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Abstract

A renormalization scheme for the electroweak standard model is presentedin which the electric
charge and the masses of the gauge bosons, Higgs particle and fermionsare used as physical para-
meters. The photon is treated such that quantum eloctrodynamics is contained as a simple sub-
structure. Field renormalization respecting the gauge symmetry gives finite propagators and vertex
functions. The Ward identities between the Green functions of the unphysical sector allow a re-
normalization that maintains the simple pole structureof the propagators in the ' Hooft-Feynman
gauge. We give a complete list of self energies and all renormalization constants also in the un-
physical Higgs and ghost sector. Explicit results aregiven for the renormalized self energies, vertex

functions and boxes that enter the evaluation of 1-loop radiative corrections to fermionic processes.
)

We calculate the 1-loop radiative corrections to purely leptonic reactions like u decay, v,e
scattering and y pair production in ete~ annihilation. A test of the standard model is performed by
comparing these low energy data with the results of the PP collider experiments for the W and Z

boson masses.

1. Introduction

The recent discovery of the W and Z bosons at the PP collider at CERN [1] with values
for the masses of these particles very close to those predicted by the GLASHOW-SALAM-
WrINBERG model [2] was an important step in establishing this model as a good candi-
date for the gauge theory of the electroweak interaction. But also the experiments with
low momentum transfers (|g?| <€ My?) [3] and at e*e™ storage rings [4] contribute to a .
steady improvement of the determination of the structure and parameters of the electro-
magnetic and weak interaction. The accuracy of these experiments has reached a level
which requires the inclusion of radiative corrections for an adequate theoretical dis-
cussion. This will be even more the case when the e*e™ machines with energies up to
100 GeV, which are dedicated for the investigation of the detailed properties of the elec-
troweak bosons, go into operation [5].

The standard model is a non-Abelian gauge theory of the electroweak interaction
where the masses of the particles are generated with help of the Higgs mechanism. The

1) supported by the Deutsche Forschungsgemeinschaft.
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renormalizability of quantum fielq theories of thi
't Hoo¥r [6]. This means that those parts occuring in the evaluation
grams of higher order which without regularization would become ultraviolet d;

can be absorbed by renormalization of the fields and couplings. The imporia,riicle

rerormalization constants is not only to absorb diver

orm : : 'gences but alg

defxr}ltlon of the quantized field theory. The finite parts of the imomple
— fixed by the renormalization conditions — influence the p

perform a renormalization of the gauge fixing parameters in such a way that their
poles are situated at M2, My?, 0.

We add some comments on the relation of this scheme to previous work by other
uthors. .
The on-shell scheme (i) with ¢ and the particle masses as parameters has been widely
sed for various applications in the last years [8—12, 15]. Counter terms in the physical
ector and amplitudes for scattering between spin 1/2 particles are Presented in ref, [8]
in a unitary gauge calculation.
. A vanishing renormalized photon-Z° mixing for on-shell photons (i), which allows to be
s close as possible to QED, has also been used by the authors of ref.s [8, 11, 12, 15], The
treatment of field renormalization in [11, 15] differs from {8, 12] and ours, since more
renormalization constants than symmetry multiplets are introduced. For physical
-matrix elements the results should be equivalent. This is also the case for the scheme
without field renormalization [10].
The method of SaxaxiBara [12] to generate counter terms and his renormalization
conditions are nearly identical to ours in the physical sector; for the unphysical gauge

renormahza,tion cons ‘

weé,k mixing angle is not unique beyond the tree level., ‘
‘onsequently several different schemes have been proposed in the it ‘
o ” erat Ty
The greater part (10, 12—55] deals with processes where |2 < I w?, like i greia[ : a,nl‘ :
sca,ttermg:; re.fs. [9, 11, 16, 17] consider high ¢* e*e- annihilation, An attempt fg;
characterization can be made using the following criteria : ‘

— Schemes with and without field renormalization; in the latter case S-matrix el part is not renormalized, according to Ross and TaYLoR [12]. One consequence of Sa-
ments _but not the Green functions such as self energies and 3-point vertex functio kakibara’s procedure is that the relation sin? Ow=1— Mp?M,?is no longer valid in
are finite. : - higher order. This should not affect physical results if My, M, are rigorously used and

auxiliary quantities avoided in final results. Since the evaluation and renormalization

tions are finite but have complicated pri
latter case.

_ Determmatlon of th.e parameters from low energy experiments like @ decay aﬁd 5 possible so far. However, Ross and TAYLOR [12] claim that in this scheme which has no
seattering or from high energy experiments i.e. measurements of the W, Z masses gauge parameter renormalization the poles of the individual unphysical propagators

Of course, not all
categories,

The intention of this paper is to give a self contained and elaborate discussion of the
_ standard model renormalization and to provide the basis for the calculations of radiative
corrections, in particular to ete— annihilation, deep inelastic scattering and PP anni-
hilation with g% =~ My®. The paper is organized as follows:

Sect. 2 of this paper contains the definition of the complete Lagrangian and its parame-
ters, sect. 3 the discussion of the Slavnov-Taylor resp. Ward identities, sect. 4 the re-
normalization conditions. The complete list of the Feynman rules including the counter
terms can be found in the appendix A. Tn.sect. 5 we list the 1-loop formulas for the un-
renormalized self energies, the fermion gauge boson vertex functions and the renormali-
zation constants. We give also all the unphysical Higgs and ghost self energies together
with the renormalization constants which have not yet been presented so far. Sect. 6
. contains the renormalized boson self and mixing energies and simple formulas for the
renormalized gauge boson fermion vertices for arbitrary momentum transfer. Numerical
results are shown for those self energies, vertices and box diagrams that enter the radia-
tive corrections to electroweak Processes between fermions. In the last section 7 we

Ppapers on electroweak radiative corrections fit simply into one of the

Ip tl_u's paper we present a renormalization s
which is defined ‘by the following conditions :

cheme for the standard electroweak mod

i) The p!]ysical Parameters are the electric cha
the Higgs mass and the fermion masses. Thi

Darameters. cp = cos 6, = M, w/M 4,
to simplify the formulas,

-i1) Real photons couple to the electron without any admixture of Z° contributions, The-
refqre the% Q_ED subpart of the model is realized in a simple way. Consequently pho-
tonie radiative corrections can be treated separately ; especially for e*e~ — ff they
can be taken over from pure QED calculations [18, 19].

iii) ’Complete field renormalization respecting gauge invariance and the use of the
% Hooft-Feynman gauge lead to UV finite renormalized Green functions reflecting
phe gauge symmetry structure. We investigate the restrictions of the Slavnov-Taylor
identities for the renormalization of the unphysical Green functions. Especially we

[
apply this renormalization scheme to the purely leptonic reactions y decay, vue scatbering
and lepton pair production in e*e~-annihilation. A test of the standard model is perfor-

med using as input the experimental data for these processes together with the measu-
red values for My and M, (1]
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This completes the construction of £, in terms of the fields W2, B,, ¢, y*, p*and the

2. The Renormalized Lagrangian and the Feynman Rules of the Standard "
. pa,ra.me ers

Eleciroweak Model

2.1 The classical Lagrangian, parameter and fields 925 915 s 1%, Gia- (2:8)

Gaugg theories.of the electroweak interaction are constructed in such a way that 4 Z¢ is Invariant under local transformations of the group SUE) X Uh:
energies and in lowest orderthe experimentally successful Fermi model ig r);co el
the case of the standard model [2] the universality of the weak interaction is re‘;elre

th.e form of the gauge group SU(2) x U(1). The gauge symmetry is spontaneoys} -
with help of a minimal Higgs mechanism with a § U(2) doublet of scalar fields stch
the eleqtromagnetic gauge invariance U(1)*m is maintained, The standard modeulc 1
to predict from low energy experiments the masses My, I z of the heavy gay, l? 0
W<, Z. The existence and main properties of these particles have reeeit% }{fe e
firmed by experiments at the PP collider [1]. e
an’gl}eerillai,zs;c;ir%?granglan of the standard model .%,, is composed of the gauge, Hiz

Fo=Lyy + Ly + Zp.

7= exp |i010,0) — % Yoot

=0, o= {a, ¥}. ’ (2.7)

_ A formulation where the physical content of the theory is more — but the symmetry
less — transparent can be obtained by performing the following transformation of the
gauge fields:

According to the gauge group § U(2) X U(1) we have an isotriplet W,%(z) and an isosin

; : Wi = (W, T iW2[)2,
let B,(x) of gauge fields with gauge coupling constants g, and g, leading to the Yan, ’ " N

Mills Lagrangian: M M2\l
= FVZV W3+ (1 - M"Z’z) B,, (2.8)

1
T = =5 QW — W 4 g2 Wep — L a8 _gp.
4 # M\ s Mw
The complex Higgs doublet g(x) A= — (1 M ZZ) Wi+ M, B

and using the following parameters:

)= () = (o s el )

. : & My, My, My, m;, (2.9
with hypercharge ¥ = 1 is coupled to the gauge bosons and has a self coupling : with
2 _ 9192 _ i o ~
Tn = Dug)* (D) — = (ig)* + 2 jgfe =G Mw=owlVZ, M= g2+ g Y7,
with the covariant derivative: My =12 u, Mie == giot Y2/A. (2.10)

Each of the parameters (2.9) is directly accessible to experiments since for their deter-
mination measurements of the Thomson scattering cross section (for the electric charge e)
and of the masses of the W boson, Z boson, Higgs boson and the fermions are required.
This is the reason why we prefer the set of more physical fields (2.8) and parameters (2.9)
as the basis for the formulation of the electroweak Lagrangian .7¢. It may be that for
low energy processes the use of other parameters like the Fermi constant Gr and the
weak mixing angle 6y is more convenient [10, 12, 13]. The relation between M, ws Mz
and G, By to lowest order is:

D,=28, — gl W2 + 4, EY B,.

The left-handed fermion fields ¥j(z) are grouped into doublets (7 = doublet index
o = component of the doublet) of the weak isospin, the right-handed fields pf(z) into
singlets, the hypercharges respecting the Gell-Mann Nishijima relation Q= I;’”—J— Y/2
T.‘he Lagrangian ¥, which describes the interaction between the fermions, the gauge
fields and the scalars then has the form?): | :

Lr = X Wiy Dyl -+ §RiyrD oy R, 5

< ) ] e V2 = maj2Mu2 (1 — My M),
+ (—9udlio®l — g GRGpE 1 g, GR o0 — g9 vl + b)) @10
(2.5) cos Oy = Mw/M,.

Depending on the specific renormalization scheme some of the relations (2.8)—(2.11) get

2) We do not write explicitly colour indices and the Cabbibo transformation of the quark fields i.e.
corrections from higher order contributions.

we assume the coupling matrix 9i; = 9:9;; to be diagonal.
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2.2 Gauge fixing and ghost fields A= ZHZPy 2R, g (WP ut) (Z9)7F,

f;z‘:l:lli:ﬁzzniggstreatment of the quantization of ¥¢ and higher order calculations i v - (ZP)H2 (v — Ov),
o) of thet Hoctet ; ;er:enormahza,ble gauge. We introduce linear gauge fixings T Gio — (Z7) 1R Ziog,, -
Fe = (EW)712 W & F {Mp(2,7)1V2 gt o> 1408, v >ZMue, o >Z%, T
Fo = (5312 00,3 — My £y, These definitions of renormalized fields and parameters induce corresponding expressions

for the fields (2.8) i.e. W%, Z,, A, and the parameters (2.9). Writing

FB — (¢B)-1/2 B, — (M — My (EB)V2 . Z,= 14 6%, (2.18)

Then we add to £, the term we obtain f — £ -+ 6f where the expression for £ in the renormalized quantities is
identical with the original one, but now contains the renormalized physical parameters
and fields. The quantities 6Z;, v, 6u?, 6&;* occur in the counter term Lagrangian d4.7.
Their finite parts have to be fixed by the explicit renormalization conditions. Before
doing this we study the restrictions which are imposed on the renormalization procedure
by the Slavnov-Taylor identities of the theory.

The Feynman rules belonging to .¥ and the counter terms from d.¥ are listed in app. A.

1
iy = ——2—2(F“)2

and introduce the Faddeev-P I i o i
e oduce ev-Popov ghost fields u(a) resp. u¥(a), ui(z), w(z) with the

Zpp = THx) ub(x) = T Kb,

OF=
60%(x)

A particular choice of the gauge parameters & is: 3. Slavnov-Taylor Identities

W _ W _ — —
V=W =83 =t3 —gB=gB— 1, 3.1 The Becchi-Rouet-Stora transformation

This *t Hooft-Feynman gauge has the advantage th :
oft-F ge that at least to lowest order the pol
of the longitudinal parts of the gauge hoson propagators, the unphysical Higgse f};;)lg:

9%, i and the ghost fields are situated at My® or M,2 and th i iggs
field mixing occurs. " @ fnd fhatmo gange flelfl e

With 5 and £pp we have completed the construction of a renormalizable Lagrangian
£ =L+ Lx + Lo (2.16) ~ D, = {W,4(z), Bua), 9l2), vh(x), vE@))» 3.1)
5B, = (4 + g*T5B) o6 ®2)

The original gauge invariance of £ is lost after the introduction of #5y and ¥ zp but the
_‘complete Lagrangian ¥ is invariant under gauge transformations involving also ghost
_ tields u*(x). In order to discuss this point we use the following condensed notation for the
_ fields and their transformations:

for the standard electroweak model,

The inhomogeneous term 4, acts only on the gauge field part of @, 7 denotes the rep-
resentation matrices of the SU(2) X U(1) generators. The transformation under which
£ is invariant — the Becchi-Rouet-Stora transformation [22] — is constructed in such
a way that the parameters of the infinitesimal gauge transformation 8¢ contain the
ghost fields:

o) = wrw) - 1. ‘ (3.3)

2.3 Multiplieative Renormalization

The I:Ja,grangia.n (2.16) is the starting point for the calculation of Green functions and S

matrix elements including radiative corrections. We renormalize not only the physical

pa,ra,me.ters but also the fields in order to arrive at Green functions that are finite. For
S-matrix elem.ents: the results should of course be equivalent to those obtained without
fleld renormalization (see e.g. SIRLIN [10]). Since symmetry arguments were important
in the construction of £ we perform the multiplicative renormalization of . in such &
way that the gauge symmetry is respected :

(7 is independent of « and has ghost number —1). Since (3.2) together with (3.3) defines
a gauge transformation .7 is still invariant. The transformation of the ghost fields u®, 7=
is defined in such a way that Fsy + £rp is also invariant:

W > (Z"2 W,a, B, (7,3 B,, ome = Fe -1, ' (3:4)

@ — (ZP)2 g, Sut = —(K-1y# §Kbmpy = —% Cebrubyrj,, (3.5)
Vi > (@l yR s (Zgiye R,

. ~ where F* is the li fixi tor (2.12), K the Faddeev-Popov kernel (2.14
go — Z W (Z, )81z 72, 01— ZB(Z,B)-20 . 18 the linear gauge I1Xing opera [¢ ) P (¢ )

~and 0 the structure constant of the gauge group.
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and end with:
RAZLY + 2MpEWe) — Mp2Ee — 0,
R(Z,7 — %M, 5%%) — M2 = 0,

3.2 The Slavnev-Taylor identities

The BRS symmetry of .¥ induces symmetry relations between the Green functiongof

theory. They can be derived ina compact form with the help of the path integral f

malism. The generating functional W of the Green functions v, , = 0T, .. 0 (3.14)
n 1 £

Xy =0,

T, =" “MW
e 8y 8y Jime k(X2 — iMZvr) = 0.
is defined by: As a consequence of U(1)°™ gauge invariance the longitudinal photon self energy vanishes
P - R i . identically as is the case in pure QED.
Wi, @, @] = [ DS, DuDu exp { J &L + Do, + ot 4 @usf}. (3.7) By adding the appropriate counter terms (app. A) we arrive at identities for the
I‘ﬁere ;Vel(}ilave introduced sources j, for the fields ®, ans sources w*, @ for the (anti)  renormalized self energles £
ghost fields. From the invariance of £, D@, and DuDu under BRS t i0ns ora 23 W Vo) 230 — (k2 2) k2 LR
obtains for W the identity: ° ransformations one k (fl‘ + 2My S ?) = MyLe = (& Mw?) (K62, 95,7)
— Mp2(087 + 6Z%) — 6 My?],
ot . s ot ) ) .
{'LF [E:' +J: (Agﬂ + 7%, E) “iéw“iéwﬂ} Wi, 0, @]lgmgp = 0. (L7 — 2M 570 — M 25 — (k2 — M%) [R2(0Z,7 — 8&,%)

. . — MP(0&,% + 8Z°) — SM 7,
f‘rom this Sls,vnow{{-Taylor identity [23] follow the desired relations between the Green
unctions v by taking suitable derivatives with respect to the . i
afterwards all j, = 0. P sourees 7y and Pitte
A sp.ecial class of.relations, those which do not directly contain Green functions of
ghost fields, results if the gauge fixing operator F* is applied to eq. (3.8):

14 16
7 [__ 5} 2 [— 5;} Wlflljwo = 32 W[0]. 3.9

2o = BA6Zy — O8y), ) " (3.15)
(E177 — M Em)

— 627 — 050%) + My (azlwz — 627 4 0507 %65#).

As a consequence of these results the number of independent renormalization conditions
for the unphysical propagators A%, 4,5, A% is reduced. But eq. (3.15) is compatible
with a renormalization where the poles of these propagators are located at 3/ w2 M2, 0.
This means that the structure which is realized in lowest order in the Feynman gauge
can be maintained in all orders by a suitable renormalization of the gauge fixing para-
meters &f,.

We do not work out the relations like (3.9) between the “unphysical” parts of higher
(8.10) Green functions since we do not need them for the investigation of the restrictions on the
: renormalization constants in the unphysical sector.

Let us have a look now at the ghost propagators. Differentiation of eq. (3.8) with re-
spect to the sources of the gauge fields yields:

[R#A%B (k) + M AFE) + 5G9 (k)] 6O — &)

T}.ﬁs. equation relates the gauge boson propagators A:h(k) to the gauge boson Higés
mixing propagators 4,°(k) and the unphysical Higgs propagators Ati(k):

ele A7) + 2M kA Wo(k) + My2av) — —s,
B AZ (k) — 2z'Mka,,Zz(k) + M2Ar(ky = —3,
R s, (k) = —,

Rl 472(k) — M A () = 0.

In or.der to get relations between self energies X' we decompose the gauge field propaga-
tors into their transverse and longitudinal parts

kb = — 0 [ digGer,(k, —k + g, —q), (3.16)
kx
J“‘f(k)=(- o+ ”)Aaﬂkz — B AR ~ Oree > vy
P Ju 72 7P (k?) 7 A (&%), (3.11) ‘ KH + My -+ ky =
. - 4 4 i -4 i
make use of the Lorentz covariance of the gauge Higgs mixing propagators ; ! !
e . 1 . 1
A at — [ — !
A,54(k) = R A4 = ok, P T = =i m&;ﬁ cvs
x Y

split off the free parts of the propagators
Here G*/(k) denotes the ghost propagator and Ge#, = (0| (Tu=ufW,?) |0) the gauge field
— ghost three point function. Eq. (3.16) is in lowest order the usual relation between the
longitudinal part of the gauge field propagator and the ghost propagators, in 1-loop

A /L. o, 1
) = o (5 " ) m)
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order it allows to determine the ghost self energies from X8, X« gnd the diagram oﬁ t
r.h.s. An important consequence of €q. (3.16) is that renormalization in the ghost sector
can be performed in such a way that the poles of the ghost Propagators remain at . W
M2, 0. : : :

The identities (3.16) read in 1-loop order for the self energies:

3.3 Generalized Ward identities

The identities (3.10) and (3.16) relate unphysical parts of Green functions. In analogy to
the QED-Ward identity [24] between the eey-vertex and the electron propagator we can
derive from eq. (3.8) by differentiating twice with respect to the sources of the fermion

Zpk?y — Sri2) = % B2By(k2; My, My), fields identities relating fermion vertices to fermion propagators: i

Prss
c & ¢
S = Z) = — o T — M) Byl My, My, T Mo &
. . q 6'
Z) — M Z) - Sk = — = L IRk My, Oy, (3.17) 2
7T Sy :
= x gf7l., g”f{L,

Z(}.2 . Zy(7.2 Sz « oy’ 3 * $

LA (R?) — M Z%(k2) — S7(k?) = D (B — Mz®) By(k2: My, My,

47 sp?
2R + My EWoE2) — SW(i2)

o

2
= ) |2 By, ) - B M ol.

bz, (k, p, @) — DMk, p, 9) = WGF(E) [gPT%,.8:" 7 (q) + S¢"(p) gFT L. ]
+ g Th [ G ke, — 2,7, @)
+ 7 [ dQ (&, g — 1, p, 7) T,
3.19

C

It

Sw

where the singular 1-loop integrai B, is defined in eq. (5.4). Adding the appropria,t»e;

counter terms of app. A we obtain the identities for the renormalized self energies: with

T = —yT,.

The physica,l content of these identities can be seen by evaluating them in 1-loop approx-

imation and inserting the results (3.17). Neglecting terms of order & - m,/| (]/EE, My, M z)
the following generalizations of the ordinary QED-Ward identity are valid:

w455k, p, 9) + 4,7k, p, ) = e[ Z(p) — Z(g)],

s

2 ~ 1
Sy —Sr—p (azgr — 887 — 5087 + = By My, Mw>)

Bt — Sm— _pe (azzrz — 82 %65#) g ez 25777)
. o (3.20)
+ oo (B — M) By(k*; My, My),

in sy 2 1
(3.18) ke A,%(k, p, @) — AYk, p, @) = e [g (Z4p) — ZU) - 5 (20 —~ 2‘*(9))]
. & . 1 :
Ep7 — M S — 5or — _ja (6Z2VZ — 627 — 5 651?2) and similar relations for the other fermion generations. The vertex functions 4,7 are
the 1-loop contributions to the amputated 3-point Green functions 7y The fermion

& ey self energies X% follow from the propagators:

1

+ 5 MA(62,7% — o8y 7) — s, KR Bo(k2, M, My);
s W = — my + J(p) = p — my, + Iy A+ Py I+ m I, (3.21)
£47 — iM S0 $a

’ “ As a result the QED identities for each separate charged fermion are replaced by similar
identities for the fermion doublets. In addition we have found analogous relations for the
vertices of the fermions and the heavy gauge boson Z (written for the first fermion
doublet):

o

« Cy
47 sy?

S 1
= (k* — M) (azgz — 807 — 85,7 + By(k?: My, MW)),

2P MyEwe 5w BHAZE, p, ¢) -+ A2, p, @)

S 1 & font e T l—w, 1 14y 11—, |
= (k2 — My?) |8Z,W — oZ7 — —_gew o & [OW 2 My - p) =8 L 2TV 5, . b -
( W )[ A ~3 SEW + o (swz By(k2; My, My) = e [2 ) 3 5 3 3 2q) + Z‘e(p)( 5 3 +sw)
' 1 ’,
+ By#2; My, o>>]. (3.18) +(% ;“ _sws) ze(qu, (3.22)




698 M. B6ru et al., On the 1-Loop Renormalization

IC"(ApZW(k: P q) — A#de(k’ P q)

=

e " 11—y, 2 1 14, 2
= owow [2 ®) (E'T e} SWZ) - (E'T 3 Sw2) 0
11 1 11
a IV 2 Tty 1
‘1"2(10)( 5 3 +§SW)+<§ 3 —gswz)Z"’(Q)J
4. Renormalization Conditions in the On-Shell Scheme

';[‘he s.tydy of the counter terms in the Lagrangian and of the detailed Sla,vnov-Ta,y]or
identities allows us to formulate explicitly the renormalization conditions. There
only the ultraviolet divergencies occuring in the loop expansion are absorbed in the in.

finite parts of the renormalization constants but also the finite parts are fixed, These:

leaq to physically observable consequences. As already mentioned in the introduction
various more or less elaborate renormalizations for the standard model are used in the

Literature. They differ in the choice of the physical parameters and the Pprescriptions for

ate from each other only on higher order terms it may be that the 1-loop corrections

itself calculated with a low energy renormalization scheme and applied to high energy

experiments differ from high energy renormalization calculations.
We present a renormalization scheme which is defined by the following conditions?):

— The poles of the renormalized propagators lie at My?, M 2 0, M2, m%,. This implies™ .

for the renormalized self energies:
Za"(Mw?) = 22 5?) = S = Se(mi) = 0. (41)

— Accordi_ng to the residual U(1)em symmetry it is possible to renormalize so that the
Properties of the photon and the electric charge are defined like in QED:

1 N
I Weca =0, Zp50) =0, Py = 0,5 = g = m) — iy, ).

(4£.2)
— The residues of the Propagators of fermions with I? = —1/2 and of the physical
Higgs particle are one: .
1 N 0 &
—_— =0, (—-E’i 2 = 0. »
(4” — M- (p)) 7 =m;_ \op* w )) Pr=M" “3
— Vanishing tadpole:
P=o0. (4.4)

— The poles in the unphysical sector are at M2, M, 2% 0:
S5 (M) = EFM) = oMy = 23,3 = (0 — 0,
(4.5)
1
W= E im0 = 0.

%) In the following equations only real parts of self energies enter. The imaginary parts are finite
by themselves and we define the mass as the real part of the pole position in the propagator.

*) This is a condition for the vector part of the photon vertex I’ 47%, only. For the axial vector part
no separate condition has to be imposed since f'f;fA(kﬂ = 0) = 0 is automatically fulfilled.

by not,
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— THe residue of the photon ghost propagator is one and the photon-ghost Z-ghost
mixing propagator vanishes at k% = 0:

1 2 2
=) 27k emg, 2710) = 0. ] (4.6)

The conditions (4.1)—(4.6) fix all the renormalization constants of eq. (2.17).

We have chosen our scheme in such a way that the following properties hold :

— We use as physical renormalized parameters e, My, Mz, My, m;. The question from
which processes an optimal determination of the standard modal parameters should
be performed depends on the experimental accuracy. At present the best choice is the
Josephson effect for the determination of «, the PP collider experiments and the “
decay for My and M, (resp. My and sp?), but with experimental progress this may
change. Especially a more accurate measurement of the W, Z masses seems to be
very desirable, leaving e.g. u decay and neutrino scatbering as low energy tests for
the standard model. .

— Egs. (4.2) characterize our procedure as a natural extension of the QED renormali-
zation. This means in practice that existing results on photonic corrections [18, 19]
can be taken over directly. Especially 1-loop calculations can be divided into real
and virtual photonic corrections (the sum of their contributions in physical cross
sections is infrared finite) and weak corrections (IR finite by themselves). We use
€167 = o/dm = 1/(4d7 - 137.036) as the effective expansion parameter.

— We work with only one field renormalization constant for a symmetry multiplet.
Therefore renormalization conserves the gauge transformation properties of the
tields and the Green functions. But as a consequence of the use of the minimal num-
ber of field renormalization constants not all the residues of the renormalized propa-
gators are one. This is the case for the W, Z and the I? = +1/2 fermions and wave
function renormalization for their in- and outgoing particles is needed. These do not
occur in the complete amplitudes for physical § matrix elements.

— In %y + £rp we have built in the renormalization constants 64§, and fixed them in
such a way that the simple pole structure of the *t Hooft-Feynman gauge survives
renormalization. The Slavnov-Taylor identities (3.15) and (3.18) guarantee that with
the conditions (4.5) also the polesin the other unphysical propagators A%7;...;G¥; ..
areat the same positions. Thissimplifies considerably the evaluation of Feynman dia-
grams.

— We have checked that the Ward identities for the fermion gauge boson vertices (3.19)
are compatible with our renormalization prescription.

Finally we translate the conditions (4.1)—(4.6) into prescriptions for the singular and
finite parts of the renormalization constants (2.17) resp. their combinations (app. A):

2 (Mw?) = 6M y? = 5My? + 2MW267t
) 6t
= sz(_z% + 202, — 367, + 6Z% + 2 7),

i 3
ZH(M ) = 80 2 = SMy2 + 2MZZ%—

= Mz (—2 % + 202,% — 80Zy% + 6Z° + 2 %‘) (4.1
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73 of
UM 2y = 0M 2 = SMy2 4+ 3M,° d

5
- MHZ(—s‘i—f’JrgstX —6zv -+ 2%) sy

. My OMy,
Trio(mg) + (M) = —— o= il
Zytme) + Bomi) = S =

1
7= 2o K pme = —0Zy,

>

Z20) = — M0Z,% — 8Zy7)
5 3

; = 02y — 5 04y

Zy(me) 4 mHZ5 ) + Te(me) - 25,7 (m,)) = — 62z,
Zge(me) + mAZp () + Zpt{me) + 227 (m,)) = —6Zg",

D My?) = —0Z9;

2 2 2
ét_zﬂ__‘s'“__lazi, l=MWMH2-?;

TV (Mp?) = 0 w? + My288",
ZiA(Mg?) = 0M 2 + M 2087,
Zo(My®) = dMp? + My?t,",

4 . ov O
+—t‘=521”*7+—-'
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constants, renormalized self energies and fermion gauge boson vertices. The calculations

are performed analytically, thereby neglecting terms which are of the order of magnitude
amP{(My?, s) in the final results. The ultraviolet divergences are treated with the method

- of dimensional regularization [25]. This is possible since the standard model is free of
 ys-anomalies. The 4-dimensional integration and the Dirac and tensor structures are
- replaced by D-dimensional ones:

diq 4: dPq :
[——(231)4 —u Df_(2n)p ' (5.1)

o

(u is introduced for dimensional reasons).
In order to explain our notation we give the results for the scalar tadpole integral:

q
dPq 1 —7
0 (%9 - '
O - /(2n)1’ @ — M2 e IGJZEA(JM)
(5.2)
A(M) = —M¥dy + 1).

The UV divergent part Ay contains the Euler-Mascheroni constant y and has the formn:

L. S Ny 5.
Au 4 — D v n4:;zlu2 (03)

The scalar 1-loop self energy integral defines the function By(k?; My, M,):

_ dPq 1
1+ E Qg Df@n)ﬂ @~ MF T T OF = M 17

= _1‘5 By(k?; My, M)

Zx(M?) = 6M 5% + M,258,7, 167
L S 0o = 880 — 62 itk : ! M Mp M,
fr TR0 T e Bl My, My) = 5 g, - o+ 1 = et In 7 B I, 0
Z0) = — 5 My(05% — 060, L+ Lo,
1

.

N
=
=°

l
ke
S
to
———

0Z% — %5@2 + 5272).

Explicit Resulis in 1-Loop Approximation

(5.4>‘

1
- 2 — ak? 4 M2 — M) 4 M2 — 4
dz In AR .
6

The function F(k?; M., M,) — F(k?; M,, M,) is finite and vanishes for %% = 0. Its
explicit form is written in app. B.1.

5.1 The tadpole

The intention of this section is to provide the building blocks needed to compute radiative
electroweak corrections to e*e” annihilation, deep inelastic scattering and othgr pro-
cesses. We do this by evaluating the explicit 1-loop expressions for the renormalization

The vacuum expectation value v of the Higgs field, which in lowest order is given by
v? = p?/A gets 1-loop contributions from the diagrams of fig. 1. They lead in the 't Hooft-
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Feynman gauge to the expressions:

1 e 1 1 3
7=t i | M (A0t + 3 Aty + 2 )

—6 Mg A(My) — 4My* — SUPA(M) — 2M +4 5, M?,,A(m,-,)}
28 ot '

= —0t = —TMWMHB—t-. (5:5)

The tadpole diagrams of fig. 1 give for example contributions to the self energies, These
are absorbed by mass renormalization rending the 63 ;2 gauge independent.

W,2 T, u* i

I/’ - ~

+ (\ ) o +
~ 7
\.f,/
i 1 i 1
I l 1 1
Fig. 1. 1-loop tadpole diagrams
5.2 Unrenormalized self energies and vertex functions

a) Gauge boson self energies

The contributions of the diagrams of fig. 2 to the longitudinal and transverse unrenor-
malized self energies have been computed by [9]. We present them decomposed into the
singular parts (defined to be proportional to 4) and finite parts:

Z(kz) = Esing(kz’ A) + Zﬁn(kz) . (56)

YW, 2 u® L ig
ST
+ + +
YW, T LR

I//—\\
\
\ ’
4+ el

Fig. 2. 1-loop gange boson self energy diagrams*).

The explicit expressions are (the index f denotes any fermion 7c; U = Vjg, Gy = Qi AIE
defined in app. A. We also omit in sects. 5 and 6 the index W at sy, cw):

k2 {%—Z R4, — 3Aw},
!

&
¥ —_ —
T,sing 4

P

P iZQz (&* + 2m,2) F(k2; m, m)_k_2
7.tin 47 |3 4 ! g Nt 3
— (3K + 4My?) F(k2; My, M W)},

*) In figs. 2—7 tadpole diagrams are omitted.

Fortschr,

b -

T,5ing

Z pa—
ET,tin -

W —
ZT,SJ'DE -

Z P.0in =

Phys. 84 (1986) 11 703
4 1 1
= {—E%‘Q,v,kzzl, += [ka (302 + g) + 2MW2] AW},
) N (5.8)
[+4
™ {—-g— %: Qrvy {(k2 + 2mP) F(k?; my, mg) — E-]
rile(se + X (e & Fes My, My) + 21
cs 6 w £ 3 ’ ’ 9cs|’
x [4 3m,?
— 1= 2 2y L2 . f -
47 {3 ffz‘ [(vf +a) k 80232] Az
19 1 \ 11 T
+ [kz (3 ~6F + @) + Mz (4 -+ Pl 8—2)] AW} — 2M 5 7,5)
(5.9)
L _4.2_2 (v2+a2) (k2+2m2)F(k2'm’ mf) %.]f
4775 3 ! I 7 ! ! 1 s 3
o mPF(k?; my, m,)}
2
— [—;- K2 -+ (10 + 2000, F(3%; My, Mw):l
1
T [3MW2F<k2; My, My) + 5 (102 — 22 + I2)
M+ M2 M Myl
(e G e )
1 My 1 Mz R
_ 2 R 2 2z —_
2MH lnMW2 2.MZ lnMW2+6
) 2 . o2\2
+ (M — M P M, MH>/4k2] + et
72 Jx
X [g -+ (2Mw2 -+ Z) F(k2; My, MW):H;
x 1 (1 5 1
PRl St . 2 — —md — —m?
i & {6 > [A*(k g ™M T g m’“)
2\ 19
+ 4, (k2 - %m,?_ - %m,a)] - {MWZ (1 - z‘z) +5 kz] AW}-
— 2MATt,5) (5.10)

« (1 . M+ mi mi, +mi . my
Zr—r{gé,z‘[(k - 2 )(1_m2 B

i i—
+ P2 my,, m >) B — )
2 7+ =

3 57 Pk mys, mi—)}

8)f =fforj+vandf =1lforf=v,
%) For lepton doublets with m;, = 0 replace 4;. — 4;_ and drop the log term in Z¥ iae

2 Fortschr. Phys. 34 (1986) 11
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2 My My
—_—— 2 2 2 - Z
5 [(7MZ + TM 5 + 10k%) (1 LS

2

+ Fg2; L, MW)) + 4,
4 32 1
X Pk My, MW>] —g M= G L

XF( 2’ Ed

My
WP = My
M2
M — M2

82
+c_2[1

[1_

5 1 1
et 2__ 2 2
[ISk 3MW GMZ GMH

1
iy %
74)

2
(MW + M2 _%)F(kz§MZ:MW)
+ (M7 — My F(2; My, My) /198

2
]n'jjlltl—z2 -+ F(kz; My, MW)J My2

-+

In M— + F(k2; My, MW)]

-+

M2

M
M2 — M2

My2

+

(2sz - In

1 1 M2 M2
—(2Mp? — o) B MA?
+6(2 v 2")M,,2—MW21DMW2

1 k2
— (w4202 - ) 7o, 1)

(M — Myp B2 1, MW)/lzkz]};

Zz,sing = Zz,ﬂn = 0;
Zhane = —o=dr,2 (25 L 9\ 4 ) garem
Lsing = — 1Mz F AR wp — 2M AT},
vz @ 1 M2 20 My?
Y =g {cw [”Z T \Me g~ My
‘M 2 _ 22
4 (Mzz _ _(*”E#Z_)_) F(k2; M, Mz)]

c? —

2
— 22 % e ar,, MW>};

[
Zzsmg . {2 ? MZZAW} 5
o C
ELme = TTE {2_8— MZZF(ICZ; My, MW)};

2 .
gk - 77 M2 — My
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w * fe8 — 2 2
ZL,sing = - 47Z CZ P MW AW — 2MW T/t
(5.14)
- ¢ — 82 M 2
1 .ZWW2 W
-f-s—zm i T# 0, My)
32 — 1 My? — M2 '
+[ o My +( +482)—“( v ) JF(kZ;MW,MZ)
M2 — Moo
-z (MW2 - (_Wl) F(k%; My, MH)}-

b) Gauge boson Higgs boson mixing

The diagrams of fig. 3 contribute to the gauge boson Higgs boson mixing energies defined
in eq. (3.12). Their singular and finite parts are

TI’X-¢ [
ey

Fig. 3. Dlagtams for gauge boson nggs boson mixing

[
ZZ‘:j‘ng 4n {2 ? MZAW}:
(5.13)
= oL awr oy, wpk;
e * fo i 1 Ml — M T,
sine = I +2cz T i 0282 2w — MT]
(5.16)

. o« 3
2 = 4 Mz {40232

1 M2 M,
- 2 2
{1 Ay <MH In 0 M21In MW)

M 2 M 242

452 — 1
2s?

n (1 - F(k2; My, MW)};

Sy % 4y { 1 46282} Ay 4 MyTt,

site = g Mwigm —
(5.17)
1 3
We _ X —_——
i = e W{ 45t 4e%s?
’ 3 M2 My?
T [I R Tl T

_ (Mg — My
32 M2

) Fk2; My, MH)]
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4%+ 502 —3[ M Mp .
+ 4252 [MW‘“) — M, In ﬁl—2 + P My, MZ):'

8¢ + 1 My — M2

k2

T T B, ) (2 1) 2@, MW>}

¢) Higgs boson self energies

The self energies of the Higgs bosons are needed to caleulate the full set of renormializa.

tion constants. The diagrams of fig. 4 give

YW, 2 YW, 2 % b u®
14 \
- R R TR GO S & -4~ - 4
Y. W, 2 % b
//——\\
! 5
\\ K
= -+ — et

Fig. 4. 1-loop Higgs boson self energy diagrams

a (2241 17 7 2¢* 1
Zne = Tin { 2c2s?. Taea T —2§sz T M
27
~ g2 g”g} Ay — 3My2Te,
. e, _ 20t L., 3 M
Ziin ey { 4c2s? (5 4 20207 8t T T 8 IR
1 up
+46282[ =287 + 1TM? + — MH + ] M 5
2 Myt My 9 MH .
+ 8 M M 3, 1 3,8 TR M, M)
1
te [kz 2 2] FUES M, M)
1 Myt
N P 2 __
+ g 1 = T~ | s o
x 22 41
Ly = 4 2cs? By,

My?

% L 2 __1_ -2 _ 2 M7
Zrm - in {20282k {1 MH — 2(MH In MW MZ In MW2

+<1_(MH2—MZ)

2k2 M 52
x 2¢% 41
ing = 4z 2c%s? el

) s bt o |+ 5 ety )

(5.18)

(5.19)

(5.20)
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X [ﬁl bl -+ P2 My, MZ)]
+ 282(];::11 M2 n% - '(‘8—_62:—62 bE MPAFRE; My, M)
+ L (w L e A;Wj””z)z) FU2; My, M)

+ 2(kF — My?) F(2; 0, My)b.
(

d) Ghost self energies
The results of the diagrams of fig. 5 for the ghost self energies are:

¥.W, 7 % ¢

Pt
/ \‘
+ b rrrrrrnr

Fig. 5. 1-loop ghost self energy diagrams

- & X 5 .
D = — By, Iy, = — g PR My, M) (5.21)
. x (¢
Sdhe = 1 {; (k2 + Mz Aw}, (5.22)
fle;;l = % {% (B + M) F(k2; My, ]VIW)};
* (5.23)
= [A4 4 5. .
=1 { k24 } 2 = = {? M(k s My, MW)},
= x fe? 1 1 s
Lhs=— {8—2 B — (1 vl v Mzz} dw — M2T)e,
. e np (5.24)
- M2 1 :
e ) § IR Y § 7% 3 Ml W 7 )
Ziin dn { it [1 M — M2 ( HE T g
2 282 — 1
G M, MZ>] +5 (k -2 M) P2 My, M w>}s
~ 1 2¢2 —
o= _% {;E Bt = MW } Ay — Mp2T}s,
g (5.25)
= x (1 22 — 1 12 32—1 M2
Hin _Z;{S_zkz T v - 87(3_2 Bt g Mw?)In M7
1 MMy MH

tE e M s T REG My, 0)

4s? My* — My?

2
+ (G2 MW)FW:MW,Mz)——;WF(’“Z;MW’ ).
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e) Fermion self energies‘
Because of Lorentz covariance we can decompose the self energies Z(k) of the fermion
Z0(k) = EZV (k) 4 KysZo (k) + my, ().

Y w 2

LN Ty

[ [ 1] ¢ ¢ ¢ q 4 G
Fig. 6. 1-loop fermion self energy diagrams

The diagrams of fig. 6 give the following contributions to the invariant tunctions Zig,

B0 = e (@B ) 1)+ 6+ o) (B 20+ g

1
+ g 2Bk i, My) + 1)],

(5.27)
&

. ’ 1
Zye = I [211;.1“;5(231(702; Moy Mz) + 1) — rr) (2By(k2; 400, M) + I)J )

B = — QBB 0, 2) — 2) + (o}, — ad) (4B, M) — 2.

The photon contribution was caleulated with a small photon mass 1in order to regularize
possible infrared divergencies. The functions B, and B, are defined in eqs. (5.4) and (B.2).

Instead of the vector and axial vector parts of the self energies 3 , it may be more con-
venient to use the right- and left-handed parts: i

2p = 2y + Zy), L= (Zy — 2. (5.27)

f) Fermion gauge boson vertex functions

The vertex functions?) I',eo" (&2, P, g) contain for k% >>m2, and p® = m,?, g2 = m,?, only.
vector and axial vector parts. The Feynman diagrams of fig. 7 yield (diagrams con-
taining Higgs exchanges can be neglected):

Turo(k?) = —ieQuy,

ki

2
— Q= Qut [A., —2In ;_‘; + 44 A, m,,)]

, o 1

= QUL + 0) Y~ oy o [Az — 5 A Mz)}
. a1 1 .

— wQoyu(1 — ;) by Aw — 3 + Ay(K2, M)
. «x 3 1 8)

- zezaay#(l — ¥s) T o [AW -3 + A5k, MW)J s (5.28)

?) In the following we drop the fermion family index ¢ since Cabbibo rotation is not involved.
8) In egs. (5.28, 30) o’ denotes the isospin partner of the fermion o.
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s.p 6.p
Y P a W2 "
8',q 6'q
a) b}

Fig. 7. 1-loop gauge boson fermion vertex diagrams

1 1
L) = onl = 1) gz | v = + 40, )|
Lo 3 i
— el ~ 7)1 g [ dw =+ A M), 520)

I299(k?%) = Tey (Ve aoys) + 1€Yua(Vs™sys)

2 . 5
X fy; Q. [Ao — 2 ";'; + 4+ A2, m»] + defve(t.® + B2 Yy

1
= B+ ) vl 45 A = - + At )

oy 1 ;
-f- zey,,(l — )/5) ;Ln 3%82—“- [AW - E + Az(kzy MW):‘
1
+ el = 75) 23:3- [Aw — 5 A, Mw)}, (5.30)

§ . € 1 —ps a 1
T2 (k?) :lﬁyu__{

1
— —_— Aq(k2, M.
9 1+ 47 4s%? [AZ g T ol Z)}

& 2% —1 1 ; ]
x 2 AR, M

4 2s? {AW 2 Ao w)

a 3¢ 1 5.31
an B [AW — g T AP MW)]}’ 31

I per(fz) = ¢

e 1 —p {1 o 282_1[AZ-%+A2(702’1HZ)]

Vzs T2 In As?
+ ;i .3 [AW + % + Ae(i; My, 0)]
TT
3c? 5 M Myt 2.
+ %n.:ﬂ—[dw +5+ MIHM—Zz + Ak My, My) s
' (5.32)
ie mgt

I"”Wdu(kZ) = yu(l — ¥s) " {1 + %Qu@d [Ad —2In

+44 3
l -
2s

E

1
b o A i)+ A, )|
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x 1
g (0 ) (o0 + aa) | Az — - 4,08, MZ)}
X 3Qu | A 42 Agmiit; M,y 0
+ o 3% | 4w + 5 T A My, 0)

X 5
~ 3| 4 i, 2y, 0

& 8¢ Mp

4 4 5 1 My? 2 k
ey W+€+]TI;2__MWTZ thZ‘,a—f—A.,(k;MZ,MW)}}

The invariant functions A,
app. B.3.

For the renormalization of the electric charge we need the Yee-vertex at k2 -—
P = ¢* = m2 Tts explicit form is:

L« me2
T*%(0) = ey, + ey, o [Ae —2n 752— + 4]
- 2 1
+ e [ + a®) vy — oagy,ys] |4z — 5

2
. l—y, a 3 1
T Tnz?["w_ﬁ}‘

For later use we give also the neutrino-photon vertex at k? — 0:

. - 1~ o 1
i = e —5= g v

5.3 Renormalization eonstants

The prescriptions for the caleulation of the renormalization constants from the un-
renormalized self energies and vertex functions have been defined in eq.s (4.1) to (4.6").
We find for the mass renormalization 83T w% O0M 52 of the heavy gauge bosons

6ﬂW2 = 617%!’,51’!@ + 6ﬂlzzv.fjn - Zz‘lfsjng(MW?’) + Re ZKfin(sz)’ (5'35)
M A = ‘Sﬂ‘%,sing + MW%,rin = 2% cne(M 7 + Re ZFn(M %) (5.36)

explicit expressions by using eq.s (5.9) and (5.10). Eq.s (4.1') tell us that with 63 2, 61 ,2
also the following combination of de, 6Z,%, 8Z,% is determined :

M2 oMyt 52 de
Mzzz - M::z T2 _ g (2 - 202 + 35Z2Z>- (5.37)

Eg.s (4.2') together with (5.7), (5.8), (5.33) give for the photon field renormalization
constant

x 4 2
Zg? = —— | —— Y (02.A. — .38
82, 7 [ 3 (@5,4:) + 34y + 3}, (5.38)

1 together with some of their properties are Presented jn
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a combination of the (y, Z) renormalization constants

X 02 — 67,7 — 5Zy - 67y) = — 41 2 (5.39)

' 7

82y — 82y% =

and the charge renormalization

de 3 ) « [2 5 7 1 ‘

OB g = |2 S @A)~ Ay 3 (5.40)
A comparison of eq. (5.40) with (5.38) shows that

de 1 . x )

? = —-—2— 6Z2/ - ‘—E . 2dw. > (5‘4:1)

This means that the familiar QED relation is modified by the non-Abelian couplings of
the gauge bosons.
The four eq.s (5.37) to (5.40) allow the separate determination of 82,7, 82,7, 62,2, 87,7 :

07,y = a [ 4 (@2 Ay + 2
1_4n_ 3 < 5dia) + dw 30
' x [ 4 2
=22 v gy 4. 2
= |73 & @) + 3dw 4 3],
. (5.42)
s Xt ey Ay 2
02,% = 3L @) +<7 682)4W+ 5

-+

c*— s {0M2  SMy?
2 M2 My [’

L B U T R V1
02— o[- 2@ + (1 15) 2 + 2

2 — s (aMZZ S My
MPE T M2

+

s* -
i

Together with these constants also 0Z,%, 6Z,%, 82,72, 8Z,»%2 are determined. Explicit

expressions may be obtained with help of eq. (A.1).

The mass and field renormalization of the leptons according to eq.s (4.1) and (4.3')
treats the charged, massive leptons and the neutral, massless neutrinos in an unsymme-
tric way. This is a consequence of spontaneous breaking of SU(2) x U(1) and of chiral
symmetry. As a result the neutrinos remain massless and left-handed after renormali-
zation, whereas the charged leptons suffer mass renormalization :

Mg - 4

om, w1 1 A
{Z&E (JW — E) + 20 + af) (Az - E)

— 40t~ ) (4 + 3)-2 (Aig + é)} = Drome. ey
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The residue of the electron propagator was put equal to one for both the L and B parts,
This gives:

2 2
+l2(1_7MW My
§

M2 - W) Re F(My®; My, My)

« M2 1 1 7.2 P
azL<6-’>=——{A —2ln—F +4+@ +a>2(Az——)+—(A - L (M2 My : 8 My)
4 |7° 12‘ ¢ ¢ 2 2T\ W + Dc2g? 1 ME 20, Re F(My*; M;, M;) — v M_WE ;
o m? 1 2
Znt = —— A —2In"8 4 4 — a4, — =)L, o« 2 4+ 1
82y o { e n—g 4+ (ve — @) ( z 2)} 8zg, . = o S
. " . ; (5.48)
SaxariBara [12] applies the condition Res = 1to the» propagator which consequent- 87 > n 1 M2 1 . )
ly does not get an artificial IR singularity. But in this scheme the electronfield is not tin = T P 1520 In M2 & F(My*; My, My)
" treated like in QED. - ¥ 1 A
In the case of quarks we have two right-handed singlets associated with one left. — - P(M2:M, M - 2 _ Af,2 H
handed doublet. The two mass renormalization constants are determined by eq. (5.43). 20%* (M2, Mz) + 52 TMy* — My + 2M 2
The doublet renormalization constant 6Z;(* and the singlet renormalization constasit 1 M.A
0Zz® for the Iy = —1/2 members are fixed as in the lepton case: L and R residues in the XF(My*; My, My) + Sotst (7M22 — M+ 2]; 2) F (M Mg, M 5)
d-propagator are put equal to one. z
0Zg" is determined such that the residues of the L and R parts in the u-propagator.are + 9 Mg P2 M. M
still equal (but == 1). This yields: 12 W T W My, M)y

Tbe renormalization of the gauge fixing parameters £ follows from eq. (4.5) together
with the expressions (5.11—14), (5.19, 20) for the longitudinal parts of the gauge boson
self energies and the self energies of the unphysical Higgs fields:

Mg 1
24 = —%{Qaz (Ad —2In 7} + 4) + (vg + @a)? (Az - E)

1 1
rdfe-3)

08y = 0Zy, (5.49)
2 1 :
0z = — = {de (A,t —2m=t 4 4) + (b0 — ) (AZ - 5)} (5.45) ) 5 1 "
‘ : 651 = —E _02—82 Re {(262 — 4?2 — 1) AW —1
® g2 _ 1 o 1 o1 M2 M2
0Zg" = _E{Quz (Au —2In 21; + 4) F (vy — @)? (’JZ - ?) — u, d)}: ‘ -+ m (MH“ lanV2 — MAn M;g)

with + 2¢3(c? — %) F(M 5 My, My)

M72 muz M22 m,ﬁ 3
(u d)—_—.Qz(]n—‘z~2ln 4 )—de(ln 7 — 2In—+ . (5.46) M2 — a2 o
’ * . 2 m a2 2 (My? — M52 . oM 2
My A 2 d - (1 - WF(MZZ’ My, Mz)p — Tk (5.50)
Since the propagators of the u-type fermions have a residue different from 1 a wave
function renormalization factor 1 — «/4m - 8(u, d)/2 has to be assigned to each external. w x 1
line. 05 = Ralrrivoyt Re {(02 — &%) (4y + 1)

The Higgs mass My and the Higgs field are renormalized using the prescriptions
(4.1") and (4.3") for 6 y? and 6Z° together with the expression (5.18) for the unrenormal-
ized Higgs self energy. This gives:

2 M2 M2 M2
3—ZJInE et TH H
+( 32) nMW2+c (11[112—IWWQ)IHAMW2

> 4
6;[[”22 = ;Ln Ay (3;;:;02 _ 46121 . M7 }Lu 2:.2MW2 3 :Z %HZ)* + 26°2F(M%; 0, My) + (23402 1331+ SZ) F(Mp?; My, My)
H" |sing % 2 w
(8.47) Mot — 2y .
OMy* & (2241 T MP+2My 3 Mg + e (.( Y ® 1) P(My2; My, MH)} Ll (5.51)
M o dn | 8 4cPs? M2 88 Myt W 0,
1 3 M2 M\, Mz 2 M2 Mg § o e
* 472?(—5 Tl Tn“) DM T EE I LR 087" = 5 (067 — 8kx) + - 4 = Ay,
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1 M2 M.z
05,7 = —-%ﬂ S Re {(262 + D4y +1— W—HTZZ In M—’;Z L7 (k) = (%) — Re Zr % (M))|tn
. . ‘ o[ = (SAHMY) Sy
+ M_HZ% In % 1 2R (M 2; My, M) T®— My )<6n T Rel=57s e
(M2 — M2 SM 2 +1M1nm_‘2) +i5)
+ (1 - —W F(Mz?; My, Mz)} - TZZZ, (5.52) dr  4s2My? my? | |tin 3s271)°
27 (1) = (Z7 (k%) — Re TP (M )
. « , . 14\ Mp T T T w?))|tin
3&W = Y Re {(202 + VD dy 2+ 1 4+ (40 Bl )In FZE \ o e TEMR) T My?)
w + (B — My (== + 5 Re 7 2
M2 M2 1 L, 1 . 6z & My My
—|—c2——M py—s 2]n—M 2+§(5—93“—§)F(MW“§MW,Mz) & mP—m? mp 1
i (M}ZI M’:)z SM o2 +Z7? 452 M 2 nm—bz ﬁn+§635q ’
; w- — My R ‘ My o ’
+ ¢ (1 — ——an“——) F(Mp2; My, JIH)} T (5.53) with

_ . . , . b= (T gy
Finally we have to renormalize the ghost fields. Eq.s (4.6°) and (5.21, 22) give: "= i P me myt )
6Zr = $20Z7 1 2528 = 1 82y + - Ay, (5.54)
2 4z i 002+
. |
YA 8% — 578 797 0.3 spz _ % C - In (k2 742
Fe —_ = — 7. — ¥ —_———
os( ) = =0yt 4 5 88y7 — =y, (555 o
With these expressions we have determined all the renormalization constants of our 0021

renormalization scheme of the standard model. They can be used together with the

counterterms to derive the finite renormalized Green functions of the model in 1-loop: ~004 Re3Y1k2) 742
order. In the next section we present the results for the self energies of the gauge bosons ¢
and the fermions as well as the fermion gauge boson vertices and box diagrams, -096
-0.08¢
I 1 L 1 1 1
6. Renormalized Self Energies and Vertex Functions -200% -150? -1002 502 szi sev 502 1007 1507 2007
€
6.1 Ganuge boson self energios Fig. 8. Real and imaginary parts of the renormalized transverse photon self energy

Zp7(k?). The ourve shows S (k)/k?
In order to give an impression of the influence of the 1-loop contributions on the magni-
tude of radiative corrections we present in this section the formulas for the renormalized
self energies and vertex functions and numerical results for these quantities. From the
expressions (5.7—14) for the unrenormalized self energies and the renormalization con-
stants (5.35—42) together with the prescriptions for the renormalization we obtain for
the renormalized transverse parts of the gauge boson self energies the following for-
mulas:

The numerical results in figs. 8—11 for k2| < (200 GeV)? have been calculated with the
following standard set of parameters (if possible taken from [26]):

x = (137.036)-1,

My =82 GeV, My = 93GeV, My = 100 GeV,
P :
(k) = Zp(k?) ~ B2 3 27 ) le=o, m, = 0.511 MeV,  m, = 105.66 MeV,  m,.—= 1784 MeV, (6.2)
= 5 MeV, =7 MeV, = 150 MV [27],
() = Zp7 (1) o e ¢ d € K eV [27]

m, = 1.5 GeV, my = 4.5 GeV, m, = 30 GeV.

In

M2 Mp? dn 48Myp® T mp? /i

_ kz.f_ Re (ZTZ(MZZ) _ ¥ (Mp?) x mP — m? mt2>
. s

The real parts of the diagonal self energies 2,7, £,2, 2,7 are, compared to the free in-
verse propagators, not small but yield 109, as typical order of magnitude. The contri-
butions to the imaginary parts from the fermion loops are positive but those from the
gauge loops are negative. Both the real and imaginary parts of the W and Z self energy

1
k2 ) 6.1
6cs 7’ (6.
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0.016 : . T 4
- + sk Im EY k3 m 3 MM )
0.012 |- L
L €L 2r
0.008 -+ 1k
0.004 - -+ -
L 1 -007¢ Re TVk2)/1k2-MF)
0 '__’/—\
L £ i -009F
-0.004 F . . R [
. 1m E¥ k272 r
7 L 1 L 1 1 1
-0.008 - 20027 1502 1002 507 0 502 1002 1502 2002
) 1 ' 2 2
~2097  -1502 -1002 -502 0 CTRTT: 1567 Z002 KE/Gev

k2/Gey2 Fig. 11

Fig. 10, 11. Renormalized W, Z self energy. The curves are Re W Z(?)/(k2 — M3y 2y

and Im f‘TW'Z(kz)/Im 22 M3y 7) (Read —0.06, —0.08, —0.10 instead of —0.07, —0.09,
—0.11, resp.)

Fig. 9. Photon Z boson mixing. Presented is A“f'ﬁz(lcz)/lc2

depend strongly on the energy. The approximation using a constant imaginary pari: in
the vicinity of the resonance leading to the usual Breit-Wigner type form of the modu-
lus square of the propagator is thus not really justified. In tig. 12, 13 we show a compari-
son between a Breit-Wigner distribution using My and Im 2o (My?) resp. M; and
Im £.2(M. z*) and the corresponding quantities resulting from (6.1). We find for the W
and Z FWHM values which are 109, bigger than Im Z,(M %)/M = T. This means that
for the determination of the width of the W and Z a careful analysis of the experimental
distributions is necessary.

In the case of the W self energy we have contributions of loops containing photons:
The physical channel W — W + y has its threshold at %2 = M2, Consequently we
observe in fig. 11 the peak in the real part and the structure in the imaginary part. The
magnitudes of these effects depend on the details of the WWy coupling. In a model

where the W is coupled to the photon in the form of a minimal substitution it would be
different from that of the standard model.

The diagonal gauge boson self energies are very large compared to ofm and therefore
will give the main contributions besides bremsstrahlung to the radiative corrections in
e*e” annihilation. Compared to these the yZ mixing is much smaller and in our renormal-
ization scheme typically of the order of magnitude of 1%,. In our scheme we do not use
the weak mixing angle 0 as a fundamental parameter but as a short hand for sin? 6
= (1 — Mu?/M?). The results shown in fig. 9 might be interpreted as contributions to
an effective running i.e. energy depending mixing angle.

The residue of the renormalized Z propagator is different from 1. We obtain:

52_2 202k ja—pp = —0.080 + 70.029. (6.3)

For comparison with other renormalization schemes we present also 5 7 (0) and £.7(0):

4
r Im £ k%/im SHUME) T 9 .
2k T 272k e = I17%(0) = —0.021
1T (6.4)
EW(0)Mp? = —IT%(0) = 0.069, £42(0)/ M 22 = —IT%(0) = 0.069.
-007} Re SR N2 |
L 4 z i These values enter into the calculation of radiative corrections to low energy processes.
-009F ] The parameters (6.2) which we used for the numerical discussion of the self energies
L are only partly known from experiment. The W and Z masses have been chosen in agree-
-011f ment with the PP-collider results [1] but since they still have rather large errors we have

investigated the dependence of the self energies on the masses My, M of the gauge bo-
sons. We find that it is determined mainly through the ratio My /M ;. Therefore we pres-
ent as an example in Fig.s 14 and 15 II%(0), I77%(0) as functionsof sp? = 1 — M wil Mz
and M.

1 L L 1
-200% -1502 -100? -50% 0 502 1002 1502 2002
k2/Gev2

TFig. 10
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Fig. 12, 13. Comparison between a Breit-Wigner distribution with My 7 and Im ZA'TW'Z
x (M3, 7) as parameters (---—~ } and the square of the modulus of the renormalized
W, Z propagators ( )
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Fig. 14. The W self energy —II7(0) = E'TW(O)/M w? as function of sy2, My for the stand.
ard set of parameters (6.2)
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Fig. 15. The yZ mixing I17%(0) as function of s;?, My (other parameters like in fig. 14)

The masses for the u, d, s quarks used above correspond to the values obtained by
Gasser and LEUTWYLER [27]. The evaluation of the hadronic contribution to the photon
self energy using quark loops with these values of the quark masses leads for energies
between 10 and 100 GeV to numerical results which are in agreement with a determina-
tion [28]of these contribution using dispersion theory and experimental data from ete—-
annihilation. However, since the quark masses are not known very precisely and since in

3 Fortschr. Phys. 34 (1986) 11
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the literature calculations of radiative corrections using much bi
masses can be found, we have studied the dependence of I7%, [17Z

m}. Defining 6,/7 = II(m,,) — II(m,) we find:

20 m;,
6qHW = (SqHZ - —7;@;’2 ]n%-,

m;

0,177 = Q2 — 20,) In —2,
" Loy QuI; Q:) Py
0.070
100 57,150 70
S 10 5.7.150 30
}.E 0.0651
0.060

100 300,300,450 30

gger values for these
7 ;
17 onm; = {m,, Mg,

My /GeV My Mg, mg / Mey my /GeV
: L L L " : L Fig. 16 a
018 019 020 021 022 023 024 0.25
5
Hy/GeV  my.my,m./HeV m, /GeV
0.024
S
-~
=
=
0016
300,300,450
30
Fig. 16b
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The extreme choice m, = my = 300 MeV, m, = 450 MeV leads to the curve for IT w(0),
II7%(0) shown in fig. 16a, b. |II%(0)] is lowered by ~ 0.011. In figs. 16a, b we present also
the variation of II"(0) and I77(0) with the mass of the top quark. A change from m,
= 30 GeV to e.g. m;, = 60 GeV increases |IT%(0)| for sp? = 0.221 by 0.002.

Finally we do not know the Higgs mass My. Therefore we have displayed JT%(0), II72(0)
also for My = 10 GeV and My = 300 GeV in figs. 16. A light Higgs mass decreases
[ZI¥(0)], a heavy one increases it. The conclusion of this discussion is that our ignorance
of the mass parameters give uncertainties in the calculation of IT%, ITZ and the other
self energies amounting to 4-0.01 which might be of the same order of magnitude as 2-
loop effects.

6.2 Fermion self energies

We described the renormalization prescription for the lepton and quark self energies in
sect. 5.3. Together with the unrenormalized expressions (5.27) and the renormalization
constants (5.43—46) we obtain the renormalized self energies from the equations:

. 1— . . 1 .
Biol) = B =T (S() + 0207) + koL (k) + 82
+ Mo Zg(k?) — my(6Z5% + 62:%)/2 — Om,. (6.6)

We illustrate the results with help of the s, self energy and the electron self energy. The
corresponding invariant functions are shown in figs. 17 and 18. For the neutrinos only
left-handed contributions exist. They are in our renormalization scheme infrared diver-
gent. Therefore in fig. 17 the IR finite quantity £ (p?) — £7(0) is drawn for time-
like momenta p2. It depends only weakly on p2. R

The real and imaginary parts of the invariant functions 2y?, X ¢, X¢® of the electron
self energy are presented in figs. 18. In the case of Re 2¢ and Re X¢* we have subtracted
the IR divergent part o/dw (2In (m/72) — 4). We find that 5 and 2y are small, only
Re 2¢*(p?) reaches a level of several percent.

i 1 1 i ] 1] 1
018 019 020 021 022 022 02 025
2
5
L4

Fig. 16a, b. IIV(0) (a), IT*%(0) (b), as functions of sy? with My = 82 GeV fixed. Shown
are the variations with the Higgs mass, top quark mass and the masses of the light quarks

0
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~
N
00041 Im (371p2)-3710) SN
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p? 7 GeV?Z
Fig. 17. Real (—) and imaginary (- ——-) parts of the neutrino self energy subtracted

at p? = 0 (Read 402, 802, ... instead of 40, 80, ... resp.)
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Fig. 18a, b. Real (a) and imaginary (b) parts of the electron self energy. Presented are
) a A A
the infrared finite parts of the invariant functions 3. % 248, 20

6.3 Renormalized gauge boson fermion vertices

The following list of the renormalized vertex functions contains vector and axial vector
couplings only and is valid for on shell fermions and |%% > me. As in sect. 5.2 we write
down the formulas only for the first lepton and quark multiplet.

a) Electromagnetic current:
f‘#yu(kZ) = ie?#(FVW — k'),
L (k2) = dey,(1 — yg) Fr,

(6.7)

fyydd(kg) = —TeQuy (Fy*® — y, F %),
D) = —ieQuyu(Fyrs — y o).

The form factors contain the functions 4, _, given in Appendix B.3:

3
Py =14 % [Al(kz, me) + (06 + i) Aok, M) + 5 A, MW)],

Fortschr. Phys. 34 (1986) 11

3
P [21;6%/12@2, M) + 5 AR, MW)},

%4

1
Fr o= 2 (4,8, My) — 340, My)];

Pyt =1 2 QA ) + (0 ) Ao, )

1 9
— g %, M) + 2 4@, )|

4n

1

Pt [2%%/12(752: M) — = Ay, M) +

2s

9

o Ag(k?,

2

Fov—1 4 % [Q,ﬁ/ll(kz, my) + (22 + a2 A2, M)

1 9
— g Ag(k?, My) + Fy

A2, M) + 8(u, d)]s),

MW):,s

1 9
FAW = %Z' [2Uua/u/12(k2’ MZ) - _8_6—2 Az(kz: MW) + '8_‘83‘ As(kz’ J"[W):l .

b} Weak neutral current:

L 2e0) = ey, (Fy™e — i o),

I 2n(12) < dey,(1 — yg) 7,
]‘v”z‘zd(kz) — z'ey#( Fp2e — ps Azd)

>

P 7(02) = ey, (Fy% — psF 2%

with the form factors:

I’VZe = v, + % [veAl(kz’ m’a) -+ 'De(vez + 3‘1/&2) AZ(kZ) ‘}IZ)

3¢
Al M) — =

+

8s%

Ag(k?, M w)} )

Ffo— g, 1 %n [aaAl(kz, Mg) + @g(30,% + ag) Ay(k2, M)

1 3¢
+ 8% Ap(k?, M) — ) Aa(R?, Mw)j‘ )
1 o M2 9 me?
Zy — | — - —_ 1
F 4sc{l+4n[ lnm,,2 2+2n12—{—
22— 1

2s?

®) 8(u, d) is defined in eq. (5.46).

3c?
Ay (R, M) +

s

As(k?, JIW)]};

prohe

(%°, M)

723

(6.8)

(6.9)

(6.10)

(6.12)
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B2 = vy + % ['UdegAﬂkZ: Mq) + va(v® + 3ag?) Ay(k2, Mz)

1 — 20,8
8s%¢

Y 3¢
+ Al ) — 55 A, )|

Ft = ay + % {‘l-an“’Al(kgx my) + ag(3vg + af) Ao(k2, M)

1 — 2Q,s%
+ WAg(k My) — /1 3(k2, MW):I
. (6.12)
T2 = vy + _A_%-; [UuQuzAl(kzs ) + 'Uu(vu2 + 3(2,,2) AZ(k2; MZ) + vuls(u, d)
14 20,5° 3c
— “Wod—/lz(kz’ My) + i3 Ag(R?, MW)] s

Pt — a4 QU8 ) B+ ) 4408, 3) + i,

_ 1 4 2Q,s?

. 3¢
e Ak, M) + o Ak, MW>].

¢) Weak charged current:

ff Wor(2) = ¢ 1 — w;) FWer
( 2V2 7l 5)
(6.13)
. e
]"“Wdu k) = 7 —— FWdu
Pt Co)] Yo Yull —
with the formfactors
3(3c2 — 1) M2 M2 2% —1 3¢ Myp? .
e — 1 4 & 20 — 4 e Mo | (28" —1 3 W
+ 475{ Z T B +( PR )ln 7
2s% — 1

2
+ S A, M) 432 My, 0) + 5 A o, MW)},
(6.14)
Fwdn — 1 4 {Qqu [3 In =~ —|— /1 (k% mg) + — A 1(&2, my)

252 — 1
422

3c?
~ BQuAm, My, 0) + =2 A2, My, M)

1 My 2 3c? M2
3(“m“2‘“ Bl )+ +(zsz“s—4)1“mz}'

82
g e, o) + Ay, M) + 304K, My, 0)
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d) Examples: The electron and » photon formfactors, the electron Z boson formfactor,
the Wev-formfactor

For illustration we present the weak contributions (the parts with 4, 3 in eq.s (6.7—13))
to the vector and axialvector photonic formfactor of the electron in fig. 19 for [k?|
< (150 GeV)®. The vector part F7° .. vanishesat 2 = O as a consequence of charge re-
normalization, the axial vector part F weax(0) = 0 because of the Ward identity. For the
k? values given above the real and i 1magma,ry parts of these formfactors are typically of
the order of magnitude if 10-3¢.

1 1
r Ye = e
10-3+ FV, weak /’-’ 103 Fa
L Im - .
\ Pid L Im
P e Ly
0 | . ot . Coatul
: Re : Re
_1 F ,7 -
_2 F _2 -
N | S TN TN S T SN VRS NV ORI U WOR WO 1 1 -‘ K WD S W T NS S SN TR TN S N TS N
-1507 =702 0 702 1507 -1507  -702 0 70? 1502
K2/ Gev? : k2/Gev?
Fig. 19a, b. Real ( } and imaginary (— - — -) parts of the weak corrections to the

vector (a) and axial vector (b) photon formfactor of the electron

The yv vertex vanishes in lowest order but gets contributions from 1-loop diagrams
(b, c of fig. 7) containing the W exchange and the non-Abelian gauge boson coupling.
The resulting formfactor F7*(k?) shown in fig. 20 grows for |k?| =< (150 GeV)? to ~ 10%.

The non-photonic contributions to the eZ boson formfactors are shown in fig. 21a, b.
They have the same characteristics as the other formfactors. Compared to the self energy

+10-3

R S S W S W TR S S SR R W .
- 1502 -70? 0 702 1502
K2/ Gey?
Fig. 20. Real ( } and imaginary (- - - -) parts of the electromagnetic formfactor

of the neutrino
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a)
Pl FZe

V.weok

effects of the weak bosons the weak contributions to the vertex corrections give effects
- in e*e” annihilation processes which are one order of magnitude smaller.

The Wey- and the corresponding quark formfactors obtain a contribution from the
W Wy-coupling (see fig. 7c). This shows a pronounced structure around k2 — M w?> and
reaches an order of magnitude of —40 - «/4z for the real and imaginary part (see fig. 23).

0
20 AGE kS My, 0]
v
_5 0 —\.
5 20
-10-3
0 -40
Fig. 21a, b. Real ( } and imagi- T e ww B
nary (- ——-) parts of the weak con- ~1507 -70? 20 2 70? 1507
tributions to the vector (a) and axial ka7 Gev
4 . vector (b) Z boson electron form- Fig. 23. Real ( ) and imaginary (- - — -} parts of the photonic invariant function
S ST ST S R S ! factor A™E2, My, 0) for m = m,
- 1502 -70? 0 70? 1502

k2/Gey?

Together with the corresponding contribution (the Wy-loop) to the W self energy it may
lead to interesting effects in W exchange dominated reactions for timelike large
momentum transfers.

We conclude this section with some remarks on the box diagrams with two weak
bosons. In contrast to the self energy and vertex diagrams they are both UV and IR
finite and consequently in the 1-loop approximation not directly influenced by the
renormalization scheme. Their contribution to 1-loop radiative corrections to S matrix
elements is in the energy range considered of the same order of magnitude as those of the
vertex corrections. Explicit expressions aré given in the appendix B.4 and numerical
results presented in fig. 24a, b,

L ImAz (k2 My) 7

7. Application to Purely Leptonic Reactions

In this section we apply these 1-loop results to purely leptonic reactions like u decay,
(v;e scattering and lepton pair production in e*e~ annihilation [29]. Although the results
from deep inelastic lepton scattering have now reached very good statistics, we have
restricted our analysis to leptonic processes in this paper since these have smaller theo-
retical uncertainties from the strong interaction. Therefore these processes allow the
cleanest tests of the electroweak interaction.

According to the choice of My, Mz as parameters in the renormalization scheme used,
the most direct way to compare the predictions of the electroweak standard theory with
experimental data is to start with the measured values for My, M (or equivalently My,
sw? resp. My, sp?).

7'/ﬁe Az (k% Myy)
Fig. 22. Real and imaginary parts of
4l the vertex integral A,(k2, M)
for M = My, M, and Az(R2, My,
Ay, Mz, My)

1 i 1 1 1 ] " i L i 1 ' 1 1
-1502 -70? 0 702 1502
k2/Gey?
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The UA 1 and UA 2 groups have determined
2. ww /57293 Gev My =822+ 1.1GeV, M, =927+ 1.0 GeV. (1.1)
105 ~~o = Relg "ist)
— TS A value for AM = My — My can be deduced from experiment with an error smaller
"“‘—~—-__________ """" _ than that resulting from (7.1) because of a partial cancellation of the systematic uncer-
05 27" Re 152 (s.t) ) - tainties. Together with the definition of sy2:
My®  AM AM
2 =1 =2 — — .
or o M2 My, ( MZ) (72)
- this gives for the mixing angle [1]:
-os¢ sw? = 0.218 + 0.023. (7.3)
a) p decay:
‘1_ -
0 . _ Neglecting terms of order (m,/m,)3 and (m,/My)? the lowest order expression for the
2w Fig. 24a. Real part of the decay width for p~ — v,3.e" is given by:
S1sk 5 Rel™(s,t) s-channel box diagram form- 2 2 a
factors 2mfo - I ( ) and o % m,[1—8 Mo} M __.______1
2afa - Iy (— — — ~) for the ZZ # 384n " * w2 Myt (1 — Mp? M2)2
-20 s ; : - and W box (Vs = 93 Gev) a2 m2\ [ m, \3
0 02 04 06 08 1.0 = 1—-8—*% i E 7.4
~t/5s 38dn - ( 8 m,ﬁ) (Mwsw> (74
Putting together the 1-loop corrections yields the following results:
T — 70 igé_ 2) W * ~4_7_4SW2
/5 =93 GeV I,=T, {1+2n(4 7 or (0)+2ﬂ8w2 6 - ot In cp?
=1 4 or,/r.0). : (7.5)
10
The first correction term is the familiar QED correction in the Fermi model, the second
the contribution of the transverse part of the W self energy, [I7(0) of eq. (6.4), the last
term the sum of the vertex and box diagrams together with the v,, v, wave function
05+ renormalization.
The decay width I', = I',0 4 6I', depends on both My and sp® Using the mean
values of (7.1) and (7.3) the expressions (7.4—5) give:
. I, =2.96- 10718 MeV,
ok
whereas the QED corrected Fermi model result is:
; 5
: rp [1 += (g— - nZ)] = 2.56 - 10-15 MeV.
~05 i Tig. 24b. Real ( ) and 27 \ 4
imaginary (- ——~) parts of the .
t-channel box 2mfa - 174(4, s) This has to be compared with the measured value Iexe = 2.9958 - 1016 MeV [26]. With
and 2m)o - I.72(t, 5) with two a fixed value of My = 82.2 GeV we obtain 2.42- 10716 < I', < 3.70 - 10~ MeV, cor-
-10 . L . . Z bosons for Vs = 93 GeV responding to the variation of sy? in (7.3).
0 [e¥4 04 06 08 1.0

The present accuracy of the direct My, M, measurements does not allow to predict
T, with a precision that can compete with the accuracy of &0, Instead, I'.°%? can be
used as an input quantity from which for a given s, (resp. M) the corresponding My,
and My (vesp. sy?, M) is obtained. The result of this calculation is shown in figs. 25 and
26 for various values of the other parameters.

-t/s
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24
Qo
2
w B
g O
s £ 8
N g
N R
g % °
3 -
T %
5 1 =
S | S
N n W
7% ¢
3 &
< =)
g [ 8
2ol
«© =l
S I
= -
e F £3
S N
g £ ol o vy
51 -~ 0
1 R 016 018 020 022 02 026 028
3,
o W
= Fig. 26. Same as fig.s 25a, b for several choices of My: 1: My = 300 GeV,
g 2: My = 100 GeV, 3: My = 10 GeV. Quark masses as in eq. (6.2)
&
o
£ - .
g b} v.e scattering:
:gz NS The ratio
© — -
§ =3 &3 - owe) — o(ie) _ olve)fo(e) —1 R, —1 7.6)
- 88 o(vee) + o) olve)foF.e) +1 R, +1
< 5 99 3 2 0 !
S =} .
S 8 gg is well-suited for our purpose since it is sensitive to the ratio M, w/M 5 resp. sp? and less
~ g ) subject to systematic errors than the cross sections themselves; moreover it is free of
S S electromagnetic higher order corrections.
JOE 8 s== With the ratio & of the vector and axial vector coupling constants of the electron to
S =T g% the Z:10)
ST
g =Alee E=vja=1— 4dsp2. (1.7)
S zges . ‘
« S3 h 4, has in lowest order the simple form:
® TE A~ :
S T ¢ 2
k‘g‘ P AOZ_E__. or R70=L.,__§i_ (7.8)
w g v 2
g =g &4 ~ e T—ErE
W 38
:]bé £E The 1-loop corrected expression of 4, can be written in the following way:
BEN&
v _
A, EL AP VHed ey sa, (7.9)

TITETAE A7 —7)

19) In this section we omit the index e of the coupling constants v, a,.
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It gets contributions from the yZ mixing energy ﬁﬂz (6.1), the derivative of the

formfactor e
1 4 2 My? SMz2  SMy2
A% = 4 — 2r%(8)lgmo + —— {In =¥ = —dep? (2 _2Ew
S S0 + 37 (n m,® + 1) dow (M22 Twz) tin
X My? x 2 m,? mg? 2
s 20,2 wiy_ % 4 ) me” my
+ 3 (3 + 2% +2In m,‘z) pey (In oy + In p— +In m‘bz)
x €& m? . m?
TS My g (7.10)
and of the box diagrams containing two massive gauge bosons:
a1 a1 3
v 2|2 = 2 a2 2
+— [Swz +3va], 4 p [SWZ Ty 0t ta )}. (7.11)

The weak contributions to the renormalized yvv, Zvy and Zee vertex functions vanish in
our scheme at zero momentum transfer, yielding the simple expressions above.

The quantity R, resp. 4,, eq. (7.6), depends on My and M, z mainly via the combination
My Mz, because the variation of the yZ mixing energy with My (whence sp? fixed) is

small (see fig. 15). Therefore the value of sp? from (7.3) can directly be converted into the
observable R, (see also fig. 27):

RO = 129%%:2, R, = 128232,

Wi
\\ .
18_23 \ My =826ev 18 Hyy=82 Gey
\\
161 N\
\ 16
14 14
< 2
121 1.2
101 10
N
08} N\ 08
N
N
. ~ ~
06 1 L 06 1 1
a5 020 B 025 030 015 020 025 030
s 52
Fig. 27. R, as function of sy? in lowestorder (- - — -) and including radiative corrections ( }

for several choices of

a) Mpy; 1: My = 300 GeV, 2: My = 100 GeV, 3: My = 10 GeV and
b) quark masses:
1: (my, myg, mg) = (
2: (my, mg, my) = (
31 (my, mg, mg) = (

'

300, 300, 450) MeV, m, = 30 GeV;
, 7, 150) MeV, m, = 60 GeV;
5,7,150) MeV, m,; = 30.GeV; other parameters from (6.2)

]

Fortschr. Phys. 84 (1986) 11 733

The actual experimental value is [30]:

B, = 13833

+0.40 -

The measurement of R, together with that of I, an be used to determine the gauge boson
masses by simultaneously solving the equations

Ryexp — thheor(MW’ MZ): ]"Mexp — ]"“Lheor(ﬂlw, *MZ) .

This way to analyse the low energy data has been — until the experimental discovery of
the W and Z — the only possibility to get information on the values of the gauge boson
masses from purely leptonic reactions[31]. The results of our calculation are presented in
fig. 28, where we have plotted the W and Z mass as a function of Rjxp,

¢) Forward-backward asymmetry in e*e~ — prp~:

The forward backward asymmetry 4pz(z) in e*e~ annihilation into u pairs is defined
as {¢ = cos 0):

Appley =22 (1.12)

do/df2 reads in Born approximation

g'% =14 ¢® + 2x(s) [o¥(1 + ¢)* + 2a%]
8P [P + @ (1 + F) + doPa® - 2] (7.13)
where:
$
1) = 3 (7.14)
This gives:
9 =L . L+ 20%(s) ‘
Aol S) = T 2O T ER G Tt 1 e (7.13)

At PETRA/PEP energies one is allowed to neglect the imaginary part M,I'; in the
denominator of y since (I';/M;)? <€ 1. Also we know that +? < a? and consequently may
simplify (7.15):

Appg = A%p(1, ) ~ —3— a®x/(1 + a*y?) ’ (7.16)
with
a, s M2
CIT T80 — M) My — (7.17)

The radiative corrections to do/df2 can be divided into electromagnetic (real and virtual
photonic corrections) and purely weak parts:

d do®
6= 75 1+ Con + Cw). (7.18)

.
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‘ The electromagnetic corrections O,y and their influence on App have been treated in
ref. [18] and especially in [19]. Therefore we do not reproduce the expressions for ,,, in
this paper but take the formulas of [19] for the numerical evaluation of their contribution
to App.

The purely weak part €, is built up from the Z self energy, the gauge part of the y self
energy, the yZ mixing energy, the weak contributions 7, to the e and @ photon and Z
formfactors and the box graphs with two heavy bosons. For PETRA/PEP energies,
neglecting terms of order «/2x - (|¢|/M;2) these box contributions become independent of
¢ = cos 0, and therefore the weak corrections can be written in the following way :

(300, 300, 450) MeV, m, = 30 GeV;

=1
g
T
1
U
-
s do®
%‘Z ag’ Co=(1+2 [Cor* + 240p%+ + 205 + 20[2xC,7~ 4 22071
_E. (7.19)
53 These terms modify the expression (7.16) for the forward-backward asymmetry App to
~ become:
® 3 2y(a® + Op%™) + y(t0%a? + 0,7
= Ay = . x( +2w ):—x( . ;L 22) . (7.20)
£ 0 41400 + 20 + CP) 4 (0 + 0B + Corr)
E EE Now we write down the explicit form of the corrections Cp:
T 2 2 Ot = 20T, + 4F30
NS K| 8 '
® = 5 £ " O™t = ~o¥(IL7 + IT7%) — I + TG, + 20T, + alif,)
§ & N + 40%a%4,77 | (2sp)"t VW
= .
g‘ C?™ = —a(Ily + II?) + 2aF%, + 2a(eFy,, + aF,)
N + (v + 0?)2 4,77 4 (2s5) % VPP, (7.21)
E]
S O™ = =202 + a8 IT% — 20(0? 4 a?) - 21177 + 4(0® + a?) (uFEe, + aF7,)
;‘ %"%' + (v 2va + a(w? + a2 A, 77 - (v + a)® (2sp)~t V7,
g TS
B -0~ 0%~ = —80%a*[1? — 8a?II"? + Sva(vF%, + aF'%,
- g 5 I " + (v +a?) + a- 20a)? 4,77 + (v + a)? (2sy) 8 V7V,
5~ 8 H A
£ . The quantities IT are related to the renormalized transverse self energies 2y(s) (6.1):
T e
> =38 1 L3 .
1= ’% "g’ EE ITp(s) = 5 Re 2%, (s) (non-fermionic part),
NEER .
TE e z 1 S 12,
. % E £ 177 (s) = 5 Re 2pr4(s), (7.22)
1= Sz 1 .
i = W (g} — Z,W
N2 3 I7%:%(s) Py Re 2p2:7(s)
S8 33 '
- & k4 i i The weak contributions F32,, ..., F2P, to the formfactors are built from the functions
S ST Es As,5(s, M?) and coupling constants (comp. 6.8, 11} and app. B.3):
5 .
BE IS '

Fifue) = 5 [o07 + ) Re 4,6, 20,9

1 3cw '
— M2 — 2
+ Ssrboy R‘% Ap(s, My?) Tog® Ay(s, My )], (7.23)

4 Fortschr. Phys. 34 (1986) 11
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Fiue) = = [ate® + o) Re 4,5, 0,2
1 3cw
— 3y M2
+ By Re A, M) — 35 45, i),
- i
B0 = g |8 4 0% Re s ) - 7t 1), (r.23)

) = = [fm “Re dy(s, M7?) +

3
e Ay(s, sz)} -
These expressions vanish for s = 0 and are for energies Vs < 45 GeV smaller than 10-3,
Finally the low energy approximations of the ZZ, WW box diagrams have the simple
form (coupling constants removed):

24 %
AIZZ = =83 — 'VlWW —

o . (7.24)

yielding terms of the order of magnitude of less than 10-3,

If an accuracy of the relative corrections to «yzat PETRA/PEP energies of 1072 jg
desired, one is allowed to neglect in the contributions to C,, all terms but the self ener-
gies. Then one gets for ARF™+"*** the following expression (using also v2 <€ a2):

1-1y =1 3  yat (
T2y a2 1 gt

3
Born+weak . 2
Arg ~ (2

141y — 1%,

(7.25)
x was defined in eq. (7.14) as the ratio of the free Z and y propagators. Therefore the
result (7.25) has the simple interpretation:

3 x(s)Bom +weak

. 8§+ ﬁ;'w(s)
21+ e

s — M2+ ZATZ(S)'
(7.26)

x};‘%m?‘weak( 8) — xBorn+vueak —

The lowest order expression for y(s) has to be replaced by the renormalized one, the
radiative corrections to a2 can be neglected.

The weak i.e. non-Abelian gauge contribution to J77, comes from vacuum polarization
by W pairs, the corresponding ghosts and unphysical charged Higgses and results for
small energies as can be seen from (6.1), (5.7) in:

2
Iyn(s) = —%ﬁ +0 (;Ln (MLWZ) ) (1.27)

Consequently this can also be neglected at the desired accuracy at PETRA/PEP ener-
gies, leaving the simple result suited for the practical calculations:

3 $) a?
vt . 3. ——l’fﬁr)f{ﬁ (1 — m75(s). (7.28)

We find — in agreement with [16] — that the weak radiative corrections to g at low

energies are determined by the transverse Z boson self energy only, with an accuracy of
6V€WEBK/U40 < 10*3.
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On the basis of the formulas (7.18—23) we present in table 1 the weak corrections to
Apg for a large range of the Z mass and sp?. The a® contribution to 4z, which is of pure
QED origin is not included because it is model independent and already respected in the
experimental data. The sum of the QED corrections to Z exchange and yZ interference
and the purely weak corrections turn out to be very small over the parameter range con-
sidered for realistic cuts (= 0.001 in Agp). Fig. 29 shows the predictions for App(|cos 6|

< 0.8) for 1/8—= 34.5 GeV with an accolinearity cut of 10°and an energy cut of 0.5E beam

Table 1

Purely weak corrections to App(|cos 6] < 1) in percent for Vs = 43 GeV
(Mg = 100 GeV, m; = 30 GeV).

sw?  Mz(GeV)

89 90 91 92 93 94 95 96 97

015 —1.66 —1.62 —1.57 -—1.53 —1.49 —145 —142 _—138 —1.35
0.16 —1.57 —1.63 —148 —144 —1.41 —1.37 —1.34 —1.30 —1.27
0.17 —149 —145 —1.41 -—1.837 —1.33 —130 —127 —1.23 —1.20
0.18 —141 —1.37 —1.34 —1.30 —1.27 —1.23 —1.20 —1.17 —1.14
019 —1.35 —1.31 —1.28 —1.24 —1.21 —1.18 —1.15 —1.12 —1.09
0.20 —1.29 126 —1.22 —119 —1.16 —1.13 —1.10 —1.07 —1.05
021 —-1.24 —120 —1.17 114 —1.11 —1.08 ~—1.06 —1.03 —1.00
0.22 —119 —1.16 —1.13 -—1.10 —1.07 —1.04 —1.02 —0.99 —0.97
023 —115 —112 —1.09 -1.06 —1.08 —1.01 —0.98 —0.96 —0.93
024 —112 —1.08 —1.06 —1.03 —1.00 —0.97 —0.95 —093 —0.90
0.25 —1.68 —1.05 —1.02 —1.00 —0.97 —0.94 —0.92 —090 —0.88
026 —1.05 —1.02 —0.99 -0.97 -—094 —092 —0.89 —0.87 —0853
027 —~1.02 —099 —097 —094 -—-092 —0.89 —0.87 —0.85 --0.83
028 —1.00 —0.97 —0.94 —0.92 —0.89 —087 —0.85 —0.83 —0.81
0.29  —0.97 -—095 —0.92 —0.90 —087 —0.85 —0.83 —0.81 —0.79
030 —0.95 —0.92 —0.90 —0.88 —0.85 —0.83 —081 --0.79 —0.77

or the bremsstrahlung part. These results are scaled up to |cos 6] < 1 according to the

lowest order formula (7.15) in order to be directly comparable with the PETRA results
[4] that are shown in the figure, too.

One can see from fig. 29 that the experimental result for Azz at 34.5 GeV favours
values of s* which are slightly smaller than those following from the M wlM 7 ratio.

d) Tests of the standard model at the 1-loop level:

The most important parameters of the electroweak standard model are the masses of the
intermediate bosons. Therefore, we have expressed every observable quantity with help
of My and M. Consequently each measured value Ry, of a quantity B

Rexp = Rneor( My, M) (7.29)

gives a relation between My and M. This depends if one includes radiative corrections
slightly on the other parameters of the model i.e. the fermion masses and the Higgs
mass. In order to perform a test of the standard model using purely leptonic reactions we

4%
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Fig. 29. App (0.8) scaled up to [cos 6] < 1 according to eq. (7.15) at Vs = 34.5 GeV as

function of sp? including complete electroweak radiative corrections. Shown are the

ourves resulting from the upper (93.7) and lower (91.7) bounds on M, from the PP

collider experiment together with the upper and lower bounds on s;? (dashed lines) from

the same experiment. The cross marks the point corresponding to the mean values
} Mz = 92.7 GeV, sp* = 0.218. The dashed-dotted lines mark the PETRA results

present the experimental results in the (M, M. z) Plane. This is done in fig. 30 including
1-loop corrections (for our previously specified standard set of parameters (6.2)) for:

—  decay, which gives a curve in the (My, M. z) plane;
I

— vue scattering, yielding relatively weak bounds on M. w> Mz due to the present ex-
.. perimental errors [30]; _ ‘
— the lepton pair forward-backward asymmetry at | ],/ s = 34.5 GeV;

— the direct measurement of My and My in the PP collider [1].

This picture represents a comprehensive test of the electroweak standard theory at
the 1-loop level in the leptonic sector.

, Clearly the low energy data (from I',, R,, 43) and the high energy data (M, M) are
compatible with each other. The agreement would be worse if radiative corrections were
not taken into account. But in order to become really sensitive to these corrections im-
provements in the experimental determination of M w, Mz and R, are necessary.

8. Coneclusion and Outlook

In this paper we have worked out a renormalization scheme for the standard electro-
weak model characterized by the following properties: use of the electric charge ¢ and
particle masses as physical parameters; minimal number of field renormalization con-
stants respecting the SU(2) x U(1) symmetry ; the simple pole structure of the *t Hooft-
Feynman gauge is maintained after renormalization in a way consistent with the Slav-
nov-Taylor identities. We have caleulated all the physical and unphysical self and mixing
energies together with the complete set of renormalization constants, and the fermion
gauge boson vertices. We have presented also the renormalized results for the solf ener-
gies, vertices and box diagrams. These are the building blocks needed for the calculation

Fortschr. Phys. 84 (1986) 11 739

Hy 7 Gey

L 1 |
80 . b4 88 92
Hyy / eV

Fig. 30. Comparison of the results for the boson masses in the (M, M) plane. Shown
are: the curve resulting from p. decay ( ), the 689 CL band determined from v/e
scattering (//////]) and that from the forward-backward asymmetry in ete~ - ytp-
(===). The blob with the error bars represents the combined UA 1 and UA 2 results

of electroweak radiative corrections to e*e~ annihilation, deep inelastic lepton scattering
and PP annihilation at high energies.
Finally we have performed a comparison between experiment and the results of the
[

standard model including radiative corrections for p-decay, vie-scattering and e*e--
annihilation into lepton pairs. We find good agreement between theory and experiment
if radiative corrections are included. But the accuracy of the experiment has not yet
reached a level where radiative corrections can be conclusively tested. We expect this to
be the case in the near future, when results of the next generation of the e*e--machines
and of the high precision experiments on lepton scattering are available. These then may
also help to gather some information on the Higgs sector and finally will allow to dis-
criminate between the minimal electroweak model and more extended versions.
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Appendix A: Feynman rules and counter terms

We present the Feynman rules of the standard model using e, My, My, My, m;, as
parameters and

c=My/Mz, s=(1— Mp*MPAP, v,= (I}, — 25°Q;,)(2sc, a;, = I3[2sc

as abbreviations for writing out the couplings (again we suppress the index W at cy, sy).
We combine the renormalization constants 62,7, 6Z;B, 8¢3, 0&8, 6Z%, 6Z® to those for
the photon, Z boson and mixing terms:

87 = 20 + ZE, Ok = sPES - P88,

877 = GROZY + SOTE,  OEF = 20LD + SOLD,
(A1)
cs
62 —1

8777 = cs(8ZY — OZF) =

(0% — 627,

cS

8877 = es(062 — 85P) =

2 — §% (667 — 86)7),

similar for 6Z.

The renormalization constants 6Mvw?, 6 %, 8My?, dm,, 6t are defined in eq.s (4.1') and
(4.4"). This gives the following list of Feynman rules and counter terms (momenta and
charges are understood as incoming):

7 . 13
TS .1
e 13
ws we o #%%,q u® it

{W,G——---J,rmm‘.,.-—-—-.}

k.

i
=m o e L L K+,

W W . . )
At = —ig, [(k® — M2 62,° — SM2] — k8505 a=+,7,p,
Z, 4,

et X e

= —igu —k*0Z;% + M0Zy" ~ 6L;1%)] + tkuk, 0617,

UICTZE ST by L My GO6 — 067); — 087 -+ 08 + 0% — 8507,

>

7 7

————

= (k2 — My?) 62 — oM 2],

fots 2 {oms nt

—— Tx -

6t
=1 [(kz — M) 020 — MY, — MY 067 + Myt 7],
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ue o - 1 SM
VIVEXYVITT — i[lcz (5Z“ -3 o0& ) M 2(6Z" 2 + —552 )}
a=4,27,y,
u¥ o

VAT = —% [ ( 27 — — 55172) + Mz (azlrz - %azzrz + aZ%Z)],
u 3 1
T = |2 (820 — —éfﬂz + Mz 8207 — 5 0Zy% + +3 55{2)]’

y _ B _
T [16 (‘SZL Low +aZR""1+“%)

( 0Z5¢ 4+ — BZR"') — 6mw],

W,
= e {—%; 1} [Guulk* — &9, + ok — &),
Wo gk — k)] (L + 62,7,

w) W
L, 1
=1 (204920 — Guos — Guegia] - (1 + 20Z,7 — 82Z,7),
W wr
W; (Zy; dgs 4}
c? c
= —ie {s_’ — 1} 129900 — Gueho — Guoro]
W 1243 265 Ag)
v X (1 + 2az,W — 82,7,
Amiwio7}
n o _ e My év .
_____‘<\ = Z%T 3;1; 1 (1 —— 4623},
NMnixieT)
¢’\ PALLTI LN ) x, %
N NS \\\ ,/ MH
s X oo = 82M =L 2;1;1;3;1;3
4 ~, Ve N 4 AN
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. ,/¢;
W'j % ¢ : w w
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Fortschr. Phys?34 (1986) 11

2
2 A ,// X 82 — ¢
{vu)w( = —ide(p — q), {2—68—; 1} (1 + 827
\\
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827 — o2y + 2L 702 sz, 72)})
/I x
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.
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8 _
(52,257} (1 — 22 - 620+ 207,% — 3027 +6ZZ+%5522),
. = _i‘% My (_azlrz + _g_azzﬂ - aZrZ),
vt 0,02} (_azlyz + %a‘z;z - % 65272).
Appendix B:

L. The finite part of the scalar self energy F(k2; M,, M,):

2 2 2 7
P My, M) = 1+ (Ml A %‘?j‘}g)m%
) A 2 <My

1
+ 3 (O + 3,12 — 29) (a1, — )2 — ae)fue

X In V(Ml + M2 — &+ V(Ml — M2 — J?
VO, + M) — B — V(M — M — R
k< (M, — M,)?

2
=5z UMy + M) — BRPR R — (M, — My)epn

+1 % arctan Vo — My — M)
(My+ M) — B2
(My — M2 < 22 < (M, + M,)°
1
— g B — (Mo + MRPT2 (B2 — (M, — M,)ePe
VB — (M, + M7 + VB — (M, — M, |
X qln — Ty,
Vi — (M — M, — V> — (M, + M)
k2 > (M, L ML), (B.1)
2, - The function By(k?; My, M,) is defined by:
7 dPg
— b, By(k?; My, M) = 4—Df—_ L
TG L) =g @00 (¥ — M + o) (g - 7 — M L 3

and related to By:
2kEB(k%; M, M) = A(M,) — AWM + (M2 — M2 — &%) Bo(k?; My, M,).

L (B.2)
This gives for equal masses:

1
Blet; M, M) = — = By, I, M). (B.2))
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3. The vertex functions A,,...4:

The contributions of the photonic diagrams of fig. 7a to the vertex function I', (of
sect. 5.2f) for |k% > m? p = ¢ = m have already been calculated [18, 19]. After
splitting off the UV divergent parts and the coupling constants remains the function
Ay (B2 m): :

Al(o: m) = 0)
kZ k2 k2 |k2| (B'g)
Ay k2, m) = —2 lnll—zl (In—l;n—zl— - 1) + ln‘—m—?]- + IHZW
n? S, ¥ 38 . .
[4(—3——l)+2nz<lnﬁ—5) for %> m?,
+ 2
4 T 1 for —k > m2.

The diagrams of fig. 7Tb describing the exchange of the heavy bosons Z and W lead to the
following integral:

= utD f 4L ydgy’ — g4'vs) (—¢ — L+ my') y(V — Ays) (g —U+m)) gy — gavs)
(2m)? @—M)(p—12+ ml'z)((q + 02 — my'®)

. Ay — %] for k2=0,

= ﬁ Yuldvy — days) - 1

! [AM iy + Ak, M):‘ for &% >>mi,, m,

with
Ay = Vigvgy' + gags’) + Algvasd + 9v'094),
Ay = Algvgy” + g494') + Vigvgsd + gv'g4),
and g
5 d [ J(w) M2
2 __2 2 & el
42(k,11[)_ 2+lnw+2(1+w) dw(l—}—w)’ w =

The parameter integral
1 1
Jw) = [ dz [ dyyIn[w(l — y) — y?2(l — z) — %]
6 o

can be evaluated with help of the dilogarithm

1

Sp () = 4‘[ PR k) (1; 2
0
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and yields for A, the expression:

A3, M) — —% — 2w — (2w + 3) In (—w) + 2(1 + w)? [Sp(l + %) - ”_z}

for 4 <0,

Aok, M) = —% —~ 2w — (2w + 3) In () -+ 2(1 + w)? [In (w) In (w Z 1)

—8p (—%)} — in [‘a +2w— 21 + w)ﬂn(l + w)]

w

for k2> 0.
In fig. 22 we show A,(k?, Mz), Ay(k%, M), Ay(k2, My), and Agl?; My, My).

Ina similar way we have obtained the invariant functions belonging to the diagram 7¢
containing the triple boson vertex :

:
= 1672 Yuldy — Aays) - A(R?; M, M)

with

A= (gvgy" + 949.4) G, A= (gvgs +949v") G
and

AR My, M)

l 3 [AM —% + A (72, M)] for M,=M,=M,

= Ay, + Ay, 5 M2+ M2 M, 2.
3[~7_, + 5 — mlnm +/14(k :*MD Me)
for M, + M,.
(B.5)

The remaining functions have the properties
450, M) = A4(0, M, M) = 0,
/14(702, My, M) = Aq k2, My, M),

They read for |82 > m2 (w = M2jk?):

YR R Ny g ) A U
6 3 3 ]/1—410—1

VT — 4w+t
V1= dw—1

+ % w(w + 2) (ln

2
) for %2 <0,
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5 2w 2 — 1
As(k2,‘]l[)=g——§-+~§(2w+1)}/4w—1arctan—4w—_'—1
8 w(w + 2) alrcta,n——l——2 for 0 << k2 < 4M2
3 Vaw —1 |
(B.6)
ey 3 W0 2wl 14T dw
Ag(kt, M) = & — 5 + V1 win ————
2 14+¥1— tw )]
+ s ww 4+ 2) | In? | — e — a2
3w( + )[ (1—]/1—-110
2w+t — 2 14Vl — 4w
— 1— - 2)In —————
m|: 3 V 4w—l—3w(w+)n1“]/1_4w
for k2> 4M?

and with w, = M,%/k?, w, = M,2/k2:

A2 M, M)

1 w4+ wy . M, Wy — Wy
=—f——In— - —2__2]
R — 3

wy +w, 1 Ly —Za
3 [xllnxl_l—}—lenl_xz}

wy + wy + 1 (In%— 1)
3

M,
" o,

+

et In-2

B.7
il g (B.7)

2
Y (wy + we + wyw,) In

1—w 4w
2

for R < (M;— My and k2> (M, -+ M),

1—w 4w,
2

for (M, — Mo < k* < (M, + M,).

1
+ EV(I — wy + wp)® — 4w,

Ly, =

+ 5 Vi, — (L= w; + )

The imaginary part of A, is obtained from (B.7).
Im A (k25 My, M) = —x - 6(]‘72 — (M, + Mz)z)
1

x {wl + w; +

3 V(l — w; + wy)? — 4w,

Ty

2 z
+ = (wy + w4 wywy) (ln 1=, —|—ln1 —2.’1:2)}-

3
(B.8)

Inthe case M, = 0, 1.e.if one of the bosons is a photon, the mass m of the fermion coupled
to the photon has to be respected. In that special case we have to use the following
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expression, valid for [k% > m? (with w = M2[E%):

1w 1—w? w—~1 2 Yo
AP M, 0) = 5 — 2+ —— 1n“w +gin—

w (M — k2 iy, M 1
+ 3 {ln ( m? In m +285p 1wl (B.9)
For k% ~ M?2 replace M2 — M2 — MT. i
Fig. 23 shows A,™(k?; M, 0) for m = m,, M = My
4. The box diagrams:

We write down the explicit expressions for the s-channel hox diagrams. The matrix ele-
ment can be written as:

1 . ' y
= %; 5 {B(be) vul2a” — Aitys) ulpy) - u(py) y*(A” — Aotys) v(pg) « I¥(s, &)

+ B(pe) vurs(i” — Artys) w(py) - WD) Yvslie” — Aydys) v(pg) - I (s, )
(B.10)
with
A = v, + aya,, WA = v, + v,

LY = vy, + A3y, Aot = gy + Vg3,

where the v;, a; are the vector and axial vector couplings of the :’th fermion to the inter-
nal boson according to the labelling of fermion momenta in the above diagram.

s = (p1 + p2)?, t= (py — p;)2, u = (p; — p;3)?

are the usual Mandelstam variables.

In order to obtain the expression for the crossed box one should substitute ¢ <» % and
reverse the sign of I*:

Tii(s, 8) — —I'i(s, w) and I¥(s, ) — Iii(s, u). (B.11)

The following results [33], given in a form which is convenient for numerical evaluation,
are valid for s, [¢], |ul > m> Because of (B.11) we give for the neutral-current boxes
only that part of I, which is antisymmetric under ¢ <> «:

" R s ¢ s(s + 2¢) ¢
Is, ) = on {2(8 + 1) In s+ 4(s + 1) [ln2 (s + is) + ﬂzJ} (B.12)

[+

(s, ) — I(s, w) = {~2 iy, (2’ - ze)} + Ig7(s, ) — Ig7(s, u);
7T

2
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— 3 M2 Mp2 s 42 M2
o5, g = 2 S b My M
Iy (S’t)_2n 2(s + 1) S M s DHE—s s+t

s —t —t Mf—s}
x [Spags — 50 3 + s In Gt

(B.13)
750, = D% )= I~ 13700, ) 1 5 (S0
+ %Ing—ln% — ln(_Tt + ie)ln%f).
e £ -5 2]
+ %ln:ﬁ + 2 5 ylln_y—?:1

s+ 2 — &M2s + 2M AL — 2M s
+ 35 + 0) (5 + @)

2 Zy

Ty Lo
— 8 -8 ]},
X[prl—y1+8prl—yz pxz*‘?/z sz—yl

(B.14)
— i\ 2
X[SP%—%-{ prl—ﬁ/z pxz—yz sz_yl
with
1
aye = 5 (L& YT — 4035 (1 + M) ]
, (B.15)

1 VOSSR
v = 5 (L2 VT — 4M25).

The expressions for the form factors I2%, I ;%% are valid for s < 2 Re M?; those for the
W W-box are obtained from (B.14, 15) by the substitution M;* — My* (the gauge boson
masses include as imaginary part —<MT).

As an illustration we present for }'s = 93 GeV the functions I and I; for the ZZ and
WW boxes in Figs. 24a, b. Only the t-channel expressions have an imaginary part COIl_l;
parable to the real part. In the other cases Im I is of the order of magnitude «/2% - 10
or even smaller,
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