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Abstract

We review the techniques necessary for the calculation of virtual electroweak and soft
photonic corrections at the one-loop level. In particular we describe renormalization.
calculation of one-loop integrals and evaluation of one-loop Feynman amplitudes. We
summarize many explicit results of general relevance. We give the Feynman rules and the
explicit form of the counterterms of the electroweak standard model. we list analytical
expressions for scalar one-loop integrals and reduction of tensor integrals. we present the
decomposition of the invariant matrix element for processes with two external fermions
and we give the analytic form of soft photonic corrections. These techniques are applied
to physical processes with external W-bosons. We present the full set of analytical
formulae and the corresponding numerical results for the decay width of the W-boson
and the top quark. We discuss the cross section for the production of W-bosons in ete-
annihilation including all O(x) radiative corrections and finite width effects. Improved
Born approximations for these processes are given. .
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1. Introduction

All known experimental facts about the electroweak interaction are in agreement with
the GLASHOW-SALAM-WEINBERG (GSW) model [1, 2, 3, 47. Therefore, this theory is called
the standard model (SM) of electroweak physics. Despite its extraordinary experimental
success it is by no means tested in its full scope. Many more experimental and theoretical
efforts are needed for its further confirmation.

An important step in this direction is provided by the e*e™ colliders SLC and LEP100
which started a new era of precision experiments. The first important results from these
experiments were the determination of the number of light neutrinos and the precise
measurement of the mass of the neutral weak gauge boson, the Z-boson [5]. Further-
more the total and partial widths of the Z-boson and various on-resonance asymmetries
have been determined and will be measured with increasing accuracy. These experiments

will uniquely allow to study in great detail all the properties of the Z-boson and its
couplings to fermions.

There are, however, ingredients of the electroweak SM, which are not directly
accessible at SLC and LEP100. The most important one is probably the gauge boson
self-interaction which is crucial for the nonabelian structure of the GSW model. It will be
directly tested for the first time at LEP200, the upgraded version of LEP. There the
center of mass energy will be high enough to produce pairs of charged weak gauge
bosons, the W-bosons, such that one can study the reaction e"e” — W*W™ in great
detail. It will allow the investigation of the nonabelian three-gauge boson interactions
YW W™ and ZW* W™ at the classical level of the theory. Moreover, all the properties
of the W-boson, like its mass and its total and partial widths can be measured directly
there. The statistics will not be as good as on the Z-peak. One expects of the order of
10* W-pairs and thus an accuracy at the percent level. The examination of several

independent methods indicates that an error of about 0.1% for the W-mass determination
can be reached [6].
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Theoretical predictions should have an accuracy comparable to or even better than
the experimental errors. If the experimental precision is of the order of one percent the
classical level of the theory is no longer sufficient. One is forced to take into account
quantum corrections: the radiative corrections. In the case of the electroweak SM these
can reach several percent. For the high precision experiments at LEP100 even the first
order corrections are inadequate, one has to take into account leading higher order
corrections, too.

Radiative corrections are not only compelling for the precise comparison between the
theoretical predictions and the experimental results, but offer the possibility to get in-
formations about sectors of the theory that are not directly observable. While the direct
investigation of certain objects may not be possible because the available energy is too
small to produce them they may affect the radiative corrections noticeably.

In the electroweak SM there are at least two such objects. The top quark, the still
undiscovered constituent of the third fermion generation, and the Higgs boson, the
physical remnant of the Higgs-Kibble mechanism of spontaneous symmetry breaking.
Both particles seem to be too massive to be produced directly in the existing colliders.
However, the high precision experiments performed so far together with the precise
knowledge of the radiative corrections of the electroweak SM already allow to derive
limits on the mass of the top quark within the SM [7, 5]. Since the sensitivity of radiative
corrections to the mass of the Higgs boson is weaker. the restrictions on this parameter
are at present only marginal [8]. The situation may improve with increasing experimental
accuracy. While direct determinations of physical parameters are in general to a large
extent model independent, the information extracted from radiative corrections depends
on the entire structure of the underlying theory.

Finally there is a third important issue concerning radiative corrections. It is likely
that the electroweak SM. despite its experimental success. in only an effective theory.
the low-energy approximation of a morc general structure. This would manifest itself
typically in small deviations from the SM predictions. Furthermore most of the presently
discussed new physics is connected with scales bigger than the experimentally accessible
energies. Therelore new phenomena will show up predominantly via indirect effects rather
than via direct production of new particles. In order to disentangle these small effects one
has to know once again the predictions of the SM accurately and thus needs radiative
corrections.

The actual evaluation of the radiative corrections is a tedious and time consuming task.
It requires extensive calculations involving many different techniques, like renormalization.
evaluation of loop integrals, Dirac algebra calculations. phase space integrations and so
on. Fortunately the whole procedure can be organized into different independent steps.
Furthermore many steps can be facilitated with the help of computer algebra [9. 10,
11, 12].

For the interesting processes at LEP 100 radiative corrections have been calculated by
many authors [13]. Their structure is relatively simple since the masses of the external
fermions can be neglected. Calculations for gauge boson production processes at LEP 200
are already more complicated because the masses of the external gauge bosons are non-
negligible. Such calculations have been performed by several groups and we will give the
most important results in the second part of this review. The whole complexity of
one-loop corrections will show up when considering reactions where all external particles
are massive like e.g. gauge boson scattering processes which may be investigated at the
LHC or SSC. The calculation of radiative corrections to these processes has just started.

In the first part of this review we collect the relevant formulae and techniques necessary
for the calculation of electroweak one-loop radiative corrections. Although we discuss
everything in the context of the SM the presented material is — apart from the explicit
form of the renormalization constants — applicable to extended models as well. In the
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second part these methods are applied to physical processes with external W-bosons.
This part not only gives examples for the calculation of one-loop electroweak corrections,
but also provides a survey on the status of radiative corrections for the production and
the decay of W-pairs in e"e” annihilation. The corresponding experiments will be carried
through in a few years at LEP200.

The general techniques described in this paper are restricted to the virtual part of the
electroweak corrections and soft photon bremsstrahlung. We do not consider the methods
appropriate for hard photon bremsstrahlung. This can be efficiently treated using spinor
techniques [14] and Monte Carlo simulations [15]. Furthermore we do not touch the
methods developed for calculating higher order QCD corrections.

This paper is organized as follows:

In chapter 2 we specify the Lagrangian of the electroweak SM. Chapter 3 outlines the
on-shell renormalization for the physical sector of the electroweak SM and provides
explicit expressions for the counter terms. All relevant formulae for the calculation of
one-loop Feynman integrals are collected in chapter 4. In chapter 5 we introduce the
standard matrix elements, a concept which allows to present the results for one-loop
diagrams in a systematic and simple way. In chapter 6 we show how everything is put
together in the actual calculation of one-loop amplitudes and provide first simple
examples. The relevant formulae for the calculation of the soft photon corrections are
summarized in chapter 7. Chapter 8 serves to define our input parameters and the way
of resumming higher order corrections.

The remaining chapters are devoted to applications. In chapter 9 we give results for
the width of the W-boson. in chapter 10 for the width of the top quark. Finally the
radiative corrections to the production of W-pairs in e®e” annihilation are discussed in
chapter 11.

The appendices contain the Fevnman rules of the electroweak SM. the explicit
expressions for the self energies of the physical particles and the vertex functions as well
as the bremsstrahlung integrals relevant for the W-boson and top quark decay width.

2. The Glashow-Salam-Weinberg Model

The Glashow-Salam-Weinberg (GSW) model of the electroweak interaction has been
proposed by GrasHow [1], WEINBERG [2], and SarLam [3] for leptons and extended to
the hadronic degrees of freedom by Grassow, ILIoPOULOS and Maiant [4]. It is the
presently most comprehensive formulation of a theory of the unified electroweak
interaction: theoretically consistent and in agreement with all experimentally known
phenomena of electroweak origin. For energies that are small compared to the electro-
weak scale it reproduces quantum electrodynamics and the Fermi model, which already
accomplished a good description of the electromagnetic and weak interactions at low
energies. It is minimal in the sense that it contains the smallest number of degrees of
freedom necessary to describe the known experimental facts.

The electroweak standard model (SM) is a nonabelian gauge theory based on the non-
simple group SU(2), x U(1)y. From experiment we know that three out of the four
associated gauge bosons have to be massive. This is implemented via the Higgs-Kibble
mechanism [16]. By introducing a scalar field with nonvanishing vacuum expectation
value the SU(2)y x U(1)y gauge symmetry is spontaneously broken in such a way that
invariance under the electromagnetic subgroup U(1),, is preserved. The SM is chiral
since right- and left-handed fermions transform according to different representations of
the gauge group. Consequently fermion masses are forbidden in the symmetric theory.
They are generated through spontaneous symmetry breaking from the Yukawa couplings.
Diagonalization of the fermion mass introduces the quark mixing matrix in the quark
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sector. This can give rise to CP-violation. Fermions appear in generations. The model
does not fix their number, but from experiment we know that there are exactly three
with light neutrinos [5].

The SM is a consistent quantum field theory. It is renormalizable, as was proven by
T HooFr [17], and free of anomalies. Therefore it allows to calculate unique quantum
corrections. Given a finite set of input parameters measurable quantities can be predicted
order by order in perturbation theory.

The classical Lagrangian % of the SM is composed of a Yang-Mills, a Higgs and a
fermion part

o= Ly + L+ L. (2.1)

Each of them is separately gauge invariant. They are specified as follows:

2.1. The Yang-Mills-part

The gauge fields are four vector fields transforming according to the adjoint
representation of the gauge group SU(2), x U(l)y. The isotriplet W, a=1,2,3 is
associated with the generators Ij, of the weak isospin group SU(2)y, the isosinglet B,
with the weak hypercharge Yy, of the group U(1),. The pure gauge field Lagrangian reads

1 i s b - 5
L= = (W = W, 4 g™ W W)~ 1 (B ~0,B,), (2.2)

where £°°¢ are the totally antisymmetric structure constants of SU(2). Since the gauge

group is non-simple there are two gauge coupling constants. the SU(2)y gauge coupling

g, and the U(l)y gauge coupling g,. The covariant derivative is given by

Y,
Du=6u—ig2[;‘yw/:+l’g1—;13u. (2.3)

The electric charge operator Q is composed of the weak isospin generator I3, and the
weak hypercharge according to the Gell-Mann Nishijima relation

O=I+-=. (2.4)

2.2 The Higgs part

The minimal Higgs sector consists of a single complex scalar SU(2)y doublet field with
hypercharge v, =1

T (x)
P(x)= (Z{)) : (2.5)

It is coupled to the gauge fields with the covariant derivative (2.3) and has a self coupling
resulting in the Lagrangian

Zy=(D, D) (D" &) — V(). (2.6)
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The Higgs potential
V(@):%(qsfqﬁ)z—#zqﬁqs @2.7)

is constructed in such a way that it gives rise to spontaneous symmetry breaking. This
means that the parameters A and p are chosen such that the potential V(&) takes its
minimum for a nonvanishing Higgs field, i.e. the vacuum expectation value (@) of the
Higgs field is nonzero.

2.3. Fermionic Part

The leflt-handed fermions of each lepton (L) and quark (Q) generation are grouped into
SU(2)y doublets (we suppress the colour index)

oL \’I L u’l R
G =w_ L= l’L Qi=w_Q,)= d'l‘ (2.8)

the right-handed fermions into singlets

R , R , R o
li=w U ui=w 0 dj=0.d; {2.9)

where @, ——13,'5? is the projector on right- and left-handed fields. respectively. j is the
generation index and v, [« and d stand for neutrinos, charged leptons. up-type quarks
and down- -type quarks. respectively. The weak hypercharge of the right- and left-handed
multiplets is chosen such that the known electromagnetic charges of the fermions are
reproduced by the Gell-Mann-Nishyjima relation (2.4). There are no right-handed
neutrinos. These could be easily added. but they would induce nonvanishing neutrino
masses, which have not been observed experimentally so far.

The fermionic part of the Lagrangian reads

Y=Y (L7iy*D,LE+Q'{i7"D,Q'F)
+V(I’Rt “D“l’,R—{-u,« ","‘D“u'iR—i-J’“,-Ri",'“Dﬂd’f)

~SALIGLIT 0+ Qi Ghul o+ QT GEd' T @+ he). (2.10)
ij

LY RaN

Note that in the covariant derivative D, acting on right-handed fermions the term
involving g, is absent, since they are SU(2)y singlets. The primed fermion fields are by
definition eigenstates of the electroweak gauge interaction, i.e. the covariant derivatives
are diagonal in this basis with respect to the generatlon indices. G};, G{; and G{; are the
Yukawa coupling matrices, ® =(¢°*, —¢™)T is the charge conjugated Higgs ﬁeld and
¢~ =(¢*)*. The SUQ2)y x U(l)y symmetry forbids explicit mass terms for the fermions.
The masses of the fermions are generated through the Yukawa couplings via spontaneous
symmetry breaking.

b
i
i
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2.4. Physical fields and parameters

The theory is constructed such that the classical ground state of the scalar field satisfies

>

Koy =2V Lo, @11
A 2

In perturbation theory one has to expand around the ground state. Its phase is chosen
such that the electromagnetic gauge invariance U(1),,, is preserved and the Higgs field is
written as

q>(x)=< (S > (2.12)
L (0 + H(x)+iy(x)

bz
where the components ¢, H and y have zero vacuum expectation values. ¢ *. ¢~ and y
are unphysical degrees of freedom and can be eliminated by a suitable gauge trans-
formation. The gauge in which they are absent is called unitary. The field H is the
physical Higgs field with mass

My=)"2p. (2.13)

Inserting (2.12) into ¥ the vacuum expectation value r introduces couplings with mass
dimension and mass terms for the gauge bosons and fermions.

The physical gauge boson and fermion ficlds are obtained by diagonalizing the
corresponding mass matrices

I N2
= (W) F i),

- ) (5)
A u — Sy Cwy Bu |
U

W,

i

o= UL
& = UL (2.14)
where
. g> .
Cw =COS szf7 Sy =SsIn (}W’ (215)
/g2 +81

with the weak mixing angle 6y, and f stands for v, [, u or d. The resulting masses are

1 1 3
zMW:7—gzu, M, =3 Vgi+gs v,

M, =0, my = Ul * GL, ULRT —— . (2.16)

/2
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The neutrinos remain massless since the absence of the right-handed neutrinos forbids
the Yukawa couplings which would generate their masses. With (2.16) we find for the
weak mixing angle

i (2.17)

Cw

Identifying the coupling of the photon field A, to the electron with the electrical
charge e =|/4na yields

e= S8z (2.18)
Veit+g:
or
e e
g&1=—. 8=—. (2.19)
Cy Sw

The diagonalization of the fermion mass matrices introduces a matrix into the quark-W-
boson couplings, the unitary quark mixing matrix

Vi=UR TSR (2.20)

There is no corresponding matrix in the lepton sector. Since there is no neutrino mass
matrix. U*" is completely arbitrary and can be chosen such that it cancels U in the
lepton-W-boson couplings. The same would also be true for the quark sector if all up-
type or down-type quarks would be degenerate in masses. For degenerate masses one
can choose U*=UR" arbitrary without destroying the diagonality of the corresponding
mass matrix and thus eliminate ;.

The above relations (2.13), (2.16), (2.18), (2.20} allow to replace the original set of
parameters

21, 85, 4 G GH G (2.21)
by the parameters

e. My. My, My my.. V, (2.22)
which have a direct physical meaning. Thus we can express the Lagrangian (2.1) in terms
of physical parameters and fields.

Inserting (2.12) into % generates a term linear in the Higgs field H which we denote

by t H{(x) with

t=v (,uz —% vz> . (2.23)

The tadpole ¢ vanishes at lowest order due to the choice of v. We use ¢ instead of ¢ in
the following. Choosing v as the correct vacuum expectation value of the Higgs field ®
is equivalent to the vanishing of ¢.
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2.5. Quantization

Quantization of %, and higher order calculations require the specification of a gauge.
We choose a renormalizable ’t Hooft gauge with the following linear gauge fixings

1 1
FE=(@Y) 20" W FiMy(E¥) ¢,
_L et
F? =(E%) 20"Z, — M,(¢2)*
_1
F' =(&) 264, (2.24)

leading to the following gauge fixing Lagrangian
1 )
Lin==5[(F )P +(F)?+2F*F7]. (2.25)

“;x involves the unphysical components of the gauge fields. In order to compensate
their effects one introduces Faddeev Popov ghosts u*(x), a*(x) (x==+. 7. Z) with the
Lagrangian

OF*
307 (x)

Lrep = 1%(x) u?(x). (2.26)

x

S0P () Is the variation of the gauge fixing operators F* under infinitesimal gauge trans-
067 (x
formations characterized by 0%(x).

The 't Hooft Feynman gauge 3*=1 is particularly simple. At lowest order the poles of
the ghost fields, unphysical Higgs fields and longitudinal gauge fields coincide with the
poles of the corresponding transverse gauge fields. Furthermore no gauge-field-Higgs
mixing occurs.

With &, and %, the complete renormalizable Lagrangian for the electroweak SM
reads
Losw=Lc+ L+ Lp. (2.27)

The corresponding Feynman rules are given in App. A.

3. Renormalization

The Lagrangian (2.1) of the minimal SU(2),, x U{1l)y model involves a certain number of
free parameters (2.22) which have to be determined experimentally. These are chosen
such that they have an intuitive physical meaning at tree level (physical masses,
couplings), i.e. they are directly related to experimental quantities. This direct relation is
destroyed through higher order corrections. Moreover the parameters of the original
Lagrangian, the so-called bare parameters, differ from the corresponding physical
quantities by UV-divergent contributions. However, in renormalizable theories these
divergencies cancel in relations between physical quantities, thus allowing meaningful
predictions. The renormalizability of nonabelian gauge theories with spontaneous
symmetry breaking and thus of the SM was proven by 't HookT RYAR
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One possibility to evaluate predictions of a renormalizable model is the following:

° Calculate physical quantities in terms of the bare parameters.

® Use as many of the resulting relations as bare parameters exist to express these
in terms of physical observables.

) Insert the resulting expressions into the remaining relations.

Thus one arrives at predictions for physical observables in terms of other physical
quantities, which have to be determined from experiment. In these predictions all UV-
divergencies cancel in any order of perturbation theory. The predictions obtained from

different input parameters differ in finite orders of perturbation theory by higher order

comimbuiions. This treatment of renormalization has been pioneered by PASSARINO,
VELTMAN and ConsoL! [18] and is the basis of the so-called “star” scheme of KENNEDY
and Lynn [19].

We use the counterterm approach. Here the UV-divergent bare parameters are
expressed by finite renormalized parameters and divergent renormalization constants
(counterterms). In addition the bare fields may be replaced by renormalized fields. The
counterterms are fixed through renormalization conditions. These can be chosen
arbitrarily, but determine the relation between renormalized and physical parameters.
Further evaluation proceeds like described above. The results depend in finite orders of
perturbation theory not only on the choice of the input parameters but also on the choice
of the Tenormalized parameters. Clearly the physical results are unambiguous up to the
Srders which Have Besh taken into account completely. The renormalization procedure

can be summarized as follows:

mn_q-mF

e Choose a set of independent parameters (e.g. (2.22) in the SM). (Physieal osorsables )

) Separate the bare parameters (and fields) into renormalized parameters (fields)
and renormalization constants {see Sect. 3.1).

° C@hdésé Tenormalization c‘o»ﬁdiﬂfizmg to fix the counterterms (see Sect. 3.2).

° Express physical quantities in terms of the renormalized parameters.
° @ose input datzﬁ in order to fix the values of the renormalized parameters...
e Evaluate predictions for physical quantities as functions of the input data.

The first three items in this list specify a renormalization scheme.

Putting the counterterms equal to zero, the renormalized parameters equal the bare
parameters and we recover the first approach.

However, we can choose the counterterms such that the finite renormalized parameters
are equal to physical parameters in all orders of perturbation theory. This is the so-called
on-shell renormalization scheme. In the SM one uses the masses of the physical particles
My, M,, My, m,, the charge of the electron e and the quark mixing matrix Vj; as
renormalized parameters. This scheme was proposed by Ross and TayLor [20] and is
widely used in the electroweak theory. The advantage of the on-shell scheme is that all
parameters have a clear physical meaning and can be measured directly in suitable
experiments ?). Furthermore the Thomson cross section from which e is obtained is exact
to all orders of perturbation theory. However, not all of the particle masses are known
experimentally with good accuracy. Therefore other schemes may sometimes be

advantageous.

2) This is not the case for the quark masses, due to the presence of the strong interaction. In
practice these are replaced by suitable experimental input parameters (see Sect. 8.1).
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Renormalization of the parameters is sufficient to obtain finite S-matrix elements, but
it leaves Green functions divergent. This is due to the fact that radiative corrections
change the normalization of the fields by an infinite amount. In order to get finite
propagators and vertex functions the fields have to be renormalized, too. Furthermore
radiative corrections provide nondiagonal corrections to the mass matrices so that the
bare fields are no longer mass eigenstates. In order to rediagonalize the mass matrices
one has to introduce matrix valued field renormalization constants. These allow to define
the renormalized fields in such a way that they are the correct physical mass eigenstates
in all orders of perturbation theory. If one does not renormalize the fields in this way,
one needs a nontrivial wave function renormalization for the external particles. This is
required in going from Green functions to S-matrix elements in order to obtain a
properly normalized S-matrix.

The results for physical S-matrix elements are independent of the specific choice of
field renormalization. There exist many different treatments in the literature [21, 22,23,
24, 25]. Calculations without field renormalization were performed by [26].

3.1. Renormalization constants and counterterms

In the following we specify the on-shell renormalization scheme for the electroweak SM
quantitatively. As independent parameters we choose the physical parameters specified in
(2.22). The renormalized quantities and renormalization constants are defined as follows
(we denote bare quantities by an index 0)

¢y =Z,e=(1+0Z,)e.
M3 = MR +5M2.
Mo =MI+6M2.
MG o =Mj+ oM.
Myio=m  +dm,.

Vio =(U VUL, =V, + 0V, (3.1

U, and U, are unitary matrices since Vij.o and V;; are both unitary.

Radiative corrections affect the Higgs potential in such a way that its minimum is
shifted. In order to correct for this shift one introduces a counterterm to the vacuum
expectation value of the Higgs field. which is determined such that the renormalized ¢ is
given by the actual minimum of the effective Higgs potential. Since we have replaced
v by t (2.23) we must introduce a counterterm 6¢. This is fixed such that it cancels all
tadpole diagrams, i.e. that the effective potential contains no term linear in the Higgs
field H.

The counterterms defined above are sufficient to render all S-matrix elements finite. In
order to have finite Green functions we must renormalize the fields, too. As explained
above we need field renormalization matrices in order to be able to define renormalized
fields which are mass eigenstates

Wo =ZPW*E=(1+45Z,)W*,

Zo\_(Zz7 Zi}\ (Z\ _[1+}Z,, Loz, z
40) \Z37 zi2)\a) "\ Yoz, 1435z, )\4)
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H, =ZY*H=(1+%0Z,)H,
1 ==Z¥lLLﬁL=(&j+%éZﬁﬂff,
fR = ZER SRR = (5, 4+ 50Z5) fF (3.2)

We do not discuss the renormalization constants of the unphysical ghost and Higgs
fields. They do not affect Green functions of physical particles and are not relevant for
the calculation of physical one-loop amplitudes. Furthermore the renormalization of the
unphysical sector decouples from the one of the physical sector. It is governed by the
Slavnov-Taylor identities. A discussion of this subject can be found e.g. in [24, 257.

In writing Z=1+0Z for the multiplicative renormalization constants (matrices) we
can split the bare Lagrangian %, into the basic Lagrangian & and the counterterm

Lagrangian 6.%

Yy=¥+0%. (3.3)
but depends on renormalized parameters and fields instead
s. The corresponding Feynman rules
diagrams which have to be added to
orrections, we neglect terms of

& has the same form as %,
of unrenormalized ones. ¢ yields the counterterm
are listed in App. A. They give rise to counterterm
the loop graphs. Since we are only interested in one-loop ¢

order (0Z)? everywhere.

3.2. Renormalization conditions

The renormalization constants introduced in the previous section are fixed by imposing
renormalization conditions. These decompose into two sets. The conditions which define
the renormalized parameters and the ones which define the renormalized fields. While the
choice of the first affects physical predictions to finite orders of perturbation theory. the
second are only relevant for Green functions and drop out when calculating S-matrix
elements. Nevertheless their use is very convenient in the on-shell scheme. They not only
allow to eliminate the explicit wave function renormalization of the external particles.
but also simplify the explicit form of the renormalization conditions for the physical
parameters considerably.

In the one-shell scheme all renormalization conditions are formulated for on mass sheil
external fields. The field renormalization constants, the mass renormalization constants
and the renormalization constant of the quark mixing matrix are fixed using the one-
particle irreducible two-point functions. For the charge renormalization we need one
three-point function. For this we choose the eey-vertex function. In the following
renormalized quantities are denoted by the same symbols as the corresponding un-

renormalized quantities, but with the superscript
As discussed above the first renormalization condition involves the tadpole T. the

Higgs field one-point amputated renormalized Green function

T= f——@, (3.4)

and simply states
T=T+05:=0.
As a consequence of this condition no tadpoles need to be considered

calculations.

(3.5)

in actual
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Next we need the renormalized one-particle irreducible two-point functions. These are
defined as follows (we are using the 't Hooft-Feynman gauge)

where

—f——@»——& = P = i = M)+ i1 k),

f] V//j}\\ fx — fj(
P 7 '

Qv

p)
=id;p—m ) +i[po_ S (p?) Fpo TLRpY (im0 +mp o)) L5 (phH]. (3.6)

The corresponding propagators are obtained as the inverse of these two-point functions.
Note that we have to invert matrices for the neutral gauge bosons and for the fermions.

The renormalized mass parameters of the physical particles are fixed by the require-
ment that they are equal to the physical masses. i.e. to the real parts of the poles of the
corresponding propagators which are equivalent to the zeros of the one-particle
irreducible two-point functions. In case of mass matrices these conditions have to be
fulfilled by the corresponding eigenvalues resulting in complicated expressions. These can
be considerably simplified by requiring simultaneously the on-shell conditions for the
field renormalization matrices. These state that the renormalized one-particle irreducible
two-point functions are diagonal if the external lines are on their mass shell. This
determines the nondiagonal elements of the field renormalization matrices. The diagonal
elements are fixed such that the renormalized fields are properly normalized, i.e. that the
residues of the renormalized propagators are equal to one. This choice of field re-
normalization implies that the renormalization conditions for the mass parameters (in all
orders of perturbation theory) involve only the corresponding diagonal self energies.
Thus we arrive at the following renormalization conditions for the two-point functions
for on-shell external physical fields
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Re I (k) € (k)2 = a2, =0,

Re [Z2 (k) &* (k)] 2= prz =0, Re FAZ(k) &* (k)22 =0,
LA (K) € (K)],2 = =0, L4k & ()20 =0,

1 w v .
kzlirﬁz k—_MTy ReF v (K) &7 (k)= —ig,(k),

lim —I—ReF‘Z(k)s v(k)= —ig,(k) lim LRel"”"(k) e'(ky=—ie,(k)
k-’-—h’\/l; 1(2—1\42 # ’ k2—-0 k ’
Re I (k)| 2=z =0, lim Re ™ (k)=

H kz—'M%, k~___MH

erl{(p) u](p)'p-:mszo’ elz;(p ) E{(p’)'p——mfl—o

lim P L Re [ (p) wi(p) =iy (p), lim  @(p) Re P (p) Ll =i p')
pom;, P~ i p2—m; T my

¢(k). u(p) and fi(p') are the polarization vectors and spinors of the external fields. Re takes
the real part of the loop integrals appearing in the self energies but not of the quark
mixing matrix elements appearing there. Since we restrict ourselves to the one-loop
order we apply it only to those quantities which depend on the quark mixing matrix at
one loop. In higher orders Re must be replaced by Re everywhere. Re and Re are only
relevant above thresholds and have no effect for the two- -point functions of on-shell stable
particles. If the quark mixing matrix is real Re can be replaced by Re. This holds in
particular for a unit quark mixing matrix which is often used.

From the above equations we obtain the conditions for the self energy functions.

Re SZ4(M2)=0. ReZ4%(M3)=0,
$42(0)=0. Z440)=0,%
- OV (k?
R (=1 K7 =0,
k= ki=My,
5222 = Z‘fu k2
Re ff ) =0, Re ff ) =0, (3.8)
ok* k2=M3% ak= k2=0
028 (k?
Re ZH(M2)=0 Re — (2 ) =0, (3.9
ok koM

) Thls condition is dutomdtlcally fulfilled due to a Ward identity.
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my, ; ReZfE(mE )+ my, Re $/:S(m? ;) =0,

my,; Re SR (m? ) +my, Re 2 (m, ) =0,

Re £/ ®(m2 ;) + Re £t (m} )

=0. (3.10)

+2m; a, (Re £5R(p?) + Re 24 (p?) + 2Re L5 (0 p2=m2
ap~© T
Note that the (unphysical) longitudinal part of the gauge boson sell energies drops out
for on-shell external gauge bosons.
Our choice for the renormalization condition of the quark mixing matrix V;; can be
motivated as follows. To lowest order V;; is given by (see eq. (2.209)

Vo.ij= Uiuk'LUi-ij“, (3.11)

where the matrices UL transform the weak interaction eigenstates f; to the lowest
order mass eigenstates f,

Lt oL _ L 5 1n
Uit fio=1"- (3.12)

In the on-shell renormalization scheme the higher order mass eigenstates are related to
the bare mass eigenstates through the field renormalization constants of the fermions

(93]
(%)

fE=Z5 . (3.13)

i

We define the renormalized quark mixing matrix in analogy to the unrenormalized one
through the rotation from the weak interaction eigenstates to the renormalized mass
eigenstates. In the one-loop approximation the rotation contained in the fermion wave
function renormalization 1+1dZ% is simply given by the anti-Hermitean part oz
of 6Z*

(OZLE=0ZL"). (3.14)

o] —

N AH
Szl =

Thus we are lead to define the renormalized quark mixing matrix as

V= (O + %‘SZ;‘IEAHT) Uik Urfz}.“(‘snj + %‘52;1}'”’)

= (0 +30Z5 YV 1n(S,; 5 Z5T). (3.15)

It has been shown that this condition correctly cancels all one-loop divergencies and that
V;;=V,.;; in the limit of degenerate up- or down-type quark masses [27].
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Finally the electrical charge is defined as the full eey-coupling for on-shell external
particles in the Thomson limit. This means that all corrections to this vertex vanish

on-shell and for zero momentum transfer*)

p=p', pr=p?=m2
The momenta p. p’ flow in the direction of the fermion arrows. Due to our choice for the
field renormalization the corrections in the external legs vanish and we obtain the
condition

d(p) [ (p. p) u(p)l 2= 2 = i€ (p) 7, u(P), (3.17)

for the (amputated) vertex function

e,p
- A-’_‘
I(p.p )=~ (3.18)
€ ,p
‘3.3. Explicit form of renormalization constants

The renormalized quantities defined in Sect. 3.2 consist of the unrenormalized ones and
the counterterms as specified by the Feynman rules in App. A. The renormalization
conditions allow to express the counterterms by the unrenormalized self energies at
special external momenta. This is evident for all renormalization constants apart from
the one for the electrical charge. In this case, however, we can use a Ward identity to
eliminate the vertex function.

From conditions (3.3), (3.8), (3.9) we obtain for the gauge boson and Higgs sector

ot =-T,
- < SV (k2
SML=Res¥(M3). 62y ——ReZIE
ok* k2=M3Z,
877 (k>
SM2 =Re S22 (M3), 67y = —Re—T(z—) ,
ok k2=M2

4) Due to the wave function renormalization of the external particles the self energy corrections in
the external legs contribute only with a factor 1/2 to the S-matrix elements.

22 Fortschr. Phys. 41 (1993) 4
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ZAZ MZ ZAZ 0 .
674y = —2Re L M) 57 2L O Ins.
M; M;
|
844 (k?) |
57, =22 |
AA ok2 eo j
52” k2 :
SM2 =Re ZH(M32), §Zy = —Re# . (3.19) !
ok K2=M}
In the fermién sector (3.10) yields
dmy; = Tzf_ Re (S (m2 ) + ZhR(m2 ) + 2255 (m; 7).
S7f.L 2 P 2 yfil(,,2 ’ SR ,2 It
0Z3j =, Re [m7; Zf " (my ) +mymy ; 255 mg ) ee
ol J T}.
+(md 4+ mi ) Z5(mi )], i#
R 2 P 2 R(,.2 L2
0Z}; =, Re[m} ;TR (mj )+ mymy ; 245 (mg )
L W Fc
+2mmg 255 (mE )] i)
. ~ ¢~ .
SZIL = —ReZht(ml ) —mh; oy Re [SHH(p?) + ZER )+ 225500 ] pee
ép? .
~ ¢ o~ .
5Zf% = —Re ZfRim2 ) —ml; +— Re [ZhH(p2) + SR (02 + 2255 (0 |y es,- Ex
ép” X
(3.20) ?er;
The use of Re ensures reality of the renormalized Lagrangian. Furthermore it yields
0ZL=0Zj(m} — m}), (3.21)
and in particular
wi
8Z5=062Z;. (3.22)
In the lepton sector we have V;;=0d;. Consequently all lepton self energies are
diagonal and the off-diagonal lepton wave function renormalization constants are zero.
The same holds for the quark sector if one replaces the quark mixing matrix by a unit ar
matrix as is usually done in calculations of radiative corrections for high energy gi
processes.
The renormalization constant for the quark mixing matrix ¥;; can be directly read off
from (3.15)
1
V= (0285 —0ZE ) Viy = Va0 25" —3ZH ] (3.23)




ns

(3.19)

‘J|p3~mj“‘

}:“p?-:m}.‘ .

(3.20)

vields

(3.21)

(3.22)

:nergies are
1tS are zero.
ix by a unit
aigh energy

ctly read off

(3.23)
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Inserting the fermion field renormalization constants (3.20) yields

l ~ 2
5Vij=*2‘ Re {,,,z_;mgk [m2 S5 (m2 )+ me 2t (m )

+ my imy  (Z5R M) + Z5R ()

+(mZ,+m2 ) (255 ml )+ Z;‘k's(mii))] Vii

ik 2

1 2 yd,L{,2 2 sd,L{,.2
-V T, [md.jzkj (md,j)+md,k2kj (md.k)

+mymy (Z5R (md ;) + 2R (mg )
+(mg y +mg ;) (25 (m ) + 257 (mg )]} (3.24)
It remains to fix the charge renormalization constant 6Z,. This is determined from the

eey-vertex. To be more general we investigate the ffy-vertex for arbitrary fermions f.
The renormalized vertex function reads

T (p. p)=—ied; 0y, +ie AL (p. p). (3.25)

ijou ijon

For on-shell external fermions it can be decomposed as (k=p’'—p)

e , N n 2 - 2 (p+P,) < 2 (p,—p) - 2
A (p. p) =0 <:»'uA{v(k‘)—“,',l:f'sAﬁ(k“)ﬂL 2 ”Aé(k‘)+7nﬁ}‘sA£(k“) :

(3.26)
Expressing the renormalized quantities by the unrenormalized ones and the counterterms
and inserting this in the analogue of the renormalization condition (3.17) for arbitrary
fermions we find, using the Gordon identities,
0=u(p) A{L(p. p) u(p)
=u(p) 7, u(p) [~ 0, 0Z,+0ZL" +30Z,4) + AL (0) + 44(0) + 0,36 Z7,4]

—i(p) 7,75 u(p) [—Q 0 ZH A+ A4(0) + a, 302,41, (3.27)
where
1 1
SZLY =3 (0ZLL+0ZL%), S5ZH4 =3 (0ZLHE—56ZL™), (3.28)

and vy, a, are the vector and axialvector couplings of the Z-boson to the fermion f,
given explicitly in (A.15). This yields in fact two conditions, namely

1 1
0=-0, <5Ze+5Z{;V+5 <SZAA>+A,f,(0)+/1§(())+vfE 80Z,4, (3.29)

1
0=—Q,6Z* + A5(0) +ay > 6Zz. (3.30)

2*
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The first one (3.29) for f=e fixes the charge renormalization constant. The second (3.30)

is automatically fulfilled due to a Ward identity which can be derived from the gauge
invariance of the theory. The same Ward identity moreover yields

1
A5+ A4 = Q6257 +a; 5625, =0. (3.31)

Inserting this in (3.29) we finally find (using v, —a, = — Q  sw/cw)

1 sw 1. 1 aZi'(k?) sw 27°(0)
ew 2 2 kP ., w ME

(3.32)

This result is independent of the fermion species, reflecting electric charge universality.
Clearly it does not depend on a specific choice of field renormalization. Consequently the
analogue of (3.17) holds for arbitrary fermions f.

In the on-shell scheme the weak mixing angle is a derived quantity. Following SiRLIN
[26] we define it as

My

Mw 3.33
M2 (3.33)

sin?0y =53 =1—

using the renormalized gauge boson masses. This definition is independent of a specific
process and valid to all orders of perturbation theory.

Since the dependent parameters sy and ¢y frequently appear, it is useful to introduce
the corresponding counterterms

Cwo=Cw+0Cw. Swo=Sw+0sy. (3.34)

Because of (3.33) these are directly related to the counterterms to the gauge boson
masses. To one-loop order we obtain

dew 1<(§M$,, (5le> 1~<Z'T"(M,2V) Z%Z(M,%)>
- o _ ,

M, MZI) 2 M2, M3

cw 2

(3.35)

dsw ¢i Scy 1 & g V(MR ZE(M3)
—_—=— =—— — Re — 5 .
Sw S Cw 2 si Mi M?
We have now determined all renormalization constants in terms of unrenormalized self
energies. In the next sections we will describe the methods to calculate these self energies
and more general diagrams at the one-loop level.

4. One-Loop Integrals

Perturbative calculations at one-loop order involve integrals over the loop momentum.
In this chapter we discuss their classification and techniques for their calculation. The
methods described here are to a large extent based on the work of PAsSARINO and
VELTMAN [18], *T HOOFT and VELTMAN [28], and MELROSE [29].
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4.1. Definitions

The one-loop integrals in D dimensions are classified according to the number N of
propagator factors in the denominator and the number P of integration momenta in the
numerator. For P+ D —2N =0 these integrals are UV-divergent. The divergencies are
regularized by calculating the integrals in general dimensions D #+4 (dimensional
regularization). The UV-divergencies drop out in renormalized quantities. For renorm-
alizable theories we have P < N and thus a finite number of divergent integrals.

We define the general one-loop tensor integral (see Fig. 4.1) as

Qmu*? 9y, Dy
Y;ﬁ...up(plv"'va—lv mOv""mN~1)= i7I2 j'qu Dggl"'DuN_l (41)
with the denominator factors
Dy=q>—md+ic, D;=(q+p)*—m}+ie, i=1,..., N—1, (4.2)

originating from the propagators in the Feynman diagram. Furthermore we introduce
Pio=p; and p;=p;—p;. (4.3)

Evidently the tensor integrals are invariant under arbitrary permutations of the
propagators D;, i+0 and totally symmetric in the Lorentz indices . ie is an in-
finitesimal imaginary part which is needed to regulate singularities of the integrand. Its
specific choice ensures causality. After integration it determines the correct imaginary
parts of the logarithms and dilogarithms. The parameter p has mass dimension and
serves to keep the dimension of the integrals fixed for varying D. Conventionally TV is
denoted by the Nth character of the alphabet, ie. T'=4, T*=B...., and the scalar
integrals carry an index 0.

Figure 4.1: Conventions for the N-point integral

Lorentz covariance of the integrals allows to decompose the tensor integrals into
tensors constructed from the external momenta p;, and the metric tensor g,, with totally
symmetric coefficient functions T;¥ ;.. We formally introduce an artificial momentum p,
in order to write the terms containing g,, in a compact way

N-—-1
N

— N
Tu,...up(Pn"-spN—u Mgy .nny My_1)= Z TE‘...ipPi,p, Pipup*
ifyeeesip=0

4.4)
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From this formula the correct g,, terms are recovered by omitting all terms containing
an odd number of p,’s and replacing products of even numbers of py’s by the cor-
responding totally symmetric tensor constructed from the g,,, €.8.

Poy, Poy, = 8uyuys

p0ﬂ1 p0u2p0ﬂ3p0u4 - g#xﬂz gu;w + glhﬂ} g#zﬂa + g#l#ct gﬂ2ﬂ3' (45)

The explicit Lorentz decompositions for the lowest order integrals read

B =p1/1B17

n

Buv :guvBOO+p1uplvB11: (46)

Cu =P1uC1 +P2ucz= Z pip.Ci*

i=1

Cow =8uv Coo+P1,P1.Cuy ‘*‘quPzVsz +(P1upzv+P3uP1\~)C12

=8uv COO + Z DinDjv Cij'

ij=1
Cuve =(8uvPro+8uoPrut 8ueP1v) Coot +(8uvP2o+ 8ugP2u Zug P2v) Coo2
+P1uP1vPie Ciny +P2uPav P2y Cian
F(P1uP1vPaoF PiuPaulPro+ P2, P1vP1e) Crin
+(p2up2vplg+p2uplvp2g+plup2vplg)Clll

= Z (guvpig_'_gvgpiu+gugpiv)c()0i+ Z Pij\-PkgCijk- {4
i=1 k=1
3
Du = Z met

3
Du.v :guvD00+ Z pi#pj"Dij’

i.j=1

3 3
D,uvu = Z (guvpig+g\'gpi;l+gpgpi\')DOOi+ Z piupj\'pngijk'
i=1 ijok=1
Duvga:(guvgga+guggva+guagvg)D0000
3
+ Z (guvpigpja+gvgpiupja_*_gugpivpjo‘
i,j=1
+guapivpjg+gvo'piupjg+ggapiupjv)D00ij
3
+ Z piupjvpkgplaDijkl' (4.8)

Ljk =1

Since the four dimensional space is spanned by four Lorentz vectors the terms in-
volving g,, should be omitted for N> 5 and at most four Lorentz vectors should be used

in the d:
integral

where p
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in the decomposition (4.4). Consequently the Lorentz decomposition for a general tensor

integral with N =5 in four dimensions can be written as
. 4
N
Tul...up(Plaw-:PN—u Mg, .o, My_1)= Z T iePiyp,  Pipuso (4.9)
i1veen,ip=1

where p,, ..., ps is any set of four linear independent Lorentz vectors out of pyyeves Pn-1-
The symmetry of the tensor integrals under exchange of the propagators yields relations
1 between the scalar coefficient functions. Exchanging the arguments (p;, m;) < (p;, m;)
together with the corresponding indices i« j leaves the scalar coefficient functions in-

variant
N
T..i.,,i__‘jmjv_.(pl,..., Discevs Djnves Pmts Mgy eees Mgy ooy, My e My_1)
n m
N
=T i APy Do Pis ey PNty Mgy eees My ooy Mgy ey My_1), (4.10)
Je--J
Db dond
m n
e.g.

Ci{py. P2 Mg My M2) = Cy(pz. p1» Mo, My, My)
Coo(P1- P2e Mg My, M) = Coo(p2. D1 Mg, My, My},

‘ Ci5(pys P2 Mmoo my, my)=Ci3(pa. pr. Mg, My, my).

(4.11)

i All one-loop tensor integrals can be reduced to the scalar ones T,'. This is done in
| Sect. 4.2. General analytical results for the scalar integrals Ay. By. C, are Dy are listed in
Sect. 4.3. The scalar integrals for N >4 can be expressed in terms of Dy's in four
dimensions. The relevant formulae are given in Sect. 4.4. They apply as well to the tensor
integrals with N <4 in the kinematical regions. where the usual tensor integral reduction
breaks down. because the Gram determinants appearing there are zero. The UV-divergent
parts of the one-loop integrals are explicitly given in Sect. 4.3.

4.2. Reduction of tensor integrals to scalar integrals

Using the Lorentz decomposition of the tensor’ integrals (4.4) the invariant functions
T;Y . can be iteratively reduced to the scalar integrals Ty’ [18]. We derive the relevant

formulae for the general tensor integral.
The product of the integration momentum ¢, with an external momentum can be

expressed in terms of the denominators

1 ki ) 3
qpi= 5 [De=Do—fil. fi=pi—mi+mg. (4.12)

Multiplying (4.1) with p, and substituting (4.12) yields

N.k . TN Up
Ru - Tulu-uppk

1Py
=L (27[#)4—D$dpq[ qul "’q#P—1
2 in? Dg...Dy_Dysy - Dy_y

_qul “'qﬂp—l —fk 4y, "'un—l]
D, Dy, “*Dy.. Dy:

=4[ =T O — AT s (4.13)

Bi---p-) Hy-..hp-1
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where the argument k of the tensor integrals in the last line indicates that the propagator
D, was cancelled. Note that T 7L (0) has an external momentum in its first propagator.
Therefore a shift of the integration momentum has to be performed in this integral in
order to bring it to the form (4.1). All tensor integrals on the right-hand side of eq. 4.13)
have one Lorentz index less than the original tensor integral. In two of them also one
propagator is eliminated.

For P>2 we obtain one more relation by contracting (4.1) with g#” and using

g"°q,4,=q*> =Dy +mg. (4.14
This gives
Ry, =T 8T
_@m doq[uw.-z+mg uy = G ‘1}
in D,...Dy Dy ...Dy
[T, O +mTY ] (-13)

Inserting the Lorentz decomposition (4.4) for the tensor integrals T into (4.13) and (4.15)
we obtain a set of linear equations for the corresponding coefficient functions. This set
decomposes naturally into disjoint sets of N —1 equations for each tensor integral. If the
inverse of the matrix

12 P1P2 <o P1Py—1
Xy, = Pz:P1 p:z P:P:.V—l (4.16)
Pv-1Pv Py-1P2 .- P,%J—1

exists, these can be solved for the invariant functions T,vf_”l-p yielding them in terms of
invariant functions of tensor integrals with fewer indices (see egs. (4.18) and (4.19) below).
In this way all tensor integrals are expressed iteratively in terms of scalar integrals Ty’
with LEN.

If the matrix Xy_, becomes singular. the reduction algorithm breaks down. If this is
due to the linear dependence of the momenta we can leave out the linear dependent
vectors of the set p,....,py-; In the Lorentz decomposition resulting in a smaller
matrix X,. If X, is nonsingular the reduction algorithm works again. This happens
usually at the edge of phase space where some of the momenta p; become collinear.

If the determinant of Xy_,, the Gram determinant, 1s zero but the momenta are not
linear dependent®) one has to use a different reduction algorithm [29, 30]. This will be
discussed in Sect. 4.4.

Here we give the results for the reduction of arbitrary N-point integrals depending on
M <N~—1 linear independent Lorentz vectors in D dimensions for nonsingular X,.
Inserting the Lorentz decomposition of Ty and RY¥ as well as RM%

M
Nk _ N ep 5 Nk
RH1~--#P—1_T#1-~~MPP"- - Ril---iP—lpilul Pip_iup-y>
i1y.esip-1=0
M
N.00 _ TN Bpo1P — y N.00
Rm-nllp—z—Tlllmllpg - Ril"-ip_lpilp'l Pip_2np_2> (417)
i1y.eaiip-2=0

5) This can happen, because of the indefinite metric of space time.

|
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into the first lines of (4.13) and (4.15) these equations can be solved for the T,{"._‘ipr

1 M
TNi ; — RN 00 - RN:k A ,
00iy...ip-2 D+P—2—_M 1: .ip-2 kgl kll---lp—z:l
. P_l .
Ty oins = Xag e I:Rz‘.l.c.ip_; - Z ok T(%i,...i,_lirﬂ...ip_l] . (4.13)
r=1

Note that the numerator of the prefactor in the first equation is always positive in the
relevant cases P>2 and D> M. Using the third lines of (4.13) and (4.15) the R’s can be
expressed in terms of T¥ T .., and T "} , with ¢ <P as follows

ip-1? tip..ip-2

V 00 N
RYO o w=m3TY i
a ¥t M M. M

~ P—-2— M-1
revs meo (T T w0
kim1
Po2—g\ M1
+< 9 q> Z TN lklkz(0)+
- kika=1
P—Z—q> M= 1 N
+ 774, . (0)]
<P_2_q ki, kpzﬂ =1 k k N
. U - o ‘
RIS =7{T71V GO i i Mo M) LT Ly 19)
pot-q et P-1-g Poi-q
P—1—q\ M=t
— (=1t [TV 1,0+ < q) - ik, (0)
1 k=1
P_1—q\ M=t
+< q) S IO+
2 ki, k=1

P___l_q M-1
+ Th A 0
<P—1—q> P kpZ—14q=1 k- )}}

where i,....i,+#M and

1 ik, r=1,...,P—-1,
0 else.

O(kliy, ..., i,,_1)={ (4.20)

The indices i refer to the i-th momentum of the corresponding N-point function T but
to the (i—1)-th momentum of the N —I-point function TV~ 1(k) if i>k. Again the
arguments of the T’s indicate the cancelled propagators. The tilde in 7(0) means that a
shift of the integration variable ¢ — g — p,, has been performed in order to obtain the
standard form of these integrals. This shift generates the terms in the square brackets
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of (4.19). It is also the reason for the unsymmetric appearance of the index M in the
above equations. A different shift would result in similar results. An explicit example
illustrating the use of these reduction formulae is given in App. C.

The recursion formulae above determine the coefficients T; ., regardless of their
symmetries. Consequently coefficients whose indices are not all equal are obtained in
different ways. This allows for checks on the analytical results as well as on numerical
stability.

If the number M of linear independent momenta equals the dimension D of space-time
then the terms containing g,, in the Lorentz decomposition have to be omitted, since g,,
can be built up from the D momenta. In this case the coefficients T;" ;. are obtained
from the second equations in (4.18) and (4.19) with Tooi,.ip=0-

4.3. Scalar one-loop integrals for N <4

With the methods described in the last section all one-loop integrals can be reduced to
the scalar ones T3 provided the matrices X, are nonsingular. General analytical results
for Ag. Bo. Co and D, were derived in [28]. Algorithms for the numerical calculation of
the scalar one-loop integrals based on these results have been presented in [31]. Here we

give a new formula [32] for D, involving only 16 dilogarithms compared to 24 of the
solution of [28]. For completeness we first list the results for 4,4, By and Cj.

4.3.1.  Scalar one-point function

The scalar one-point function reads

p—
L m Y\ 2 D ) m*

Ao(m)=—m'< 1> F<1——>=m“ (A—log 5 +1>+O(D—4). (4.21)
dmp” 2 w

with the UV-divergence contained in

2

= ok}
A=y (4.22)

D_’;'L+10g4n

and 7 is Euler’s constant. The terms of order O(D—4) are only relevant for two- or
higher-loop calculations.

4.3.2.  Scalar two-point function

The two-point function is given by

1 2 2 x(p?,—mi+mI)+mi—isc
Bo(plo,mo,ml)zA—jdxlog [piox x(Pto 7o 1) 1 ]—I-O(D—4)
0

12

m mi —m? m, mgm; (1
=A+2-log OTl 421 log—l——o,—1 ——r)logr
K Pio mg Pio

+0(D—4), (4.23)
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where r and L are determined from

m3 +m?—pi,—ie 1
x% 4+ —2 thpw x+1=(x+r) x+—). (4.24)
oMy

The variable r never crosses the negative real axis even for complex physical masses (m*
has a negative imaginary part') For r<0 the i¢ prescription yields Imr=¢ sgn (r—+).
Consequently the result (4.23) is valid for arbitrary physical parameters.

For the field renormalization constants we need the derivative of B, with respect to pio.
This is easily obtained by differentiating the above result

] m3 —m? m, mom, {1
——— Bo(pio. Mg M) = ——02—1 log—l—i- 04 ! (——r) logr
6 Pio Dio my Pio r

1 2
- <1+r 1 logr>+O(D 4). (4.25)
r

3
Pio

4.3.3.  Scalar three-point function

The general result for the scalar three-point function valid for all real momenta and
physical masses was calculated by [28]. It can be brought into the symmetric form
ColPio- Pao~ My- My, Mp)=
1 x
—Jdx [ dy[p3 x> +ploy® +(p3o —Plo—Pi1) Xy
0 0

+(m? —m3 —p3)x + (mg +mi +p3y — pIo)y +my—ie]

1 2 —1 )
X =0 (== Vig Yie
1 —1 1
+rz<1—xm- -) log 22 —n(— Xigs >10g yo']
Via Yis Yia Yis

1=y
— (= %iss =Xi2) = 1 (Vi yio) = 2mi0(= ph) O(—1Im (¥;1 ,-))] log ; 0}, (4.26)
—Jio

with (i, j, k=0, 1, 2 and cyclic)
1 5 5
Yoi =5 [p2(p3 — pii — piy + 2mf —m} —mg)
J
— (p#— pE) (m? —m3) + a(pj, — mi +mi)],

xii = 2
2ij

[P —m} +mi £a,],
Yir =Yoi — Xix>
od =K(p§0a p%h p%())a

o =wk(ph mi, mg) (1+iepf), (4.27)
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and « is the Killén function

k(x,y, 2)=)/x*+y* + 22 =2(xy+yz +zx). (4.28)

The dilogarithm or Spence function Li,(x) is defined as
. L dt
le(x)=—f~t—log(1—xt), larg (1 —x)| <. (4.29)
0

The n-function compensates for cut crossings on the Riemann-sheet of the logarithms
and dilogarithms. For a, b on the first Riemann sheet it is defined by

log(ab) = log(a)+log(b) +n(a, b). (4.30)

All y-functions in (4.26) vanish if « and all the masses m; are real. Note that « is real in
particular for all on-shell decay and scattering processes.

4.3.4.  Scalar four-point function

The scalar four-point function Do(P1o- Pro- P30~ Mo My, My m3) can be expressed in

terms of 16 dilogarithms [32].
Before we give the result we first introduce some useful variables and functions. We

define

2 2_ 2
_mp+mi—pj

b= i j=0,1.2.3. 4.31)
and r; and 7;; by

X+ kgx +1=(x+ry) (x+1/r), (4.32)
and

X2+ (ky—ig)x+ 1= (x+7) (x+ L7y (4.33)

Note that for real k;; the r;’s lie either on the real axis or on the complex unit circle.
Furthermore

3
P(Yo, V1> V2. Y3) = Z kijyiy; + z sz, (4.34)
ji=o

0<i<j£3

Q(¥o» ¥1- 0, ¥3) =(1/roz —ro2) Yo+ (k12 —rozkot) V1 + (ka3 — oz ko3) V3o (4.35)
0o, 0, 3, y3) =(1/ri3—r13)ys +kiz—r13 ky3)ya + Koy —r13ko3) Yo, (4.36)

and x, , is defined by

It

a




(4.28)

(4.29)

e logarithms

(4.30)

t xis real in

:xpressed in

inctions. We

(4.31)

(4.32)

(4.33)

¢ unit circle.

(4.34)

(4.35)

(4.36)

i
[
)
)

where
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Toal13 {[P<1,i, 0, 0)—;‘3] [P(O, o,i,x>—is]
X Ti3 oz
x 1 . .
—I:P <O, _,—, O)—zs:l [P(1,0,0, x)—zs]}
13 Toz

=ax’+bx+c+isd=alx—x,)(x—x,),

a=kas/ri3 +rozkor —ko3roa/ris —kiz,
b=(ry3—1/ri3) {ros — 1/ro2) + ko1 ka3 — koz k12,
¢ =Koy /Tos +rizkaz —kosri3/ror — ki3,

d=kys—roskos —ri3kaz +ror713kos.

In addition we introduce

me=sgnRelalx,—x)]. k I=12,

and
Yo = X So = Fo3.
N = X T3, S1="o1.
Xpa = XTo2/ 13+ S2=T1s,
Xp3 = X T2 S3="ra3-
as well as

Finally we need

with b=1lim

x,‘,.?’=81i_’ﬂ(1)xkj as rijzslirréfij.
nla, b)

fila, b)=<27i[0(—Ima) 6(—Imb)— 6(Ima) 6(Im )]
0

b.

=0

for b not real,
for b<0,
for >0,

335

(4.37)

(4.38)

{4.39)

(4.40)

(4.41)

(4.42)
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Then the result for real ry, can be written as

1

my mymymy a(Xy —X;)

Do(p1os P20 P30> Mos My, My, my) =

x { i i (—1)/** [Liz(l + 5;%) + 1 (= Xij» S5) log (14 5;%x;)

i=0 k=1
. Xy 1 Xij
+Li, [ 1+ 4+ —x4 — | log| 1 +—
5 s; 5;
2 1
+3 (- 1+t [ﬁ(_xk’ Foz) [Iog(;-ozxk) +log (Q <_‘W ,0,0, 1) - i8>
k=1 X

0(0. 0, 1, rgp x{¥ .
+log <Q(fzr0—2xk_)+ i€y, 3k 5€0 (roz Im r13)>:|

1 >
+ﬁ<—xk, r—) [Iog <i>+1og (Q <% 1,0, O>— is>
T3 I3 A

0(1, 0.0, x N
+log (g('—ai—)“' i€7. 34 sgn (Im "13)>}

Foa . 1 ‘03 Xk
—l:ﬁ (—xk. ':0—'> +7 (;'02, ~——>} [log <M> +log <Q <r-:(‘;’~) L0, 0)— i8>
Fi3 Fi3 I3 Xk

0(0.0. 1, ro; X "
+log <Q(——Lk)+ ie7), 34 5E0 (o2 Im_"l}))}

d

+7 (Foz- L) 1 <— Xies —r°—2>]} : (4.43)
i3 i3

In the case that |r;;| =1 for all r;, the result reads:

1

my mymsmy a(X, —X;)

Do (P10> P20> P30> o> My, My, ms) =

X { i i (—1)7** [Liz(l + 8;%5;) + 1 (= Xgj 5) log (14 s;x;)

j=0 k=1

. Xy 1 Xy
+Li, <1 +ﬂ> 1 <— Xuj» —> log <1 +ﬁ>]
5; . S; 5;
2 1 (0) (0} x(O)
+ Y (1t [n <— Xes —> [log <—r§§) P (1. X o, o>——x" eby“_k) +log (—" ﬂ
r Xk Fi3 %] Fi3
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1
+ (=X, Fo2) [Iog (W P0,0,1, ry, xl(co))““role(co)sbh,s—k) +log(ry, xl(co)):‘
02 Xk

r 1 () (0)
_[’7 <_xk7 E) +7 ("02: —>] [IOg <"1_3w) P (0, 1, Toz % s 0)_—7‘0236;( Eb)’k.s—k)
T3 Fi3 Fo2 X Fi3 Fi3
Fog X0 r 1
+log <‘02—k>:'+(1_7k.3—k sgn (b)) n <_xks _£> n <"02: _>J} .
i3 i3 i3

¢ is understood as infinitesimally small.

4.4. Reduction of scalar and tensor integrals for vanishing Gram determinant

Using the four-dimensionality of space-time the scalar five-point function can be reduced
to five scalar four-point functions [29, 31]. Furthermore if the Gram determinant of the
external momenta of a tensor integral TV vanishes,

P% PiD2 - PPN
Xy |= P3:P1 P:z pZP:N—l =0, (4.44)
Py-1Py DPy-1D2 - pi-l—l

this tensor integral can be expressed in terms of N integrals T¥~'. This is always the
case for N = 6, because any five momenta are linear dependent in four dimensions.

4.4.1.  Reduction of five-point functions
Here we assume that the four external momenta appearing in the five-point function

span the whole four-dimensional space.®) Then the integration momentum q depends
linearly on these four external momenta and the following equation holds

2¢* 2qp, - 24p, 2D+ Yoo 2qp, - 24qp,
022[).1‘1 217% 2P.1P4 _ D1—D0+'Y10—Yoo ZP% 217.1P4 (4.45)
2psq 2papy - 2173, Dy—Dy+Yso—Yoo 2psp; - 2Pi
with
Yy =m?+m} —(p—py)2, (4.46)
and D; as defined in (4.2). Thus we have
2Dg + Yoo 2qp; - 24qp,
(2n_u)‘*"’jd,,q GG |Di=DotTio=Yoo 201 - 2pipel o (4.47)
in? DyDy - Dy : : :
Dy—Dyg+Yyo—Yyo 2pap, - 217%

%) The exceptional case, when they are linear dependent will be covered in the next section.
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Expanding the determinant along the first column we obtain

2pypy v 2pibs
0=[2T . O +Yo D) 11| : :
2papy 2paPa

4.
+ Z (— 1)k [Tﬂ4’#l...‘up(k)—T‘l4‘l1.‘.}lp(0)—p4}lTﬂ4;..“lp(0)

k=1

+ Day T:l ...up(o) + (Yo — Yoo) Tus,;, ...u,,]

2p1u 2p4u
2pipy v 2pipa
X|2py—1P1 " 2Pi-1Pa (4.48)
2pe1Pr 0 2Pk P
2papr 2Pi

where the arguments of the function T* denote again the cancelled propagators.

Since the four momenta p;..... p, span the whole four-dimensional space. the basis of
the Lorentz decomposition of the tensor integrals in (4.48) can be chosen such that only
tensors built of these momenta but not the metric tensor are involved. T, (k) does
not depend on p,, consequently each term in its Lorentz decomposition contains a factor
Piu. ik, and its contraction with the corresponding determinant in (4.48) vanishes.
Similarly all terms in the tensor integral decomposition of T e @ +pa, T, 0)

a4

{

Hy-..Hp

involve a factor p;, —pa,, =1, 2.3, if one performs the shift g — g —pas 10 bring the
tensor integral to the standar

d form. Multiplying with the determinants and performing
the sum in (4.48) these terms drop out. Finally in the term p,, T, (0 the determinant
is nonzero only for k=4 where

it can be combined with the first term in (4.43). Rewriting
the resulting equation as a determinant and reinserting the explicit form of the tensor
integrals we find

Do+ Yy 2gpy - 2qpa
(2n.u);*”’§dpq Gu, " ue | Y10~ Yoo 2 2hpel g (4.49)
in DyD,--D, : :
Yio— Yoo 2pPaPi 2pi
Using
2p;p; = Yi;— Yio — Yo;+ Yoo, (4.50)

2qp; =D;j— Do+ Yo;— Yoo>

adding the first column to each of the other columns and then enlarging the determinant
by one column and one row this can be written as

This
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i Yoo Y04
0 n‘tu-up(o) + YOO T:i-nup T;f; ---up(4) + Y40 Tusx ~Mp

0 Yio— Yoo Yia—You =0. 4.51)
0 Yao — Yoo Yoo —You

This is equivalent to

Tﬂsxﬂp _T;:tﬂp(o) -—T:l;llp(l) —7—;‘4;#?(2) _7114;#1’(3) _’1—;14;#}1(4)
t YOO YOI YOZ Y03 Y04
1 Y, Y, Y, Y, Y,
10 11 12 13 14 :0, (452)
1 YZO YZI Y22 Y23 Y24
! Y}O le Y32 Y33 Y34
1 Y40 Y41 Y42 Y43 Y44

which can be solved for T, , if the determinant of the matrix Y ,j=0,....4 is
nonzero. Note that in the tensor integral Tu“l.__up(O) the momenta have not been shifted.
In particular (4.52) yields the scalar five-point function T in terms of five scalar four-

point functions.

4.4.2. Reduction of the scalar N-point function for zero Gram determinant

For vanishing Gram determinant |Xy_,| the following relation holds. if the Lorentz
decomposition of the appearing tensor integrals contains only momenta and no metric
tensors. which is the case for N2 5 or P=0 (scalar integrals)

Dy + Yy 2g9p, o 2gpyoy
(27T.ﬂ);_D“‘-dnq Qu, """ Yup Ylol_Yoo 217% 2P1{7Av—1 —~0. (4.53)
In DyDy - Dy : : :
Yy-10— Yoo 2py-1py - 217321—1

Performing the same manipulations of the determinant as in (4.49) to (4.52) above this
results in

Towe =T 2500 —TI7L (1) — T (N=1)
1 Yoo Yo1 . YON—I
1 Yio Y. Yin-1 =0, (4.54)
1 YN—lO YN—ll YN—lN—l

valid for |Xy_|=0 and N=5 or P=0. We stress again that in the tensor integral
TV ,.(0) appearing in (4.54) the momenta have not been shifted. Eq. (4.54) determines

T .., in terms of TN7Y (i), i=0,..., N—1, if the determinant of the matrix Y, is non-
zero. The vanishing of the determinant corresponds to the leading Landau singularity
of T which is clearly not contained in T"~!. In this case one has to calculate TV

directly [30].
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Eq. (4.54) in particular expresses Ty’ by Tg'~'. For N=35 (4.54) coincides with (4.52),
which is thus valid for arbitrary momenta. For N >6 one can choose any six out of the
N denominator factors resulting in different reductions. For N <4, where (4.54) is only
valid for scalar integrals, the Gram determinant is singular at the edge of phase space
where some of the momenta p; become collinear, i.e. for forward or backward scattering
or at the threshold of a certain process. Because in this special situations all integrals can
be reduced to lower ones one can obtain considerably simpler formulae than in the
general case (see e.g. [33]).

With the methods described in this section all tensor integrals with N =5 can be
reduced directly to tensor integrals with smaller N. Note that this may yield tensor
integrals with P> N because P is not reduced simultaneously as in the reduction method
described in Sect. 4.2. These tensor integrals are not directly present in renormalizable
theories. Nevertheless their reduction to scalar integrals can be done with the formulae

given in Sect. 4.2.

4.5. UV-divergent parts of tensor integrals

For practical calculations it is useful to know the UV-divergent parts of the tensor
integrals explicitly. We give directly the products of D—4 with all divergent one-loop
tensor coefficient integrals appearing in renormalizable theories up to terms of the order

Oo(D—4)

(D—4) Ag(m) = —2m?,

(D—4) By(pyo- Mmg. m1y) =2,

(D—4) B{(pyg. mg. M) =1,

(D —4) Boo(p1o- Mo my) =L(ply—3mi—3m}).

(D —4) By (p1g. mg. my) =3,

(D —4) Coo (P10~ P20~ Mo My, M2) =—1

(D—4) Cooi(P1o- P20~ Mo» My, M) =1

(D —4) Doooo (Pio~ Pros Paos Mos My My M3) = —77. (4.55)

All other scalar coefficients defined in (4.7) and (4.8) are UV-finite.

5. Standard Matrix Elements

5.1. Definition

The invariant matrix elements for scattering and decay processes involving external
fermions and/or vector bosons depend on the polarization a;, o and 4, of these particles.
This dependence is completely contained in the polarization vectors &, (k;, A;) and spinors
U, (pi, 07) and u, (p;, 03). ki, P and p; denote the incoming momenta of the vector bosons.
antifermions and fermions, respectively. For outgoing fermions one has to replace p. p’
by —p, —p’ and one must use u(—p)=uv(p). If we split off the polarization vectors and
spinors from the invariant matrix element .# we are left with a tensor involving Lorentz
and Dirac indices in the general case
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M=, (D1, 01) .. Dy (Dhs On) Mgt ts, g (1 01) - g, (Das O)
&, (ks A1) o 8, (s o) (5.1)

To be definite we choose m external vector bosons and n external fermion-antifermion
pairs. The tensor .#}' ™ can be decomposed into a set of covariant operators together
with the corresponding scalar formfactors F;
MLm= M F (5.2)
i

We call the covariant operators ./, *7 multiplied by the corresponding polarization
vectors and spinors standard matrix elements .4;

My =0, (DY, 61) o Oy (P ) ML g, (P1s 01) - g, (Pns On)
X2, (ks A1) e 8y (s om)- (5.3)

In this way the invariant amplitude .# is decomposed into polarization independent
formfactors F, and the standard matrix elements .#;

M= MF. (5.4)

The formfactors F, are complicated model dependent functions involving in general the
invariant integrals TV and the counterterms. The standard matrix elements in contrast
are simple model independent expressions which depend on the external particles only
but contain the whole information on their polarization. They are purely kinematical
objects. All of the dynamical information is contained in the formfactors.

The covariant tensor operators forming the standard matrix elements can be con-
structed from the external four-momenta p;. p; and k;, the Lorentz tensors g** and &***"
and the Dirac matrices 7#,ys. In general one thus obtains an overcomplete set. Dirac
algebra and momentum conservation are used to eliminate superfluous operators. Since
the external particles are on-shell, the Dirac equation for the fermion spinors

P: u(p;, 0;)=m; u(p;. ;).

o(pi, a7) pi = —m; o(p;. 07) (5.9
and the transversality condition for the polarization vectors
kive, (ki 4;)=0 {5.6)

reduce the number of independent standard matrix elements further.

The number of independent standard matrix elements cannot be larger than the number
of independent polarization combinations of the external particles. In four dimensions
there are only four linear independent four-vectors. Expressing all four-vectors in a
definite basis allows to derive the missing relations between the remaining standard
matrix elements. Thus a minimal set of standard matrix elements can be constructed.

If there are only few external particles there may be less independent standard matrix
elements than different polarization combinations, since there are only few momenta
available for their construction. In this case some of the polarized amplitudes are related.

The number of standard matrix elements can be reduced further if the model under
consideration exhibits certain symmetries. These evidently also apply to the relevant
standard matrix elements.

For many applications it is not essential to minimize the number of standard matrix

elements. All one needs is a complete set.
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Furthermore the choice of the standard matrix elements is not unique. This allows to
arrange for the most convenient set according to simplicity, the structure of the lowest
order amplitudes and, if present, symmetries. At least some of the formfactors can be
chosen as generalizations of the lowest order couplings. This is useful in establishing
improved Born approximations.

The concept of standard matrix elements is not indispensable for the calculation of
amplitudes in higher orders. It is, however, extremely helpful in organizing lengthy
calculations, which often are inevitable. All complicated expressions are cast into the
formfactors which are polarization independent and thus have to be evaluated only once.

An alternative method would be to calculate directly the polarized amplitudes. This
requires a definite representation for the spinors and/or polarization vectors from the
start. The whole calculation has to be done for each polarization separately. A closer
look shows that this method can be represented as a particular case of the standard
matrix element approach. The corresponding covariant operators are constructed from
the polarization vectors and spinors instead of the momenta, Lorentz tensors and Dirac
matrices. Their explicit form is

H B _ (_ 1)n Uy (P1.01) Uy (Pn.0)) Upy(P1.0y) g, (Pns6n)
hayaanBrofn T 2m Tt 2my 2my T 2my
*x (] 2 * - 1
xer (ks Ar) oo ef (Kps Am), (5.7)

where m. m’ are the masses of the external spinors. The indices i correspond to different
polarization combinations. Consequently the number of different standard matrix
elements equals the number of polarizations of the external particles. For each
polarization only one standard matrix element is nonzero. In this sense the set of standard
matrix elements (5.7) is orthogonal. The formfactors equal the polarization amplitudes
and are directly obtained by inserting explicitly the polarization vectors and spinors in
the invariant matrix element. Unlike in the approach outlined above these formfactors
are no direct generalizations of the lowest order couplings.

In the following we list complete sets of standard matrix elements relevant for the
production of bosons in fermion-antifermion annihilation.

5.2. Standard matrix elements for processes with two external fermions

In this section we will give the standard matrix elements for processes involving two
external fermions (FF) and one [or two] scalar (S) or vector (V) bosons. The momenta
and spinors of the fermions are denoted by py, p, and v(p,) = 6(p;, 61), u(p,) =u(p2. 02).
the momenta and polarization vectors of the bosons by k,,& =¢(k;.4,) [and
ky. ¢, =¢(k,, 4,)]. The numbers of different polarizations for each scalar, fermion and
vector boson are 1, 2 and 3, respectively. If we use momentum conservation to eliminate
ky [or k, + k,] the standard matrix elements are constructed from the momenta p, and p,
[and k, —k,], the polarization vectors of the vector bosons, the totally antisymmetric
tensor &**¢° and Dirac matrices between the spinors. If there are products of e-tensors,
pairs of them can be eliminated using

gua guﬁ gw gué
va v vy vd
vea Lo g 8 g’ 8
ghveo gafiyd — - o or 05 (5.8)
g 8 g g
gazz gaﬂ gay ga'é
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If any of the left over ¢-tensors are contracted with four four-momenta, we write for one
of these momenta p*=%{p,y*} between the spinors. Now all remaining é-tensors are
contracted with one y-matrix at least and can be eliminated using the Chisholm identity )

Suvgayd = _i[VMYVyQ - guvy@ + gpgyv_ gv@yu] Vs- (59)
All Dirac matrices contracted with p, or p, can be eliminated using Dirac algebra and
the Dirac equation. Consequently the only remaining Dirac matrices are contracted with
polarization vectors [and k, —k,] and there is at most one of each type. Finally in the
scalar products involving the polarization vectors only one [or two] independent
momenta may appear because of transversality and momentum conservation.

Thus we arrive at the following sets of standard matrix elements (we suppress
polarization indices in the following):

52.1. S—FF
There are 2x2=4 different polarization combinations but only two standard matrix
elements

M7 =1u(py)w, v(pa), (5.10)

1ty . ;
where 0 = + and w, = and the fermions are outgoing.

522 V—FF

Replacing the scalar by a vector results in 3 x2x2=12 different polarizations and yet
only four standard matrix elements

M =1(py) § g v(P3)-

M3 =1(p;) W, v(P2) e Pr- (5.11)

52.3. FF—SS

Here the number of independent polarizations four equals the number of standard matrix
elements

MY =0(p;) 3(k, — k) w, u(py)s

M3 =0(py) 0g u(p2)- (5-12)

524. FF—SV

In this case we find twelve standard matrix elements for 2x2x3=12 different
polarizations

7y Eq. (5.8) and (5.9) can be applied because the standard matrix elements involve only external
vectors and spinors which remain four-dimensional also in dimensional regularization.
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MT=0(p,) 2 05 U(p2),

M3 =v(p,) Sk, — k) o, ulpy)e; pys

M3 =0(py) 3k — K)o, u(ps)expas

MF=0(py) 2 ks w05 u(p2),

MS=v(py) o, u(py)es Py,

Mg =0(p;) 0, u(p2) &, ps- (5.13)

525 FF—VV

There are 2x2x3x3 =236 different polarization combinations, however, we can con-
struct 40 standard matrix elements

MY =0(py) £y &1—P )2 0, u(ps),
M3 =0(py) sk — k) (61 82) 0, u(ps),

M3y =0(p)E W, u(pz) (e2ky).
M3, —0(p1) #2 w, u(p,) (g1 k3),
MYy =0(py)é) @, ul(ps) (82P1),

|

Mi, = —0(pr) 2w, ulpy) (6, p1).

M3 =0(py) 3Ky — k) wg u(ps) (61 ky) (e2ky).

M =b(py) Tk — k) g u(p2) (€1 p1) (€2 P2).

%7 . =0(py) 3k, — Ks) w, u(py) (e, ks) (622)s
2 =0(py) 3k, —k2) @, ulps) &1171)(! ki)

/{11 =0(p1) ¢ #2004 u(pa),

My =0(p) wg u(ps) (€182),

M3 =0(p))f1 Ky 0, ulpy) (1K),

M3, = 0(p1) ks #r wp ulpa) (81 k3)s

Mia = 0(p1) 1 Ky 0, u(p2) (€2P2),

Ma, 2 =0(p1) Ky #2 0g u(p2) (1 P1)

Mis =0(p)w, u(ps) (& kz) (62Ky),

Mg =0(p;)w, u(ps) (€1p1) (€202),

Mi7,1=0(p) wg u(py) (61 k2) (6202),

Mi7,2=0(p) 0, ulp2) (6101) (€2 k1) (5.14)

We have obtained more than 36 standard matrix elements because we have not yet used
the four dimensionality of space time, i.e. the fact that the five vectors p,, p,, k; —k;,
g, and &, are linear dependent. The relations between the 40 standard matrix elements
can be found by representing these vectors in a certain basis using for example

=D, + Dy, V3=P; — P2, V3=ky; — ks, V4, =8,,,,01v4v5. In this way one can derive the
relation
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0=2(p, p, —mymy) (M + M7)

—2(pyky—m3—mymy) M3 —2(piky —mi—mymy) M3,

(% + (e ) Ay — 2003 Uy k) MG — DM+ 2( M + M)
—2(my(m3 — py k) +my(mi — py ky)) (M7, — M)

+(my +my) (pypy —mymy) Miz—2my M3 —2my M,

+(my +my) Qullia,y +2 My, — Mis— 4 M)

+(3m, +my) M +Bmy+my) A (5.15)

and a similar independent one allowing to eliminate four of the 40 standard matrix
elements (5.14).

The construction of complete sets of standard matrix elements described above is
straightforward. The reduction of general structures to these standard matrix elements is
therefore easy to implement into computer algebra programs. In practical applications
some of the standard matrix elements may not contribute due to the presence of
symmetries and/or the neglection of fermion masses. These aspects will be discussed
together with the applications in the following chapters.

5.3. Calculation of standard matrix elements

For the calculation of the standard matrix elements one has to choose a certain
representation for the polarization vectors and spinors. This has to be done only once
for each process and not in the calculation of individual Feynman diagrams. If there are
at least four external particles the polarization vectors can be constructed from their

four-momenta respecting

ki-e¢; (ki £4)=0,
eilkp Ag) ek 2)=—0, 5. (5.16)
We thus obtain for ¢,
. 1
CZ(kZ'H) = B 5 313 B P 3 2
1/ P1P2(2pykaprky—k3pypa) +pip3ks —p3(piks)” —pi(p2ka)”
1
X S 2 B £ 2
V (paky+piks)® —ka(py +pa)”
x [ p5(p1(py + p2) k3 — pika(paka + pyks))
- P‘f(Pz(Pl + Pz)k% —paka(p> ky+py kz))
+ K4(py P2 (prky — Paka) + P31 ky — pTpaka)]
(5.17)

={0, cos 3,0, —sin 3)

1
/P p2(2p1kapaks —Kip: pa) + Pp3 k3 — 3 (P Ko)* = pi(paka)
:(0, 07 13 O)

i3 v e 9
& vgaplplkl

ehlky, L)=

2

(5.18)
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1
ehlky, L)= [/kz [Paka t pika) — K20y 7 2] (k3 (p2ks + piks) —(py + pa)k3]
2Dz Ry TPy Ry)T — K3 P2 T Dy

=(k, E, sin 8, 0, E, cos 8)/|/k3, (5.19)

where we have also given the simple expressions in the CMS-system of the fermions and
bosons. In this system the four-momenta of the external particles read

P12 =(E1,2a 0,0, F[pl),
kl,Zz(El.Zv $Ikl Sin 87 0’ $1k| Cos ‘9) (520)

EL , are the energies and p the three-momentum of the fermions and E, , the energies and
k the three-momentum of the bosons. § is the angle between the spatial vectors p and k.

From the polarization vectors given above the ones for helicity states are obtained as

1

eh(ky. 1) = 7 [eh(kan ) Lieh(kon L)), eh(ks. 0)=¢h(k,. L). (5.21)
y

The polarization vector g, can be obtained by interchanging 1 « 2.

For the case of only three external particles one needs a further independent vector. It
can be chosen freely but linear independent of the momenta. Using this additional vector
as one of the polarization vectors the others can be constructed using (5.16).

Inserting the polarization vectors (5.19) into the standard matrix elements these can be
reduced to the ones for external scalars. i.e. to (5.10) for the decay V' — FF. and to (5.12)
for the annihilation processes FF — V'V, VS. To calculate these remaining Dirac matrix
elements one either inserts a definite representation for the spinors or evaluates the
quantities .47*.#]" via traces and reconstructs ..#; from those if needed. Note that for
the calculation of |.#|? to one-loop order one only has to evaluate the products . #”*. 4]
for those values of i, where F; is nonzero in lowest order

M2 = My + 5. 1,2~ | M| * + 2Re [ HES. M)
=Y Fof(Foo+20F ) Re L M7* U]} (5.22)
ij

Here .#,. F7, denote the lowest order quantities and J.#,, 6 F, the one-loop quantities.
0 i,0 q 1 i1 P q

For massless external fermions the Dirac matrix elements (5.10) and (5.12) are
equivalent to the helicity matrix elements. They do not interfere and can thus easily be
obtained from |.#/|? as

0{p1) w, u(p;) =|/2p.p2,

o(py) (k; — k) 0, u(py) =]/4p1(k1 —ky) pa(ky —ky)—2py patky —ky)?. {5.23)

If one is only interested in unpolarized quantities it suffices to calculate X, .47 * .4/
using the polarization sums for vector bosons and spinors.
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6. Calculation of One-Loop Amplitudes

We have described all the ingredients necessary for the calculation of one-loop radiative
corrections. This chapter shows how one-loop amplitudes are evaluated in practice.

First one has to specify a Lagrangian and to derive the corresponding Feynman rules.
Then renormalization has to be carried out and the counterterms have to be determined.
Both were done in Chap. 2 and 3 for the SM. Once the Feynman rules and the counter-
terms are fixed, the following steps apply to any renormalizable model.

To calculate the amplitude of a certain process at the one-loop level one has to
construct all tree and one-loop Feynman diagrams with the given external particles
allowed by the specified model. Next each Feynman diagram has to be reduced
algebraically to a form suitable for numerical evaluation. This procedure is explained in
more detail in Sect. 6.1. Finally the expressions for all diagrams have to be put together
into a numerical program which calculates the amplitude and the corresponding cross
section or decay rate.

6.1. Algebraic reduction of Feynman diagrams

The algorithm for the reduction of one-loop diagrams is the following. The loop integral
obtained from the Feynman rules contains a product of propagators as denominator and
a numerator composed of Lorentz vectors and tensors, Dirac matrices and spinors and
polarization vectors of the external particles. The numerator is simplified using tensor
and Dirac algebra, the mass shell conditions for the external particles and momentum
conservation. One can also try to separate terms proportional to one or more of the
denominators. Cancelling these vields N-point functions of lower degree. Next the loop
integral is organized into the tensor integrals defined in Sect. 4.1. The Lorentz decom-
position of these integrals is inserted and the whole Dirac and Lorentz structure is
separated off from the integrals. Using again Dirac algebra and mass shell conditions it
can be reduced to the appropriate standard matrix elements as discussed in Chap. 5.

We thus arrive at an expression of the form

5.4 =Y .U;SF, (6.1)

for each one-loop Feynman diagram. The formfactors are linear combinations of the
invariant coefficient functions of the tensor integrals with coefficients being functions of
the kinematical invariants.

The formfactors can be further evaluated by applying the reduction scheme for the
invariant integrals described in Sects. 4.2 and 4.4. Finally they are obtained as linear
combinations of the scalar one-loop integrals 44, By, Co and D, which are given explicitly
in Sect. 4.3. This last step may lead to very lengthy expressions. Their algebraic evalu-
ation needs a lot of time and space. This can be avoided by performing the reduction to
scalar integrals numerically. :

The evaluation of the counterterm diagrams and the Born diagrams is done in a
similar way. Since no integrations have to be performed their calculation is much easier.
In most cases the counterterm diagrams can be obtained from the Born diagrams by
replacing the lowest order couplings by the corresponding counterterm.
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et W W+

v, Z
e~ w-
w

Fig. 6.1. Box diagram contributing to et - WTWT

As an illustration of the reduction method we present the explicit calculation of a box
diagram contributing to ete” — W*W™ (Fig. 6.1). According to the Feynman rules the
corresponding contribution to the invariant matrix element J.# is given by (we include a
global factor i in the Feynman rules in order to obtain real amplitudes)

with

4.2
Sl = —i T yr
25w
2 Bp) g+ k=P o ulp) g ontls
Cn)P [g7 =M1 [g+k)? =My (g+k —p)’ [lq—ky)* =M@l "
r}.ug:giu(zq+k1)g+gug(—q—2kl)l+ggi.(k1 —q)u‘
Fiav:g).a'(_kl_q)\-+gav(2kl—q’}.+gv)_(2q_k2)rr' (63)

Evaluating the numerator and introducing the tensor integrals D and C we arrive at

+Duv[21}‘“¢2 2k, —ky)’
(=268 ks —8ples +2phel) i ks 8e)

—fy (=2 k] —8phe] +2piel)— kK v e 8e
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i (A M2 +3My +2p k) —4ks ek, +4phesky)
—¢3(8‘1‘(3M§-l—3Mp2y+2p2k2)+4k‘1‘81k2—4p'1‘£1k2)

¥ (2ky —p)e e, — 8 E2py + 88561 1)

+he, 6, (ME—3MP +6p k) + kv ¢, B ky+ 4§ 77Ky 46k, ]

+ Do [#, (k1 — 1) ¢2(M§—4k1k2)+k18182(klfy—2p1k1 —3M3)
+¢182k1(4p2k2—2M5V+21M§)—¢281k2(4p1k1—2M,2V+2M§)]
+C[h 7" — 2 361 — £ 385 T 7" erea]
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The three-point integrals arise from g*> terms in the numerator by writing
g*=(q? — M2)+ M2 and cancelling the first denominator factor. After that the shift
g— q—k;+p, was performed in the three-point integrals (this shift conserves the
manifest CP symmetry of the diagram). The arguments of the C and D functions are as

follows

D=D(k;, ky —p1, —ky, Mz, My, 0, My),

C=C(P1, —pZﬂO’ MW* MW) (65)

Inserting the tensor integral decomposition egs. (4.7), (4.8) yields the final expression

5.l = °‘2:4W {47 [20 Do +2(4 My — 5) D + 2(M3 + 1) Do

w

(12 M2 + 41 —25)Dyy +2(4 M —5) Dy + (16 My — 65+ 2M7) Ds

F(2t—25+6ME+ M3) Dy +(EMF, —2s+ M3) D]

+ .45 [—4Cy—16Dgg3 — 8 Doz + 10 Dgo + 2 D3z + 2(ME +1) (Dsz + Dy3)
+2(MZ +30)Day + 2(MF, — 21+ MZ) Dy +(M2—1)D,+(t—3M3)Dq]

+ [ M +-45.]1-3C, +2Cy —8Dgo3 — 8 Do +(4s— 11 Miy +56)Dy3
3(M3 + 1) Dys — 202 M7+ 1) Doy + (1 =4 Miy —3M3) Dy + 2(MZ—1)D,]
S [ M+ #2][4Co+3Co—8Dopa —26Dyo + 2(s—4ME)(Ds3 + Dy3)
—2(t 4+ 2 M) Doy 4 (A5 —20—18 M) Day

(45 —8 M2 —2M Dy +(t—4Mf—3M7)Da]
+.45{16D,;3+8D3—8Dy3]

4 M [8Dagy + 16Dy + 24Dy +32D53 +16 D ]

P [T+ M2 ] [BDs3s+8Dans + 8D 23 +8Dy + 16D,51), (6.6)

where we introduced the standard matrix elements (5.14), the Mandelstam variables

2

s=(py+pa)~. % 6.7)

t=(p, —ky)

and put

ki=ki=Msp. pi=p3=0. (6.8)

Furthermore we made use of the relations which follow from the symmetry of the
diagram under the exchange et e, WY — W~ (CP invariance) ’

D, =D, Dy, =Ds3, Dy; =Dy,

Doo1 = Dooz» D112 = Diszs Dyzp =D,

Dy =Ds3s, Dy3=Dys3, C,=0C,. (6.9)
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These reduce the number of independent invariant integrals considerably. Note that not
all of the 40 standard matrix elements of (5.14) appear in (6.6). This is due to the
neglection of fermion masses and CP invariance of the box diagram.

This example shows that the reduction method is straightforward and universally
applicable to one-loop Feynman diagrams, since they all have a similar structure.

6.2. Generic Feynman diagrams

The huge number of algebraic calculations makes the evaluation of each Feynman
diagram very lengthy and tedious. Furthermore there are a large number of diagrams
contributing to each process. Fortunately many of the diagrams resemble each other in
their algebraic structure and can be considered as special cases of generic diagrams.
These are the Feynman diagrams of a theory with only one generic scalar, fermion.
vector boson and Faddeev-Popov ghost each and arbitrary renormalizable couplings
between those fields (for more details see [34]). It suffices to do the algebraic calculations
for these generic diagrams only. All actual diagrams are obtained from those by sub-
stituting the actual fields together with their coupling constants and masses. This saves a
lot of work especially if there are many fields in the theory.

Clearly the generic diagrams can be calculated with the methods described above. The
efficiency of generic diagrams is illustrated in the next section using the decay of the
W-boson into massless fermions as example.

6.3. The decay W — f; fj’ for massless fermions

We will now apply the methods described above by calculating the one-loop amplitude
for the decay of the W-boson into massless fermions

W k) — fi(p) f} (ps). (6.10)

In lowest order there is only one Feynman diagram (Fig. 6.2) leading to the amplitude

eV, _ eV, ~
My=——="—1(p) e(k)w_v(py)=——= 4 . 6.11)
l/zs;y V’.‘.’.Su’
fi
W+
f,

Fig. 6.2. Born diagram to W—»fif_j’

Neglecting the fermion masses the amplitude (6.11) leads to the following lowest order
decay width

OLMWVZ

X Mw o 6.12
G 28%,! 24l (6.12)
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At one-loop order there are six loop diagrams and one counterterm diagram (Fig. 6.3;

the counterterm is indicated by a cross).

fi

f;

Fig. 6.3. One-loop diagrams and corresponding counterterm diagram to W—»fif_j’

The first two loop diagrams correspond to one generic diagram and the other four to
another generic one. We first calculate the two generic diagrams. The expression for the
first reads

dPq 1

2m)® (g>—M?) (g +py)? (g — p,)?

u(p) 7 (gr o +gl 0 ) (g+p1) #(g5 w-+ g3 w,) (4 — ps)

(g w-+gyw,) v(p,), (6.13)

O My =ip*~P |

where g* denote the generic left- and right-handed fermion-fermion-vector couplings.
Simplification and decomposition into tensor integrals yields

dPq 1
2 (@ —M?)(g+p,)* (g—p,)?
u(py) [=2(g—p2) £(g+p1) +(4—D) (4#4)] (g7 g5 g7 w_ + g1 g g 0,) v(p,)

v/ =i,u4_Df

= —Toa7 4(P1) [2—=D) Cou v 47" +2C, (P2 $7 — 14 91) + 2 Co p1 £ 1]
(818285 w-+8 8783 ws) v(py)- (6.14)
Insertion of the Lorentz decomposition and further simplification gives
Ol = — 5= (87 85 85 M1 +3g1 g g3 M)
[(2—D)*Cyo—2k*(C1, + C, + C, + Cy)].
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Finally the reduction of the invariant integrals and the use of (4.55) leads to

Sy = — (g g5 g5 M + 81 8383 M) : i
i t
2 i

[—2k>C,(0, k2,0, M. 0,0) (1 + M2

— By (k?, 0, 0) (3+23)+2B,(0, M, 0) Q+%y-2]

L (gigrer M +giedgl M) Vil 12,0, M. 0.0), (6.16) :

where we introduced the generic vertex function ¥, which is defined in the general case
in App. C.
Similarly we obtain for the second generic diagram ¢

Sty = — iy " dPq d(py) 7 (@i - +8f @) (—d) 7,(85 0 +83 @) v(pa)
2 @2mP £Iq+p)? — M [g—p2)* — M3]

23[8ou(P1 +2P2— @y —8u(2P1 T P2 T @), + 84029 +p; —P2)u1¢"

=k g,(grgs M+l g AT [4(D—1)Coo—2k*(C12 + Cy + C3)]

= gy(grgs A +8igs - 4) (
[2(M3 + M2 +52) €,(0. k2, 0, 0. M. My) —(L+ ViTME) B (k2 My M) \

+(2+25) By (0. 0. M)+ (2 +53) Bo(0. 0. My)]

=gy (grgr A +gigs A0) Y (O k2,0.0. M. M,). (6.17)

The general definition of ¥~ can again be found in App. C.

Inserting the actual couplings and masses of the six actual diagrams into the generic
diagrams and adding the counterterm diagram. which can be easily obtained from the
Feynman rules or the Born diagram. we find for the virtual one-loop corrections to the

invariant amplitude for W— f, f;

e o B
2Vl

Sl = —
V/ESW 4n

(0,0, %20, M3, 0. 2. 0. 0) + g7 87740, Miy, 0. Mz, 0, 0)
+0,7,7(0, M%,0,0. 4 My)—Qp 75~ (0, M3, 0,0, My, 4)

w

+§—:% gj:'_ 1/1;_ (0, MPZVw O’ 0,‘ MZ> MW)—%; gj—" ‘Vl;_ (0’ M%V! 07 05 MW! MZ)

L LSZEM A A0ZL 0 Zy + 2~ ) (6.18)
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The left- and right-handed couplings g¢ of the fermions to the Z-boson are defined in
(A.14). Note that only one out of the four standard matrix elements (5.11) is contributing
there and that we need no counterterm to the quark mixing matrix for massless fermions.
The counterterms are expressed in terms of the self energies in Sect. 3.3. These have to
be calculated to one-loop order to determine §.# completely.

0.4 contains infrared divergencies. These are regularized with a photon mass 1. They
drop out in the decay width if the contribution from the decay W — f, f/y is added. This
will be discussed in more detail in Chap. 7.

The example above was rather simple. If we keep the fermion masses finite or consider
processes with more external particles the number and complexity of F eynman diagrams
raises considerably.

N

6.4. Computeralgebraic calculation of one-loop diagrams

The procedure of generation and algebraic reduction of Feynman diagrams as described
above is algorithmic and can be implemented in symbolic computation systems. There
are several attempts to create such systems for high energy physics calculations [357. In
addition there exist special packages written in general purpose languages [9, 10, 11, 12].
In particular the MATHEMATICA packages FeynArts [11] and FeynCalc [12] have
been developed for the automatic calculation of one-loop diagrams following the
approach outlines in this paper.

sl o i

FeynArts generates all graphs to a given process in a specified model together with
their combinatorial factors (weights). It yields both analytical expressions and drawings
of the graphs. There is a version under development which uses the concept of generic
diagrams. It creates all relevant generic graphs together with a list of all possible sub-
stitutions yielding the actual graphs.

FeynCalc performs the algebraic evaluation of Feynman diagrams. It starts from the
output of Feyndrts and uses exactly the reduction algorithm described above. It can deal
with generic diagrams. The FeynCalc output can easily be translated into FORTRAN
code.

SR e e e A e

7. Soft Photon Bremsstrahlung

As mentioned in_the last chapter the virtual one-loop corrections to the decay matrix
element W f, f/ are infrared divergent. These divergencies originate from photonic
corrections and show up in any process with charged external particles.

However, these processes are not of direct physical relevance since they cannot be
distinguished experimentally from those involving additional soft external photons. Since
the photons are massless their energies can be arbitrarily small and thus less than the
resolution of any detector. Therefore in observable processes in addition to the basic
process those with arbitrary numbers of soft photons are included.

For these observable processes one obtains theoretically satisfactory results. Adding
incoherently the cross sections of all the different processes with arbitrary numbers of
photons, all infrared divergencies cancel [36]. This cancellation takes place between the
virtual photonic corrections and the real bremsstrahlung corrections order by order in
perturbation theory. To ome-loop order one only needs to consider single photon
radiation. For the cancellations only the soft photons, i.e. photons with energy ko, <AE,
are relevant, where AE is a cutoff parameter, which should be small compared to all
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relevant energy scales. Photons with energies ko, >AE are called hard. They can also yield
sizable contributions especially arising from photon emission collinear to the external
charged particles.

In Sect. 7.1 we introduce the soft photon approximation and show that in this
approximation the bremsstrahlung diagrams are proportional to the Born diagrams. The
corresponding soft photon cross section for arbitrary Born diagrams is given in Sect. 7.2.

7.1. Soft photon approximation

Attaching soft photons to a charged external particle line of an arbitrary Feynman
diagram yields diagrams which become singular for vanishing momentum of the soft
photon. This divergence arises from the propagator of the charged particle generated by
the inclusion of the radiated photon line. In the soft photon approximation the momenta
of the radiated photons are neglected everywhere but in this singular propagator. This
approximation is valid if the matrix element of the basic process does not change much
if a photon with energy AE is emitted, ie. the basic matrix element is a slowly varying
function of the photon energy for ko<AE. This is not the case if the basic process
contains a narrow resonance as ¢.g. in e"e” — p*u”. Then one must either choose AE

small compared to the width of the resonance or take into account the strong variation
exactly [37, 38].

We now extract the soft photon matrix elements for external fermions, scalars and
vector bosons. The general renormalizable couplings of these particles to the photon

allowed by electromagnetic gauge invariance are (momenta are considered as incoming):

F

A

f\f‘r‘\_f‘\f< =—ieQp7,- (7.1)
F

57
f&}\ﬂf\(/ = —p 7.2)
~ ieQs(p—p- (7.2
NS,p
V‘:’Pl
Ak . o
s =+leQngg(p—p)u_leKV[kgguv—kvqu]' (73)
Vo

Quartic boson couplings do not give rise to [R-singularities and are thus not relevant in
the soft photon approximation. The terms involving the charges Q are obtained directly
from the covariant derivative with respect to QED. The term proportional to k. which
contributes only to the magnetic moment, is gauge invariant by itself. Further terms
present in the yWW coupling in the SM do not contribute for physical vector bosons.
Since we will use the unitary gauge in this section they drop out. In renormalizable
gauges their contributions are cancelled by those of the corresponding unphysical Higgs

bosons.
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Consider first radiation from a fermion line. Let the basic matrix element without soft
photons be

u%=amwm=l¥~{22, (7.4)

where u(p) is the fermion spinor with momentum p, p> =m? and A(p) the remaining part
of the matrix element. Inserting one photon (polarization vector &, momentum k) into the
fermion line yields

ek
F’ ’—,_f—I—/
.

i(p—k+m)
(p—k)*—m?

=A(p—¥k (—ieQré) u(p). (7.5)

Anticommuting p — 3k with ¢ and using the Dirac equation this can be written as

My = 67Q“"k
—2p

Alp—k) [2ep—iea, k"] u(p), (7.6)

where a,,=%[+,.7,]. The denominator 75 contains the IR-singularity. Neglecting all

terms proportional k in the numerator we obtain the soft photon approximation
24 ep
M= —eQp — AP ulp)=—eQp — M. (7.7
kp kp

Note that the contributions of the magnetic moment term, the second term in the square
bracket in (7.6), are neglected in the soft photon approximation and that the soft photon
matrix element is proportional to the Born matrix element. For an outgoing fermion
(u(p)) one finds in the same way

ep
My =eQp iy o (7.8)

This is equivalent to (7.7) apart from a minus sign originating from the different charge
flow.

For an external vector line with polarization vector &, (p) the basic matrix element is

Ve
Mo =A,(p) &y (p) = ’U\M@ : (7.9)

24 Fortschr. Phys. 41 (1993) 4
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The corresponding soft photon contribution is obtained from

M= A (=) (p—k;i—MZ ( av_(p—k)];’/l(zp—k)v) £ (p) £ (6)
ie[Qy 8, (2P — k), — 1y (K, 8w — Ky 8115 (7.10)
using
ey p=0 (7.11)
as
/ﬂl,s=—eQV§Zﬂo. (7.12)

It is proportional to the Born matrix element and independent of the contribution of the
magnetic moment «, of the boson V. Again an outgoing vector yields an extra minus
sign.

The soft photon matrix element for an external scalar line is derived analogously.

Radiation from internal charged lines or quartic vertices does not lead to IR-
singularities and is neglected in the soft photon approximation.

Summarizing, the O(x) soft photon matrix element corresponding to an arbitrary
matrix element .#, can be written as

Ep;
Ml,ﬁ—ev//oZ_(iQ.-) k‘;, (7.13)

t
where p;, O; are the momentum and the charge of the i-th external particle and & is the
outgoing photon momentum. The + sign refers to charges flowing into or out of the
diagram, respectively. The soft photon matrix element is always proportional to the Born
matrix element. The proportionality factor depends only on the charges and momenta of
the external particles.

7.2 Soft photon cross section

The soft photon cross section is obtained by squaring the soft photon matrix element
(7.13), summing over the photon polarizations and integrating over the photon phase
space with |k| S AE

d d 2 3k +0.p.0.0;
dQ Jg dQJo Cn) | 5ar 20 5 pikpik

where

o =1/k* + 22 | (1.15)

and + refers to the relative sign of the i-th and j-th term in (7.13). As in the virtual
corrections the IR-singularities are regularized by the photon mass 4. Note that: these
integrals are not Lorentz-invariant due to the integration region. The basic integrals
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a*k 2p;p;
I;= Zhib; (7.16)
|k|SAE 2y pikpjk
have been worked out e.g. by T HoorT and VELTMAN [28].
The result is

3

ap;p; {1 1 (ap,)* 4AE*

=4t —5—— log —
’ (@p)®—pf |2 p} A?

1 uo—ful . uo + [uf . up—fu \ [*7%7
+| —logz =2 Li,{1— +Li,(1— AV
[4 8 uo—l-lul+ 12( v 2 v w=p, (717

b

2 2
_ {xp)* —p; (7.18)

2(apio — Pjo) '

with

and « defined through

o2 p?—2ap;p, + p> =0, ﬂi‘;’:—p"ﬁw. (7.19)
j0

For p; = p; this simplifies to

4AE? -
I“=2n{log LT L Po o Po IR (7.20)
A Ip] po+Ipl

1 4AE? 2 1., po+
Iy=2n— P4 {_10 potlpl o = _Li2< lpl )__10 > PotIpl
(Po+40) Il (2 Po—Ipl A po+Ipl 4 Po—IDl
1 + 4AE? 2 1 , o+
PRI Chall [ —Liz< L >——Iog“q° 'pl}. (7.21)
2 T go—Ipl 4 do+1Ipl/) 4 9o —pl

Inserting the results for I;; into (7.14) yields the soft photon cross section. Adding it to
the one-loop corrected cross section for the corresponding basic process the IR-diver-
gencies cancel and the limit 4 — 0 can be taken.

Although the inclusion of the real soft photon emission is sufficient to obtain IR-finite
results, it is often not adequate for real experiments, because realistic detectors do not
provide a sufficiently small resolution AE/E necessary for the validity of the soft photon
approximation. Therefore also hard photons (with k,>AE) are important. Their con-
tribution is UV- and IR-finite and can be treated separately. One merely has to make
sure that the soft and hard part are properly adapted to each other.

Hard photon corrections are treated with methods different from the ones presented in
this work. Their contribution depends sensitively on the experimental setup. They are
usually incorporated by Monte Carlo simulations [15].

24*
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8. Input parameters and leading higher order contributions

In order to complete all ingredients necessary for the calculation of radiative corrections
we have to specify the input parameters. This is done in Sect. 8.1. The leading higher
order corrections which become important for precision experiments are discussed in
Sect. 8.2.

8.1. Input parameters

In its original symmetric version the SM depends on the parameters (2.21), which are
essentially the couplings allowed by the SU(2)y x U(1)y symmetry. These were replaced
by the physical parameters (2.22), i.e. the particle_masses the electromagnetic coupling
constant, and the quark mixing matrix. In the]on-shellj renormalization scheme the

renormalized parameters are equal to these physical parameters 1 all orders Of

_perturbation theory.
The numerical values of the physical parameters must be fixed through experimental
input. However, this input may not necessarily consist of direct measurements of the

renormalized parameters; it_may be obtained from any suitable set of experimental
Tesults. In practice one uses those experiments which have the highest experimental

accuracy and theoretical reliabiiity. 1his criterion 1s certainly fullilled for the following
ST Of paramecters whose numerical values are taken from [397:

e the fine structure constant

a=1/137.0359895(61)

corresponding to the classical electron charge e=|/4nx.
e the masses of the charged leptons

m,=0.51099906(15) MeV, m, =105.658387(34) MeV,
m,=1784.11%- 7' MeV,

e the mass of the Z-boson [5]
M;=91.177(21) GeV,

e and the Fermi constant
Gp=1.16637(2) - 107> GeV 72,

which is directly related to the muon lifetime.

We do not use the W-mass as input parameter because it is experimentally not known
with comparable accuracy.

Besides the above lsted well known parameters the still unknown masses of the top
quark and the Higgs scalar are kept as free parameters. If the minimal SM is correct, the
present experimental data restrict the top quark mass to the region 80 GeV <m, <
200 GeV [5,8]. For the Higgs mass we use 40 GeV<My<1TeV, where the lower
bound is experimental [5] and the upper bound is favored by theoretical consistency
arguments. If not stated otherwise we will use the values m;=140 GeV and M, =100 GeV.
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The quark mixing matrix elements V;; are directly taken from experiment. We use the
parametrization of Harari and Leurer [40] as advocated by the Particle Data Group and
choose the following numerical values for the parameters in agreement with [39]

512 =0220, s,5=0.046, s,5=0.007 (8.1)

and 0 =0 for simplicity. This yields approximately the following numbers for the quark
mixing matrix elements:

Via= 0975, V,= 0220, V,,=0.007,

us

Vg=—0220, V.= 0974, V,,=0.046,
V= 0003, V,=-0.046, ¥, =0.999. (8.2)

It remains to discuss the masses m, of the light quarks (g=d, u, s, ¢, b). In the electro-
weak Lagrangian the quarks are treated as free particles with appropriate masses. This is
not correct due to the presence of the strong interaction. Therefore the quark masses can
at best be considered as somewhat effective parameters. Fortunately in typical high
energy experiments (s> m;) theoretical predictions depend on the quark masses only
through universal quantities such as the hadronic vacuum polarization or the quark
structure functions. These can be directly determined from experiment. Nonuniversal
contributions are suppressed as m_/s and thus negligible for sufficiently high energies.

For processes without external quarks only the hadronic contribution to the vacuum
polarization

Z‘AA
[144(5) = 211 (8.3)
s
is relevant. In perturbation theory the contribution of light quarks is given by
Aae=32 ¥ 02(2—tog 7). (8.4
e 3n d,u.s,c,b ‘ 3 mg

The large logarithmic terms contained in (8.4) constitute a dominant contribution to
the radiative corrections. They originate from the charge renormalization in the on-shell
scheme at zero momentum transfer (see eq. 3.32) involving

0T (k)

HAA 0)=
© ak?

(8.5)

k2=0

In this quantity nonperturbative strong interaction effects cannot be neglected. Since no
reliable theoretical predictions are available one has to extract I144(0) from experimental
data. Writing

1154 (0) = 11755 (0) — Re [115 (s) + Re [T54(s)
= —Re [134(s) + Re IT{EA(s), (8.6)

the unrenormalized hadronic vacuum polarization IT34(s) can be evaluated perturbatively
for s>>m} and the renormalized one Re IT4(s) is given by the dispersion relation




