PHYSICAL REVIEW D

VOLUME 30, NUMBER 1

Higgs-scalar decays: $H \rightarrow W^{\pm} + X$

Wai-Yee Keung and William J. Marciano Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (Received 28 March 1984)

Decays of a Higgs scalar in the mass range $m_W \leq m_H \leq 2m_W$ ($m_W = W^{\pm}$ mass ≈ 83 GeV) are examined. For $m_H \geq 125$ GeV, the branching ratio for $H \rightarrow W^{\pm} + X$ is found to be substantial, provided the top quark is heavy, $m_t > m_H/2$. Implications of our results for hadron-hadron-collider experiments are briefly discussed.

The standard $SU(2)_L \times U(1)$ model of electroweak interactions predicts the existence of a neutral spin-zero particle *H*, called the Higgs scalar.¹ It is a necessary remnant of the spontaneous-symmetry-breaking mechanism which provides mass for the W^{\pm} , *Z*, quarks, and leptons. Discovery of this fundamental scalar is crucial for confirmation of the standard model.

How will the Higgs scalar be found? The answer depends on its mass, since Higgs-scalar production cross sections and decay branching ratios are highly m_H dependent. (Unfortunately, m_H is essentially a free parameter, although somewhat constrained by theory² to the range 7 GeV $\leq m_H \leq 1$ TeV.) A relatively light Higgs scalar ≤ 60 GeV should be detectable via the decays³ $Z \rightarrow H\mu^+\mu^-$ or $H\gamma$ (perhaps also *t*-quarkonium $\rightarrow H\gamma$ depending⁴ on m_t) at the coming generation of e^+e^- colliders. Somewhat higher masses (up to ≈ 100 GeV) may be observable at CERN LEP II through the reaction^{3,5} $e^+e^- \rightarrow ZH$ if high luminosity ($\approx 10^{32}$ cm⁻² sec⁻¹) is achieved.

On the other end of the scale, a very heavy Higgs scalar $> 2m_W \approx 166$ GeV can best be produced at high-energy hadron-hadron colliders via gluon-gluon fusion.⁶ For large enough m_H , the decays $H \rightarrow W^+ W^-$ or ZZ become dominant.⁷ In that case the Higgs scalar can be recognized by leptonic decays of one of the vector bosons. This scenario has been examined in Ref. 8.

What about an intermediate Higgs-scalar mass? That case has not received much attention, even though it would appear to be the most likely. In this paper we will address that possibility by examining Higgs-scalar decays for the mass range $m_W \leq m_H \leq 2m_W$ where $m_W \approx 83$ GeV is the W^{\pm} mass. Such scalars should be copiously produced at highluminosity hadron-hadron colliders; but their detection may be difficult due to severe backgrounds. We will, however, argue that the decays $H \rightarrow WX$ or ZX followed by a leptonic decay of the W^{\pm} or Z could provide a discernible signal if the branching fraction for such events is not too small. That scenario will in fact be realized if $m_H \geq 125$ GeV and $m_t \geq m_H/2$. The latter constraint is needed to kinematically eliminate the potentially large competing mode $H \rightarrow t\bar{t}$.

We begin by reviewing decay rates for a Higgs scalar with mass $< 2m_W$.

 $H \rightarrow f\overline{f}$: The decay rate of a Higgs scalar into a quarkantiquark or lepton-antilepton pair (generically denoted by $f\overline{f}$) is given by^{1,2,7}

$$\Gamma(H \to f\bar{f}) = (3) \frac{g^2}{32\pi} \frac{m_f^2}{m_W^2} m_H \left(1 - \frac{4m_f^2}{m_H^2}\right)^{3/2} \tag{1}$$

with (3) a color factor for quarks and $g^2/4\pi = \alpha/\sin^2\theta_W \simeq 0.036$. Notice that *H* likes to decay into heavy fermions. If $m_t < m_H/2$, then $H \rightarrow t\bar{t}$ is likely to be the dominant decay mode for $m_H < 2m_W$. However, m_t is as yet unknown. In the event that $m_t > m_H/2$, $b\bar{b}$ is elevated to the dominant $f\bar{f}$ decay and it becomes interesting to consider higher-order induced decays which may then be relatively more important.

 $H \rightarrow gg$: The two-gluon decay of a Higgs scalar proceeds through the quark triangle diagrams in Fig. 1. The rate given by^{4,9}

$$\Gamma(H \to gg) = \frac{g^2 m_H^3}{288 \pi m_W^2} \left(\frac{\alpha_s(m_H/2)}{\pi} \right)^2 |I|^2 \quad , \tag{2}$$

where $\alpha_s(m_H/2)$ is the running QCD coupling (=0.1 for $m_H \simeq 2 \ m_W$) and⁸

$$I = 3 \sum_{i=u,d,\ldots,t} [2\lambda_i + \lambda_i (4\lambda_i - 1) G(\lambda_i)] , \qquad (3a)$$

$$\lambda_i = m_i^2 / m_H^2 ,$$

$$G(\lambda_i) = -2 \left[\arcsin\left(\frac{1}{2\sqrt{\lambda_i}}\right) \right]^2, \quad \lambda_i \ge \frac{1}{4} , \quad (3b)$$

$$G(\lambda_{i}) = \frac{1}{2} \ln^{2} \left(\frac{\eta^{+}}{\eta^{-}} \right) - \frac{\pi^{2}}{2} + i\pi \ln \left(\frac{\eta^{+}}{\eta^{-}} \right), \quad \lambda_{i} < \frac{1}{4} \quad , \quad (3c)$$

$$\eta^{\pm} = 1 \pm (1 - 4\lambda_i)^{1/2}$$
.

FIG. 1. Quark loop diagrams contributing to the decay $H \rightarrow 2$ gluons.

<u>30</u> 248

249

For six quark flavors we expect $|I|^2 \simeq 1-3$ (depending on m_{t}), which leads to a small branching ratio for $H \rightarrow gg$ if $m_W \leq m_H \leq 2m_W$.

 $H \rightarrow W f \overline{f}'$: Such decays proceed through the diagram in Fig. 2 with one real and one virtual W. (We neglect Higgsscalar-fermion couplings and all other effects proportional to m_f/m_W .) The amplitude for this process is given by¹⁰ (neglecting finite-W-width effects¹¹)

$$\mathcal{M} = \frac{ig^2 m_W}{\sqrt{2}} \epsilon_{\mu}(k) \frac{1}{m_H^2 - 2P \cdot k} \overline{u}(l) \gamma^{\mu} \frac{1 - \gamma_5}{2} \upsilon(q) \quad . \tag{4}$$

Squaring this amplitude and summing over polarizations gives

$$\sum_{\text{pol}} |\mathcal{M}|^2 = \frac{g^4 m_W^2}{(m_H^2 - 2P \cdot k)^2} \left(l \cdot q + \frac{2l \cdot k \ q \cdot k}{m_W^2} \right) \quad . \tag{5}$$

Integrating over the f and \overline{f}' phase space in the H rest system leads to

$$\frac{d\Gamma(H \to W f \bar{f}')}{dx} = \frac{g^4 m_H}{3072 \pi^3} \frac{(x^2 - 4\epsilon^2)^{1/2}}{(1 - x)^2} \times (x^2 - 12\epsilon^2 x + 8\epsilon^2 + 12\epsilon^4) , \quad (6)$$

$$\frac{d\Gamma(H \to Wf\bar{f}')}{dy \, dz} = \frac{g^4 m_H}{512\pi^3} \frac{1}{(1-y-z)^2} \left[(1-y)(1-z) - \epsilon^2 (3-2y-2z) + 2\epsilon^4 \right] , \quad y = 2E_f/m_H, \quad z = 2E_{\bar{f}'}/m_H \quad . \tag{7}$$

[Note that x + y + z = 2 allows any double-differential rate combination to be obtained from Eq. (7).] Integrating either Eq. (6) or (7) gives

$$\Gamma(H \to W f \overline{f}') = \frac{g^4 m_H}{3072 \pi^3} F(\epsilon) , \qquad (8a)$$

$$F(\epsilon) = \frac{3(1 - 8\epsilon^2 + 20\epsilon^4)}{(4\epsilon^2 - 1)^{1/2}} \arccos\left\{\frac{3\epsilon^2 - 1}{2\epsilon^3}\right\}$$

$$- (1 - \epsilon^2) \left\{\frac{47}{2}\epsilon^2 - \frac{13}{2} + \frac{1}{\epsilon^2}\right\}$$

$$= 3(1 - 6\epsilon^2 + 4\epsilon^4) \ln\epsilon \qquad (8b)$$

$$-3(1-6\epsilon^2+4\epsilon^4)\ln\epsilon$$
 (8b)

To obtain the inclusive rate $\Gamma(H \rightarrow W^{\pm}X)$, we multipy Eq. (8a) by 18 (the factor 18 corresponds to the number of distinct final states with a W^+ or W^- and light-fermion pair; the top quark is not included):

$$\Gamma(H \to W^{\pm}X) = \frac{3g^4 m_H}{512\pi^3} F(\epsilon) \quad . \tag{9}$$

In the case of the Z boson, a similar analysis (neglecting $H \rightarrow Zt\bar{t}$ yields

$$\Gamma(H \to ZX) = \frac{g^4 m_H}{2048 \pi^3 \cos^4 \theta_W} \times (7 - \frac{40}{3} \sin^2 \theta_W + \frac{160}{3} \sin^4 \theta_W) F(\epsilon') , \quad (10)$$

$$\epsilon' = m_Z/m_H$$
, $m_Z \simeq 93.8 \text{ GeV}$, $\sin^2\theta_W \simeq 0.215$

Partial rates for $H \rightarrow Z f \bar{f}$ are obtained by multiplying Eq. (10) by the $Z \rightarrow f\bar{f}$ branching ratio.

We are now in a position to compare Higgs-scalar decay branching ratios. If $m_t < m_H/2$, the decay $H \rightarrow t\bar{t}$ will dom-

FIG. 2. Feynman diagram for $H \rightarrow W f \bar{f}'$.

with

$$x = 2E_W/m_H, \quad \epsilon = m_W/m_H, \quad 2\epsilon \le x \le 1 + \epsilon^2$$

If instead we integrate over the W phase space and angle between f and \overline{f} , the double-differential decay rate is obtained:

$$\frac{1}{y \, dz} = \frac{3 \, m_H}{512 \pi^3} \frac{1}{(1-y-z)^2} \left[(1-y)(1-z) - \epsilon^2 (3-2y-2z) + 2\epsilon^4 \right] , \quad y = 2E_f / m_H, \quad z = 2E_{\bar{f}} / m_H . \tag{7}$$

inate. In that case from Eqs. (1) and (9) one finds

$$\frac{\Gamma(H \to W^{\pm} X)}{\Gamma(H \to t\bar{t})} = \frac{\alpha}{4\pi \sin^2 \theta_W} \frac{m_W^2}{m_t^2} F(\epsilon) \left(1 - \frac{4m_t^2}{m_H^2}\right)^{-3/2}.$$
 (11)

This branching ratio is plotted in Fig. 3 for $m_t = 36$ GeV. Notice that it ranges from 1-10% for $m_H \simeq 135-160$ GeV. Hence, in that scenario $H \rightarrow W^{\pm} X$ is important for a narrow range of m_H values. If on the other hand $m_t > m_H/2$, the primary decays become $H \rightarrow b\overline{b}$, $c\overline{c}$, $\tau\overline{\tau}$, gg, $W^{\pm}X$, and ZX. Branching ratios for these modes are illustrated in Fig. 4. The $H \rightarrow W^{\pm} X$ mode becomes significant (> 10%) for $m_H \ge 125$ GeV and exceeds 50% for $m_H > 150$ GeV.

Is this scenario $m_H > 125$ GeV and $m_t > m_H/2$ a realistic expectation? A recent analysis by Bég, Panagiotakopoulos, and Sirlin¹² based on theoretical consistency suggests that

FIG. 3. Branching fraction $\Gamma(H \to W^{\pm}X)/\Gamma(H \to t\bar{t})$ for $m_t = 36 \text{ GeV}.$

250

FIG. 4. Higgs-scalar decay branching ratios for $m_t > m_H/2$. For definiteness we used $m_t = 90$ GeV in Eq. (3).

 $m_H > 125$ GeV may actually require that m_t (or some heavier fermion) is greater than $m_H/2$. So the decay $H \rightarrow W^{\pm}X$ may indeed turn out to be prevalent. (Note, if $m_t \leq 60$ GeV, the top quark should be discovered at the CERN $p\bar{p}$ collider after the next run.)

Assuming that a significant fraction of all Higgs scalars produced at hadron-hadron colliders decay via $H \rightarrow W^{\pm}X$, how might they be detected? The clearest signature would seem to be a high-energy electron or muon produced by the subsequent decay $W \rightarrow ev$ or μv in events with X=2 hadronic jets.¹³ Those final-state configurations should account for about 14% of all $H \rightarrow W^{\pm}X$ decays. In such events the missing neutrino energy can be determined from momentum-balance considerations and the Higgs-scalar mass reconstructed.

Viability of the above scenario requires the production of a significant number of Higgs scalars. In Fig. 5 we give estimated cross sections for gluon \rightarrow gluon \rightarrow H for a variety of \sqrt{s} values at hadron-hadron colliders.⁸ Of course, due to

FIG. 5. Higgs-scalar production cross section via gluon-gluon fusion for a variety of \sqrt{s} collider values. The scale on the right-hand side corresponds to the total number of Higgs scalars produced for an integrated luminosity of 10^{40} cm⁻².

uncertainties in the gluon distribution functions and value of $|I|^2$, our cross-section estimates should be considered very approximate. In any case, Fig. 5 suggests that the combination of high energy and high luminosity potentially provides a large number of Higgs scalars for the range $m_W < m_H < 2m_W$.

In conclusion, the decay $H \rightarrow W^{\pm}X$ is a potentially important mode for detecting the Higgs scalar at the next generation of high-luminosity colliders, particularly if $m_t > m_H/2$. That channel may also be the harbinger of entirely new nonstandard physics (for example, pseudoscalars with mass ≈ 150 GeV). Indeed, the physics of $W^{\pm}X$ events may prove to be experimentally much richer than anticipated.

It is a pleasure to acknowledge helpful discussions with F. Paige regarding Higgs-scalar production and detection. This work has been authored under Contract No. DE-AC02-76CH 00016 with the U.S. Department of Energy.

- ¹S. Weinberg, Phys. Rev. Lett. **19**, 1264 (1967); A. Salam, in *Elementary Particle Theory*, edited by N. Svartholm (Almqvist and Wiksell, Stockholm, 1968), p. 367; see also J. Ellis, M. K. Gaillard, and D. Nanopoulos, Nucl. Phys. **B106**, 292 (1976).
- ²A. D. Linde, Pis'ma Zh. Eksp. Teor. Fiz. 23, 73 (1976) [JETP Lett. 23, 64 (1976)]; S. Weinberg, Phys. Rev. Lett. 36, 294 (1976); M. Veltman, Acta Phys. Pol. B 8, 475 (1977); B. W. Lee, C. Quigg, and H. Thacker, Phys. Rev. Lett. 38, 883 (1977). A nice discussion of Higgs-scalar properties is given in L. B. Okun, Leptons and Quarks (North-Holland, Amsterdam, 1982).
- ³See Proceedings of the 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado, edited by R. Donaldson, R. Gustafson, and F. Paige (Fermilab, Batavia, Illinois, 1983); Proceedings of the Z⁰ Physics Workshop, Ithaca, New York, 1981, edited by M. Peskin and S.-H. Tye (Laboratory of Nuclear Studies, Cornell University Report No. 81-485).
- ⁴F. Wilczek, Phys. Rev. Lett. **39**, 1304 (1977). If m_t is very large, the branching ratio for *t*-quarkonium $\rightarrow H_{\gamma}$ becomes unobservably small. See the discussions in Ref. 3.
- 5S. Glashow, D. Nanopoulos, and A. Yildiz, Phys. Rev. D 18, 1724

(1978).

- ⁶H. Georgi, S. Glashow, M. Machacek, and D. Nanopoulos, Phys. Rev. Lett. **40**, 692 (1978).
- ⁷T. Rizzo, Phys. Rev. D 22, 722 (1980).
- ⁸H. Gordon et al., in Proceedings of the 1982 DPF Summer Study on Elementary Particle Physics and Future Facilities, Snowmass, Colorado (Ref. 3), p. 161.
- ⁹J. Ellis et al., Phys. Lett. 83B, 339 (1979); T. Rizzo, Phys. Rev. D 22, 178 (1980).
- ¹⁰The decay $H \rightarrow W f \bar{f}'$ was first considered by Rizzo (Ref. 7). Our conclusion regarding the utility of this mode is more optimistic. In addition our computed rate is a factor of $\frac{4}{3}$ larger.
- ¹¹For ϵ very near $\frac{1}{2}$ the finite width of the W should be included by replacing $(1-x)^2$ with $(1-x)^2 + \epsilon^2 \Gamma_W^2/m_H^2$ ($\Gamma_W = W$ decay width) in Eq. (6). Our graphs include this effect.
- ¹²M. A. B. Bég, C. Panagiotakopoulos, and A. Sirlin, Phys. Rev. Lett. 52, 883 (1984).
- ¹³The usefulness of this signature was pointed out to us by F. Paige.