M ’;l"’; —>  The next seven sections are concerned with critical phenomena. This is partly because this is
foviiscirny, the most successful application of the renormalization group approach. However, critical
] be*wern 2~ 0 phenomena provides the simplest and clearest example of the problem of many degrees of
broacls ¢us| ¢y freedom within a correlation length. The experiments are precise and relatively unambiguous and
el sl Lroiticie test the fundamental aspects of the theory. The simplest models like the Ising model have no ||
complications other than the basic problem of the large correlation length. The study of critical !
phe'r'lbr'nena gives one an overview of the problem of many degrees of freedom within a correlation
) length that cannot be obtained any other way and is essential to understand the field theoretical
levice applications discussed in sections 9—13.
P There are excellent reviews of experiment and previous theory of critical phenomena (see
section 2); this report will be devoted to explaining the renormalization group approach. Enough
t background will be supplied so one can read this review without previous background in critical
eger phenomena, but the relation of the renormalization group to experiment and prior theory will
not be discussed in detail.
Sections 11, 12, and 13 are of importance to statistical mechanics; but the main interest from
section 9 on is quantum field theory. They depend heavily on the previous sections. They are part

of a series of papers [92, 73] explaining the renormalization group approach as an alternative to

—

1sion canonical field theory. The ultimate aim is to produce a field theory of strong interactions, but
of breakthroughs are still required both in fundamental theory and techniques of calculation before
spin the aim can be realized. Meanwhile, the study of the renormalization group approach has pro-
ther vided, as a byproduct, useful ideas which have been incorporated into more phenomenological
Abe approaches to strong interactions [92, 93]. Particle physicists who have studied the ideas of this
t1, paper find that it takes considerable effort over a period of time to understand them; they

[90] provide a stimulating point of view on the problems of quantum field theory: and the outlook

tor the future of these ideas is at present uncertain. See section 14.
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15 Elementary facts about the Ising model

/

Let us begin by discussing the elementary features of the Ising model. (For the history of the
[sing model, see [94].) The model has served in the past as a description of ferromagnetism but
probably also constitutes a model of relativistic field theory. We imagine a cubic lattice ofpoiﬁfs,
n=(ny,n,, " n3) in three dimensions, say, and attach to each lattice point a spin vanable Sy WE
suppose that s, takes on only the discrete values * 1, so that it is not treated as a full- ﬂedged ?

3-dimensional quantum mechanical spin variable. If the lattice consists of N sites, the system

clearly possesses 2V possible states. Each of these spin configurations will have a particular
energy. If only nearest neighbor spin-spin interactions are allowed the Hamiltonian is,

‘3{519.&:: torlizorad apc
H==JY D Susnst / (1.3)
n ]

where {i}are the unit vectors for each axis on the lattice (fig. 1.1). Furthermore, if the lattice is

e ® ® ° °
' © ® ° °
A
A
12
e ° o —Smo °
® ° e e °

Fig. 1.1. A two-dimensional lattice,
with unit vectors for each axis.

emersed in an external magnetic field B, the Hamiltonian acquires an additional term,

H:—Jzzsnsmf'*'ﬂstn {1.4)

where u is a certain gyromagnetic ratio. The thermodynamics of the system-can be obtained from
the partition function '

P Z o HIKT (1.5)

{comﬁgurations}

where the sum runs over all possible spin configurations of the lattice, T is the temperature, and &
is Boltzmann’s constant. It is also convenient to introduce a free energy F,

[F=—kTln Z| (1.6)
Consider also the magnetization per lattice site,
1 exp(—H/KT)
W=t Z (s, exp( ) (1.7

{exp(—H/kT)

where {. . .) stands for a sum over configurations. M can be written

19 (F‘ T ,
=— = — — M= - T Fd
M N 9B kT)' N kf} - (1.8)

[ SRS

B i e T B ) ; .
24 = cle L@ wiryo fulte 46 bivame = Clu < 1w Sircole ol voteir (Catt. ) -
& £} ,

Co A j’,p“a AL o3t} (7. )
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The Ising model, in 2 or more dimensions, can display spontaneous magnetization. Let the

lattice be in an external magnetic field B. If M remains different from zero when the external
e field is removed, there is spontaneous magnetization. For example, this occurs if at zero tempera-
it ture the state of lowest energy of the system has all the spins aligned. We can expect M = 1 at zero

nts, temperature but M = 0 at infinite temperature, where thermal energy overwhelms the 3pm-sp1n
: interaction. Only for temperatures 7 less than a critical value 7, does spontaneous magnetization
occur. Spontaneous magnetization is also closely related to the behavior of the _Spin-spin correla-

tion function defined by,

(spSo exp(—H/KT)

b = exp CHIETY (1-9)

1.3} ' At zero temperature when all the spins line up [,_is unity, independent of #. However, as T — o

thermal excitations wash out the spin-spin correlations, so I‘n is different from zero only at the

. origin. We will in fact see that the he way I, falls to zero as i increases will depend on whether
LT < Tc, T=T. or T>T.. The Ising model, therefore contains two lengths: the lattice spacing. J
|nand the distance over which spin-spin correlatxons are appreciable. l

is

2 oy JeHree fpeciug
L2t g . s e I ; ; (
YN ibencr o e which Sin- fpiu covieloTions ate atairciv L

/

In the first section we discussed the Ising model and the phenomenology of a critical point,
such as the critical temperature at which spontaneous magnetization first occurs. We We will study
through seven sections the problem of critical behavior looking specifically at phenomena above
the critical temperature where, although there is no spontaneous magnetization, the system feels
the presence of the nearby critical point. In this section we will consider various theories of the
critical point at the handwaving level: Landau’s form of mean field theory, and the Kadanoff
theory of effective interactions involving block spins. This second approach will provide the

) background for the renormalization group. (Some standard references on critical phenomena are
1.4) refs. [95-101].)

from 2/1 Elementary properties of systems near their critical temperature
If we plot the spontaneous magnetization versus temperature for a ferromagnet, an anti-
3) ferromagnet or the Ising model, one finds a curve similar to that shown in fig. 2.1. There is a
critical temperature, T, at which spontaneous magnetization first occurs. The I he curve rises to some
ind k finite value at temperature zero. In the region just below the critical temperature, the n the magnetiza-
tlon is well approx1mated by a power law,

(1.6) M@(TC—T)" (2.1)
where 8 is an example of a critical exponent. Theories of critical behavior are mainly concemed
with predicting such critical exponents or, at least, ﬁndmg relations between them. [

(1.7

There is also the correlation length wh:ch we introduced earlier. Consider two spins, _one at
lattice site 71, one at the origin and define the correlation function,

[ = (550 exp(—H/KT)/Sexp (—H/KT) 2.2

(1.8) where (. . .) indicates a sum over all configurations. Th_e_gqfryglatign__f_gnct_ion__h_as the property
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M In
{

M2

————— (2)
exp(-Inl/€(T)
TC

Fig. 2.2. Spin-spin correlation
function versus distance between
sites. Curve (1) is an example with
T > Tg; curve (2) is an example
with T < Tg.

Fig. 2.1. A graph of magnetization
versus temperature for a ferromagnet.
T, is the critical temperature.

that if T> T, then [, falls off with |n| (curve 1 in fig. 2.2). The asymptotic behavior for large
|| is thought to be™
T, ~ exp{-lnl/E(T)}

where §(7) is the correlation length. (There are various ways of defining the correlation length.

It is not evident that the qualitative definition of section 1 (see, in particular, the discussion p. 78)
agrees with the precise definition of (2.3). They will in fact not always agree, but for the Ising
model above T, they do agree so far as is known.) Unfortunately, due to the complexity of the
systemn, the validity of (2.3) has not been proved in general. For T < T¢, the correlation function
is expected to approach the square of the magnetization divided by the square of the magnetic

moment as 7 increases (curve 2, fig. 2.2). In other words, for large n actual correlation has
disappeared and what remains is the product of the expectation values of the single spins. At the
critical temperature the correlation function falls to zero for large 7 because there is no spontan-

eous magnq_ti;atic_;r;iHoWe've_r, it falls very slowly (fig. 2.3) because we are at a transition point.
The correlation function at T, is expected to fall as a power of n and, by convention, is written

in the form
1 i 1
T~ 1Inf= 25
where d is the dimensionality of the system. In two dimensions we know that (2.4) is the correct
form of the correlation function [95]. However, in three dimensions the statement is just a guess.

7 defines a second critical exponent.

(2.3)

Fouable

(2.4)

&L )
|
|
i
I
1
I
i
n + T
Te
Fig. 2.3. Comelation function at the Fig. 2.4. C ;
critical temperature. ig. 2.4. orrelation length plotted
against temperature.

One can also consider the correlation length £(7) itself. £(7) sets the scale for the falloff of the
correlation function when 7 is above T¢. As shown in fig. 2.4, £(T) approaches infinity as T~ T,
from above:

D~ T T, (2.5)

e
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There is also a similar curve for the magnetic susceptibility,

_ M|
X=3H, o (2.6)

which behaves near the critical temperature as
rx o —~ Ty . 2.7

S{r_nilarly, the specific heat (at constant volume)_C, is controlled near the critical temperature by
the critical exponent &,

G, ~(T=To™ (2.8)

We collect in table 2.1 both experimental and theoretical values of the various exponents. The
theoretical predictions come from the mean field (Landau) theory which will be described below,

Table 2.1

Critical Expeiirient Mean field Tl‘lree-dimensiona] Two-dimensional
exponent theory Ising model [sing model

8 0.3-0.38 e 0.31 0.125

7 0-0.1 0 0.056 0.25

v 0.6-0.7 3 0.64 1.0

v 1.2-1.4 1 1.25 1.75

o 0-0.1 0 0.12 0

the two-dimensional Ising model solved exactly by Onsager, and the three-dimensional Ising
model. In the three-dimensional case the cnitical exponents are calculated approximately using
the high temperature expansion of the model carried to very high order. To obtain critical
exponents Padé approximant techniques are used. These assume power behavior near the critical
point for the relevant thermodynamic quantities. The data come from ferromagnets, anti-
ferromagnets, liquid-gas transitions, binary alloys and superfluid helium. Typically one or two
critical exponents can be measured in each system. The table has been en organized to illustrate the
idea (to be explamed in later sections) that the mean fleld theory accounts for 5ystems \;f(ith _more
than four dimensions, and that exponents depend contmuously on dimensionality below 4 dimen-
sions. One can plot cntmal exponents against the dimensionality of the system and construct a
smooth interpolating curve between the various dimensions. Fig. 2.5 depicts such a plot for the
exponent y. The curve has a brezk in its derivative at dimension four and is smooth elsewhere.

¥

1.75
1.50
1.25

4 3 2

Fig. 2.5. Critical exponent vy
plotted against the dimension
of the physical system.
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We will concentrate on the exponents 7, v and y which have to do with the behaviour of the
system at or above the critical temperature when no external field is present. We will not work
in the two-phase region, although it would be more interesting; all the fundamental problems are
present above 7.

/2/./2. The search for analyticity

The various theories of critical phenomena are characterized by a *‘search for analyticity”. The
formulas we have written down, such as for spontaneous magnetlzatlon are nonanalytic at the
critical temperature. There is nothing really unusual about this, but it is difficult to see, starting
from a fundamental formulation of the Ising model, for example, how such nonanalytic behavior

arises. Recall that one calculates the thermodynamic functions from the partition function,

Z= Z e‘{p{ Zanan K =J/kT. (2.9)
)
As long as the number NV of spins is finite, then Z is an analytic function of K. Such a system
clearly cannot display critical behavior. Ho__wever once we take the _;hermodynamw limit of a spin
system filling all of space, the analyticity is no longer guaranteed. As the volume ¥ of the system
tends to infinity, various sums will also become unbounded. The nonanalytic behavior we wish to
discover here, however, is usually masked by these large volume effects. Thus, while nonanalyticity
is allowed in prmcxple it has been very difficult to obtain the correct nonanalytic behavior in
© practice from expressions such as (2.9). Because of this one tries to find a description of critical

" behavior in terms of analyt:c fun-._nons with the hope that the analvtic functions could be t
obtained more ‘easily by practical methods. The various theones can be characterized by their ,
choice of analyuc functions with which to describe LI‘lthd] phenomena. This is the “search for .

" analyticity”. We will discuss this problem at two levels: First, the mean field theory which makes

a very simple theory of the analyticity; and the second, the renormalization group itself.

;

2.2.1. Mean field theory
Free et 175 A result of mean field theory is that there is a thermodynamic function which is analytic in its

ey e 0 parables at Te. Namely, the ‘magnetic field # is an analytic | function of the magnetization (per

be opr erraluliy

L uneh i spm)_M and the temperature 7. This suggests Landau’s hypothesis [102] that the thermodynamic

properties o of the system should be derivable from a free energy ( G which is an analytic function of
Mand T. Then H would be given by,

i}
H—ﬁﬂ—d GM, D (2.10)
What are the consequences of this approach? Near T where M is small we can write a Taylor

series for G in powers of M, E,

e e

GM, T)=Go(T) +r(TIM? + u(TH)M* + . .. (2.11)
where M is the magnetization per unit spin. Only even powers of M appear in the expansion
because of the up-down symmetry of the Ising lattice. The magnetic field is given by ]
H=2r(DM+ du(TYM> + . .. . {2.12)

If we just consider the M and M3 terms and assume that u > 0 (such that the magnetic field
grows with M when M is large) we are left with two possible phenomena. If r > 0, then G will
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corresponding to nonvanishing magnetizations (fig. 2.6b) and hence three local extrema cortes-

ponding to A = 0. However, the system will choose a state of minimum free energy which

corresponds, according to fig. 2.6b, to a state of nonvanishing magnetization. We see that the

possibility r > O corresponds to T > 7, where there is no spontaneous magnetization, while

r <0 means T <T.

have one minimum as a function of M (fig. 2.6a). But if » <0, G can have two extra minima

Fig. 2.6. Plots of free energy versus magnetization for the
possible choices of the parameter 7.

Continuing with these analyticity assumptions we can obtain some of the critical exponents.
Namely, it is clear that r(7.) = 0 while «(7,) will attain some particular value. The next stage is
to assume that for 7 near T, -

r(T) = (T —To). (2.13)
Then at A =0 it follows from (2.12) that,

M= [y~ Tem D (2.14)
from which we identify

B=3| (2.15)
as the first critical exponent. If 7 > T, then near zero magnetization,

M =H/[2r(T) (2.16)
from which we identify the susceptibility

x=1/12r(T) ~(T-T)! 2.17)
and another critical exponent, v, is obtained:

y=1 (2.18)

The values of the exponents v and n can be obtained by extending these ideas to the case of space-
dependent fields. One obtains » =4 and 5 =-0.

Unfortunately, as we have seen from table 2.1, the mean field theory does not predict the
critical exponents very well. For example, accurate experiments with liquids, with (T — 7,.)/7, as
small as 107, give § =0.35 + 0.01 [96] as opposed to the mean field prediction of 0.5.

However, mean field theory provides a very simple picture of critical behavior. And, although
its predictions are not very good, they are not very bad, either. In our later description of critical
exponents the mean field theory results will act as zeroth order approximations. Then a systematic
expansion in the dimension of the system will allow us to obtain more accurate results.
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7
2.2.2. Kadanoff theory
Now we turn to the second level of discussion. We will discuss the Kadanoff picture of the
critical point [ 103]. The basic results of the Kadanoff picture are relations among critical
exponents which had been guessed earlier by equally heuristic arguments (see [95—101]). These
relations will not be discussed here. What will be discussed is where one has analyticity, and how |
the critical singularities are generated starting from analytic functions. o
We have used considerable poetic license in describing Kadanoff’s picture. The following
paragraphs explain the spirit of his ideas but details of his work will be considerably distorted.
Kadanoff is concerned explicitly with the problem of the large correlation length near 7. A
direct calculation of critical behavior requires that one consider (at the minimum) all the spins in.
2 volume the size of the correlation ength — a hopeless task. In contrast, away from 7. where

the correlation length is small, only a few spins need be considered at any one time. Standard

techniques are available for such problems, such as Feynman graphs and perturbation theory. .

Kadanoff had a brilliant idea which allows the hopeless problem with a large correlation .

e

length to be replaced by one with a small correlation length. The idea will be explained fora |

plane lattice, for simplicity. Consider a small region containing four spins, say. Because the | _,%ow e
correlation length is so long near the critical temperature, all the spins in such a little block | 1brauat 044 e
hould be strongly correlated. Kadanoft supposed that they aré so well correlated. that the ot

spins in one block have only two possible states: all spins up or all spins down. This means that ..

the block of four spins acts like a single effective spin. Now suppose £ is 1000 in units of the .
lattice spacing (fig. 2.7a). Group the spins info blocks of four spins each (fig.. 2.7b). Each block.

is supposed to have only two spin degrees of freedom, so there is a single spin variable for each
block. Therefore, one can replace thu original lattice With’ a'ﬁ'?ffeétive'I?.ffl_Cif‘WﬁEfé—ﬁﬁW"E =500
in units of the effective lattice spacing (fig. 2.7¢). In this way the problem with £ = 1000 is

reduced to a problem with £ =500. Repefition of this analysis allows further reductions in £, to

e ®© ® ©® e o e o [0 o) o ©
X X X
o ® e © ©® ® e o s @ e o X X X
e ° e e e ® | L] e ° X X X
(a) (b) (c)

Fig, 2.7. Visualization of Kadanoff’s construction of block spins. The original lattice (a) of
spins at each site is divided into blocks (b) of 4 spins per block which is replaced by a new
lattice (c) of “effective” spins.

250, 125, etc., until finally one has an effective theory with £ ~ 1. This will be discussed further
below. If the original spins have only nearest neighbor couplings, then the effective block spins
also can have only nearest neighbor interactions (see later). [t is convenient to define renormalized

block spins such that their magnitude is £ 1 instead of +4. Then the energy/kT of the block spins is
> KysDsR, (2.19)
n,i

where K, isa constant aggi;j,l Lisjhc block spin variable and n labels sites on the effective lattice
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(X’s in fig. 2.7c). The only practical difference between Kadanoff’s effective interaction (2.19)
and the original interaction X, iKs,sy+7 is the change in constants from KtoX,. Tti [t is easy to
determine the constant K_1 There are two spin-spin interactions from the original mteractton

which couple the block spin s(“ to the block spin s{1)z. If these block spins are parallel, the
couplmg energy is 2K; if they are antiparallel the coupling energy is —2K. So

) :21(__ (2.20)

Suppose now one solves the original interaction and obtains the correlation length §(K) as a
function of K, in units of the original lattice spacing. The correlation length for the lattice of
block spins will be £(K ), in units of the block spin lattice spacing, since the block-spin interaction
has Ising form. But now the correlation length in units of block-spin spacing must be § of the
original correlation length, lL.e.

FCART N (221)

Given that (K, ) =4 £(K) whenever K; = 2K, the dependence of £(K) on K is severely restricted.
Suppose one is at the critical temperature. There is a corresponding value K. = J/kT, for K. At
K., £ is infinite. But now the correlation length for the block spins must also be infinite; this
means £(K ) = e which is possible only if K| is also K. So

K, =K, =2k, (2.22)

which gives K, = 0 or K = o0, not K, = J/kT,.
Thisis a nonsens1cal result: K. is a finite number, not 0 or e=. The trouble originates with the

assumption that the spins in a block align exactly. Kadanoff did n_Qt_act_L}ally assume this. He
proposed only that the block would behave as if it had only two possible states , and therefore

could be repIaced by an effective block spin. However these two states would not be the states
with all spins up or down. Kadanoff proposed that there would be an effective Ising interaction 4
for the block spins, with K beﬂu_*l_g_s_q_rdnfc function f(K) but the function fwould be more E
comphcated than 2K obtained above: Kadanoff gave no prescnphon for determining f(X). What |
Kadanoff does assume is that f(X) is stlll an ana_l_}gtlc functlon of K, even for K = K. The ,‘
rationale for this is the hope that on]y the spins in the immediate ne1ghborhood of the block n 1
affect the calculation of K, even though this calculation cannot be spelled out. Nonanalyticity

at K, should occur only for quantitles mvolvmg the entire lattlce

The statement of the Kadanoff assumptions is that there exists an analytic function f(X) such

}Et
CEFO) =5 EED. (2.23)
‘i’hat does this impl‘; for critical behavior? First one must have
K, =f(K,) (2.24)
so that £[f(K.)] is infinite. Secondly, suppose X is near K. Approximately, one can write
fIK) = f(Kc) + MK~ Kc) (2.25)

where X = df/dK for K = K. This means
fIKy— K, =\K = K_). (2.26)
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Now suppose £(K) behaves as (K — K.)™ for K near K. Then one must have

ELAK)] _[ KD ch}’”
£(K) { K—-K, (2.27)
if K is near K. But from (2.23) and (2.26), this equation reduces to
= B (2.28)
If one could determine f'(K.), one could calculate » from this equation:
v=In2/ln \. (2.29)

For example, if f{K) were the explicit form 2K obtained earlier, then A would be 2 and » would
be 1.

Equation (2.26) does not force £(K) to have power law behavior for K = K ; the most general
form for £(K) consistent with (2.23) and (2.26) is

EK)=(K—K.)" FlIn(K — K¢)], (2.30)

where F(x) is a periodic function of x with period In A. The reason for the periodicity is that if
£(K) is known, then £(K,) is also known where K; — K. = MK — K, ); changing K — K by a factor
\ is equivalent to translating In (K — K.) by an amount In \. Because F is periodic, the behavior
of £(K) is not qualitatively different from (K — K.)™.

To determine £(K) precisely one can imagine proceeding as follows. Suppose £(K) is known
for K > 2K,.. For K above 2K, £ should not be very large and should be relatively easy to
calculate. Now suppose K lies in the range K. < K < 2K,. Construct a sequence of effective
constants K, K. etc. satisfying

Kp+1 = f(Ky) (2.31)
with K, = f(K). Then Kadanoft’s formula implies
E(K) = 2"E(Kn). (2.32)

This means in particular that no matter what value K takes (> K. itself), one can choose n so
large that £(K,) is small enough that K, > 2K.. Then £(K),) is known and £(K) is determined by
(2.32). This calculation is of course possible only if the function f(K) is known.

What is important in Kadanoff’s analysis is the idea that starting from an analytic function
f(K) one generates a. nonandlytlc behavior for £(K) at the point K. for which f(X,) = K. Further-
more one does not get an explicit value for v independent of the leI’lCthIl f(K), fo determine v
one must know the function f{K). Hence v need not be the mean field value . In fact v can be
irrational, contrary to the dreams of some statistical mechanicians.

In the following; Kadanoff’s idea that there exist effective block-spin interactions with coupling
constants analytic in T will be realized in various forms, with all functions given explicitly.

Critical exponents such as » will be computed explicitly.

3. Trivial example of the renormalization group: The Gaussian model

In this section we will begin to make Kadanoff's intuitive ideas quantitative. The relationship
between the block spin interaction and the original interaction will be worked out and a critical
exponent (v) will be computed for a trivial model — the Gaussian model [104] — to illustrate the
ideas involved. In this case the exponent v has the mean field value & 3



K. G. Wilson and J. Kogut, The renormalization group and the e expansion 95

The Gaussian model can be obtained by modifying the Ising model. First one writes the
partition function in terms of integrals. Namely,

27 - =
3 -2 -
F= 1] f dsmlﬁ{sm—!)exp{KZZSns,,ﬂ-}. (3.1)
m o™ n i
.28) This is a trivial rewriting of the original partition function. Now imagine smoothing the delta
function (fig. 3.1a) to a smooth distribution around s, = =1 (fig. 3.1b), to a smooth Gaussian
29)
a ] LA
S
1 -1 + Sm - + Sm -1 i m
ra
(a) (b) (e)
30) Fig. 3.1. The transition from the [sing to the Gaussian model. The [sing model
(a) has spin up or spin down at each lattice site. Model (b) has spin variables
f which peak about the Ising values. The Gaussian model (c) has spin variables at
. each site with smooth, Gaussian distributions about zero
bl
i (fig. 3.1c). Of course fig. 3.1c bears little resemblance to the original Ising model. If we make this
replacement in the partition function anyway,
1 a
z=1I f dsm BXP{—abS?n}exp{Kz ansm-‘ (3.2)
31 mo W T J

where b is an arbitrary constant. This formula defines the Gaussian model [104]. Later we will
.32) allow the generalization,

"%bsﬁ —Hb‘ﬁ} (3.3)

exp{—% bs?,} - exp

b . 5 '
¥ where u is a positive number. The case u# near 1 (not small) can be discussed using the recursion
formula to be derived later. In this case the smooth model begins to approach the real Ising model.
her- Finally, if u = o0 and b = —oo, with & = —4u, the original Ising model is recovered (if one includes
i a constant factor (u/m)"/2 exp(—u) per spin).
2 Let us review some characteristics of Gaussian integrals. [t is convenient to introduce matrix
notation,
ng e s =
SASIZ Z SpnApnSm, ps=z PnSn (3.4)
: n m n
with A assumed to be symmetric for n < m. Then, using techniques to be developed shortly, the
following integral can be evaluated,
i bl f dsy exp{—% FAs + ,E)'SJ =C exp{—; A p} (3.5)
n e
-al
. the where C, a normalization factor, is a function of 4. (Specifically C = (det A)™V2 (27)Y¥/2 where N

is the number of sites.) Eq. (3.5) is derived by translating s, in order to complete the square in the
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integrand. (See eq. (3.21) below for an example of a translation.) From eq. (3.5) one can derive
all integrals of the form

11 f dsn(Sm, Sm, - - < Sing) exp{-"(S"As)/E} =I(m, ... mg). (3.6)

These integrals will be needed in section 4. The procedure is to differentiate eq. (3.5) with
respect t0 Py, - - - Pmy- This gives

: el el 9 _9 i
I;I _L ds,,(Sml ce S exp{ 25As+ps} apm""apmkce"(p{% A 110}'
The second step is to set p,, =0 for all m. If & is odd the integral vanishes; if & is even one needs
to consider only the term of order p* from the exponential, giving

] 0 y

2 ——C{L A ]”2 (k/2).

apml apmk zF oIk (3.7
One now has k derivatives applied to /2 factors of (% pAp). To illustrate the calculation of the
derivatives consider the case k = 4. Then one has to calculate

ad d 0 9 {1 41 ,__IJ/,”
0Pm, 9Pm, Pm, apm‘{z P4 ,0] [2 pA Py [+

Differentiating yields a number of terms such as (A"),,hm’ (A'l),,,Sm‘/S. The total number of such

terms is 24, namely the total number of ways of pairing each derivative with a p or 3. However,

many of these terms are identical to the one just cited. Due to the symmetry of A7}, the term

(A Ym,m, (A" Dm,m /8 is identical. Obviously the term (A D, m, (4™, m,/8 is identical.

Combining all identical terms one finds

Iomy, . . .y ma) = CLA YA Dy, + (A V(A Dmm, ¥ A, (A Dy ). (3.8)

The general rule for any k is constructed similarly. The result is as follows. Let s,; s, stand for
(A" Y, m, - One calls S S, 2 “contraction”. Then I(m,, . . ., mg) is the sum of all possible ways
of contracting S, Sm, - - - Smy in pairs, such that all s, areina contraction. For example

I(mlz---:mk)z

PN TR — e B
I(my, my, M3, Mmg) = CiSm Sm, Sm,Sm, T Sm, Sm, Sm,Sm, tSm, Sm,Sm,Sm,| (3.9)

which is the same as eq. (3.8). I(n, . . . mg) consists of Sy Sm, $m 3m, $m,Sm, Plus 14 other
terms. Note that it is not necessary for the m; to be distinct. I-"or example, suﬁpose one is dealing
with trivial 1 x 1 matrices so that the m; are necessarily all equal to 1. Then the integral (3.6) of
sy is 3CA}4, the integral of s% is 15CATY, etc., in agreement with standard formulae. The rule for
I(my, . .., mg) is analogous to Wick’s theorem in quantum field theory [105].

In the cases of interest A, , only depends on the difference # —m and the inverse matrix
(A™Dn,m can be computed by Fourier transforms: write

An-m =_f exp{iq - (n—m)}A(q) (3.10)
q

where

qu(Z:r)d J;ﬂ dg, ... f" dgg.

-
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The inverse matrix is obtained by taking the transform of the ordinary inverse of A(g),
A V-m = fexp[iq - (n —m)} AN (3.11)
q

since A4 is diagonal in the g representation.
Return now to the Gaussian model. We can rewrite the expression of interest,

KD, D, snsnsi=4 b . sh ==K D0 2 (nei=sa) ~ b=dK) . (3.12)
n i n noi 7

where we are supposing for convenience that the sum over/ runs only over positive values. d is
the dimensionality of the lattice. When written in terms of 04, 04 = Z, exp{-—iq - n}sy, (3.12)
becomes :

-1 ”KZ lexp(ig:) — 112 +F}oq O_q (3:13)
q i
with
F=b-2dK (3.14)

where g; is the ith component of g. There are now three further changes that will be made on the
model. The first change is to replace |exp(ig;) — 1|? by its form for small ¢, namely q2. The
second is to change the range of integration over g to be 0 <|q{ < | instead of —7 < g; < 7. The
third change is to renormalize the spins so that K = 1. So finally, the interaction is

-3 f(qz”) Og0-q (3.15)
q

with [, being (2m)™ fd’q for 0 < gl < 1 and r = /K.

The second change causes a conceptual difficulty. With 0 < |g| < 1, one cannot relate the
functional variable o4 to the ordinary variables s,. Therefore, one is forced to define the
partition function as a functional integral over g, rather than ordinary integrals over the s,,.
However, for present purposes this is not a difficulty. The reason is that the method of translating
the integration variable is valid for functional integrals as well as ordinary integrals, and is as easy
to use. The reason one can translate variables in a functional integral is that a functional integral
is generally defined as a limit of ordinary integrals, each of which can be translated. For example,
the functional integral over o4 can be described as a limit of ordinary integrals over variables Ogm
in the limit that the spacing of the points ¢,, goes to zero (see, e.g., [106]).

The replacement of |exp(ig;) — 1|* by q? is not an essential change in the model because we
will ultimately be interested only in the long wavelength behavior of the model which comes
from the part with small g. Likewise the change in the range of g/ is inessential.

The correlation function of the model will now be calculated. It is appropriate to introduce
a spin field s(x):

sw= [ explig-x)og  (O<lgl<D) (3.16)
g -
to replace s,,. Then the correlation function is

M(x) = Js(x)s(O) exp{--% f 0q0-q(q? +r)}/Z {3.17)
a q
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where ra denotes the functional integral over functions o(g) and Z is the functional integral of
the exponential alone. The result for ['(x) is
1
I{x) = fsxp(iq- Xx) = f explig- x) I'y.

This result will now be derived. One has
[(x) = ff exp(iq - x) faqaq, exp{—-% f(qz 1) 0q0-q }/z ' (3.19)
q 4, a q

The functional integral is computed from the generating function

N1 .
Zn=z fexp{—% | @+nogoq+ ffchrq . (3.20)
o q q
Translating variables means in this case writing
_
Uq—qfi,+0é- (3.21)
In terms of og,
. | "o i 1
Zn=z J exp [—-é f (@*+r)0g0lq +3 J lq/-q (*7:;)} (3.22)
a q q q ;
The functional integral is proportional to Z, giving '
1
-~ 1 P
Z(j) = exp {5 J;quuq (q—z-:;)}- (3.23)
Expanding (3.20) and (3.23) to second order in j one sees that
1 = = r ot 1 2 + Z 1 a 2 1
2 j-qi-a, | 9q0q, €XP|73 (q* +1r)0q0-q (/¢ =7 | lal-qa 71, (3.24)
q q, ) q q q-tr
This equation must be an identity in the function j, which means
Jaq Oq, EXP {—% f (g% +71)0q0-4 }/Z =8(g +q)/(g” +1) (3.25)
g q

where 8(g + g, ) is shorthand for (21)d8d(q + q,). Substitution of this formula in (3.19) gives the

result (3.18) for I'(x).
The correlation length £ is customarily defined in terms of the behavior of I'(x) for x| = eo. If

the range of ¢ were infinite, the behavior of T'(x) for large x would be governed by the singularity
in (q? +r)7! for g = £i~/, resulting in

['(x) < exp(—+/7lxl) (3.26)

for large |x| (apart from a power of |x| in front of the exponential). From this one gets E=1//7.
Untortunately, the sharp boundary at lgl = 1 leads to another term in I'(x) for large X, behaving
as cos (Ix]). This latter term is an artifact of the model; it can be removed by averaging over a
large but finite region in X space. When £ is large (r small) the term exp(— /lx]) will not be
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affected by this averaging. However a more convenient procedure for our purposes is to introduce
an alternative definition of the correlation length. The correlation length as originally defined is
determined by the leading singularity of ['g: if the leading singularity of I'y is at ¢ = £ig, then £
is 1/q5. The location of this singularity can be determined roughly by comparing the derivative
dl; /dg? with [, itself when ¢ = 0, namely,

dI', /dq?
£ - qF/ q (3.27)
q q=0
Equivalently,

g = fxz ['(x) ddX/f ['(x) d%x.

With this definition, £ is called the “effective range of correlation” [107]. For Ly =1/(q* +r)
this formula gives

E2 o« Ifr (3.28)

and hence £ « 14/r as before.
In the Gaussian model r is linear in the temperature 7. To be precise, with K =J/kT (from
eq. (2.9)) one has

r=(bkT —2d))J (3.29)

(see eqgs. (3.14) and (3.15)).

The critical point corresponds to r = 0 and § = eo; clearly £ « (7 — 7.)"Y2 for T> T.. Hence,
the Gaussian mode! gives the mean field value % for v. Also this gives kT, = 2dJ/b. The critical
value of K is K, = b/2d.

An exact formulation of the renormalization group can be defined for the Gaussian model; it
illustrates the ideas that will be applied later to non-trivial models.

As a first step in the renormalization group transformation, let us integrate out the spin
components g with3 <|g| < 1, leaving unintegrated the components g; with 0 <|q| <+1.In
other words one integrates out the rapidly fluctuatieg parts of the spin field 5(x), leaving uninte-
grated the slowly fluctuating parts. This is a way of realizing in spirit Kadanoff’s idea of produc-
ing an effective interaction involving only block spin variables; namely, one integrates out the
other variables orthogonal to the block spin variables. In our case one thinks of the long wave-
length spin components o, for |gq| <5 as analogous to Kadanoff's block spin variables.

The integration of g, for+ < g/ < 1 will be done in the functional integral for the partition
function, as opposed to the functional integral for the correlation function. However the same
calculation applies also to the correlation function integral if one considers the functional integral
only for Ty, for lg,| <3, where

6(q, +q2)Tg = foq, 0q, exp{—% f (qz+r)oqo-q}/2. (3.30)

a q

If lg,| and |q,| are both less than §, then the explicit 0q, and g, terms are not involved in the
calculation of integrals for% <|g| < 1.

The calculation of the first step defined above is trivial. The reason is that there is no coupling
between g, for |g| >+ and aq for ig < 3. Hence the only result of the functional integral over Og
with |q] > 5 is a constant which multiplies exp{~ 1 fq(@* +r)ag0_4} where [q means an integral
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over 0 < |g| <42 only. Since this multiplicative constant cancels in the ratio of functional integrals
defining [y, the constant can be ignored. Thus the effective interaction produced by eliminating
the high momentum spin components is simply — 5- fq (g% +r) Oq0-q-

The second step in constructing the renormalization group transformation is to perform some
scale changes designed to make the effective interaction look as much like the original interaction
as possible. Two scale changes will be introduced. A scale change in the momentum, namely
q' = 2q, is made so that the new momentum variable ¢ has the range 0 < |g'| < 1 like the
original momentum ¢ in the original interaction. The second scale change is to scale the spin
variable itself:

Og =$04 =$0y,. (3.31)

The scale factor § will be determined later. In terms of the new spin variable o', the effective
interaction is

3! =—%(§'22‘d) f (@4 +r)agoly. (3.32)
q

Now choose { so that the ¢'* term has the same coefficient as the ¢® term of the original inter-
action; this means

fi= 2k (3.33)
and

H'==3 fq (g7 +rhog oy (3.34)
with

r'=4r (3.35)

The transformation that takes
H=-1 f (q*+7r)0g0-4 (3.36)
q

into #€' is an example of a renormalization group transformation.

The two scale changes introduced above are analogous to scale changes that occur in the
Kadanoff picture. When one discusses the block spin interaction, one uses the spacing of blocks
as a length scale instead of the original lattice spacing. This is analogous to the momentum scale
change introduced here. Secondly, the magnitude of the block spins was rescaled so it would be
*1 like the original spins analogously, the spins o, are rescaled, although now the purpose is to
make a part1cular term in the interaction have the same form as in the original interaction.

What is 3’ good for? It can be used to compute the correlation function 'y, pr0v1ded lg| <%
The correlation function naturally defined for " is a correlation function involving o' instead of
¢, namely,

8(qy +42)Tq; = J 0g: 0q, exp {H'}Z". (3.37)

The scaling relation between ¢ and o' gives

8(q, +q2)Tq =Ty, 6(2g, +2q5). (3.38)
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Now 8(2g) = 2796(qg) so
=§22_d1—"2q =4Frzq- (3.39)

Thus, if one computes I’q from (', one can reconstruct [g/2 from the scaling formula.
Now look specifically at the c,orrelatlon length. The correlation length for K’ is (using the
modified definition),

g =10/ ' (3.40)

Because of the change in momentum scale in defining F(', ¢’ will be different from &. Since
momenta were doubled in the transformation from X to H', lengths will be halved, and therefore
£’ should be £/2. This is indeed the case, since

F=0) V=@ =g, (3.41)

Here we have an explicit example of the relation between ¢’ calculated from the effective
interaction ' and £ calculated for the original interaction. There are three relations involved.
First there is the relation between £’ and £: £ =1 £ This relation is a consequence of the explicit
change of scale in momentum introduced in the renormalization group transformation. This
relation will be true of all models so long as we stick to the program ofmtegratmg out the
momentum components g, with |g| >% and then rescale the remaining momenta. The second
relation is *' = 4r, the relation between the constants appearing in 7 and ¥'. This relation is
special to the Gaussian model. However, note that 7’ is an analytic function of 7, even at the
critical point. This analyticity will be true of all subsequent examples. Finally there is the
dependence of £ onr: § = 1/\/‘ Since " has the same form as H, the new correlation length £’
has the same dependence onr': §' = 1/\/1"_ These relations are special to the Gaussian model; but
it will always be true that if £ = X(r) then £ = X(+") with the same function X,

The critical singularity of £ can be calculated by the method of section 2. The variable r sub-
stitutes for the variable K of section 2. The function f{X) of section 2 is now known explicitly:

r' = f(r) = 4r. The critical value of r is r. = 0, which satisfies f(r.) =r.. The parameter A defined
in section 2 is df/dr = 4. Thus, from eq. (2.29)

y=In2/ln\=1%. (3.42)

In this case £(r) must behave as £(r) = (r — r;)"/2 without the extra periodic function F[In(r - r.)]
of section 2. The reason is that the period of F is determined by the fact that £ changes by a
factor 2[E(r") =} £(r)]. One could have chosen to make £ change by an arbitrary detOi’S by
integrating o, fors™' <|g| <1 instead of £ < |q| < 1. The result would still be v = 3 but the extra
function would have period In s instead of]n 2. This gives a contradiction unless F is a constant.

Thus, if f(r) is known, one can determine both the critical point r. = 0 (K, = b/2d) and the
critical singularity of £.

One starts with an analytlc formula for 7’ = 4r and obtains a nonanalytic form for £. Why? The
reason is that as r = 0, r’ comes close to r but g cannot come close to £, since £’ must be £/2. It is
this conflict that forces £ to be singular whenr' =r=0.

4. The s* model

In this section we will generalize the discussion of the Gaussian model. In particular, we will
add to the interaction a small quartic term. The renormalization problem now becomes nontrivial



