
Name: SOLUTIONS

PHY 5246: Theoretical Dynamics, Fall 2015

September 28th, 2015

Midterm Exam # 1

Always remember to write full work for what you do. This will help your grade in
case of incomplete or wrong answers. Also, no credit will be given for an answer, even if
correct, if you give no justification for it.

Write your final answers on the sheets provided. You may separate them as long as
you put your name on each of them. We will staple them when you hand them in. Ask
if you need extra sheets, they will be provided. Remember to put your name on each of
them and add them after the problem they refer to.



Name: SOLUTIONS

Problem 1

A particle of mass m is constrained to move on the surface of a cylinder defined by
x2+y2 = R2. The particle is subject to a force directed toward the origin and proportional
to the the distance of the particle from the origin: F = −kr. There is no gravitational
force acting on m.

(1.a) Write the Lagrangian of the system using cylindrical coordinates. Can you tell if
the system admits one or more conserved quantities (or first integrals)?

(1.b) Find the equations of motion using the Euler-Lagrange method, integrate them, and
tell how the bead moves.

(1.c) Find the force of constraint acting on the bead. If you prefer you can solve (1.b)
and (1.c) together.

(1.a)
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Using cylindrical coordinates (ρ, θ, z), with
ρ̂ = xx̂+yŷ, the constraint of the problem
is simply implemented by fixing the radial
coordinate to ρ = R, and using {θ, z} as
generalized coordinates, such that:

{ x = R cos θ
y = R sin θ
z = z

Notice that the force is F = −kr, where
r = rr̂ is the position vector of the bead
and r is the radial coordinate of spherical
coordinates, s.t. r2 = ρ2+z2 = R2+z2. We
can find the corresponding potential energy
using directly spherical coordinates (sim-
plest), in which case:

F = −kr = −∇V (r) = −
∂V (r)

∂r
r̂

such that,

∂V (r)

∂r
= −kr ⇒ V (r) =

1

2
kr2 .



We could also rewrite F in cylindrical
coordinates:

F = −kρρ̂− kzẑ = −∇V (ρ, θ, z) = −
∂V

∂ρ
ρ̂−

∂V

∂z
ẑ ,

such that

V (ρ, θ, z) =
1

2
k(ρ2 + z2) =

1

2
r2 ,

in agreement with our previous result. The kinetic energy can then be expressed in
cylindrical coordinates as,

T =
m

2
(ẋ2 + ẏ2 + ż2) =

1

2
m(R2θ̇2 + ż2)

V =
1

2
kr2 =

1

2
k(R2 + z2)

=
1

2
kz2 + const.

such that, the Lagrangian is

L = T − V =
1

2
m(R2θ̇2 + ż2)−

1

2
kz2 .

We notice that since L does not depend on θ we have a conserved quantity, the angular
momentum in the θ̂ direction,

pθ =
∂L

∂θ̇
= constant .

Moreover, since the only applied force is conservative, energy must be conserved. You can
proof this directly, by taking the derivative of E with respect to t and using the equations
of motion that you will derive in (1.b), or you can observe that: 1) the energy function
h is equal to the energy E, since the force is conservative, and the constraint is time-
independent, and 2) h is conserved because the Lagrangian does not depend explicitly on
time, i.e. ∂L/dt = 0 (remember that dh/dt = −∂L/dt).

(1.b)

The equations of motion are given by

d

dt

∂L

∂θ̇
= 0 ⇒ pθ = mR2θ̇ = const. ⇒ θ̇ =

pθ
mR2

= const. (1)

d

dt

∂L

∂ż
−

∂L

∂z
= 0 ⇒ mz̈ + kz = 0 ⇒ z̈ + ω2z = 0. (2)

So, the particle rotates about the z axis with constant angular velocity θ̇ and oscillates

in the ẑ direction as a simple harmonic oscillator with frequency ω =
√

k/m (about a

position that it is determined by some initial conditions, not given in the problem).



Having the equations of motion we can also explicitly check that the energy E is
conserved (this was left on hold from point (1.a)). The derivative of E with respect to
time is:

dE

dt
=

d

dt
(T + V ) =

d

dt

(

1

2
m(R2θ̇2 +

1

2
kz2)

)

= 6 2
1

6 2
mR2θ̇θ̈+ 6 2

1

6 2
mżz̈+ 6 2

1

6 2
kzż

= ż(mz̈ + kz) = 0 ,

where, in the last two lines, we have used the equations of motion (1) and (2).

(1.c)

The constraint is in this case a geometrical constraint: the bead has to move on a cylin-
drical surface of fixed radius R = a, for a some arbitrary constant. The differential form
of the equation of the constraint is then,

aRdR = 0 with aR = 1 .

The force of the constraint will be at all times orthogonal to the surface, so we expect
it to have only one component, in the radial cylindrical direction. In order to find its
components, we need to introduce a number of Lagrange multipliers λj equal to the
number of equation of constraints (one in our case), consider all three coordinates as
generalized coordinates, rewrite the Lagrangian as,

L = T − V =
1

2
m(Ṙ2 +R2θ̇2 + ż2)−

1

2
k(R2 + z2) ,

and write the Euler-Lagrange equations of motion in the generalized form,

d

dt

∂L

∂q̇j
−

∂L

∂qj
= ajλj .

In our case only the R equation of motion will be modified, and will take the form,

mR̈ −mRθ̇2 + kR = λ . (3)

Solving Eq. (3) together with Eqs. (1) and (2), plus the constraint condition: R = a and
Ṙ = R̈ = 0, we get,

λ = ka−maθ̇2 = ka−
l2

ma3
,

which is the force of the constraint (just one component, in the radial cylindrical direction,
as expected).
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Problem 2

Consider a simple plane pendulum consisting of a mass m attached to a string of
length l. After the pendulum is set in motion, the length of the string is shortened at a
constant rate

dl

dt
= −α = constant .

The suspension point remains fixed.

(2.a) Compute the Lagrangian function and find the equation of motion. Show that the
equation you found corresponds to the θ̂ component of F = ma applied to the
pendulum.

(2.b) Write the energy function (h) of the system. Is it equal to the energy of the system
and why?

(2.c) Is the energy function h an integral of motion? Is the energy conserved? Explain
your results.

(2.a)

y

x

l = l0 − αt
θ

m

The coordinates for this problem are

{ x = l sin θ
y = −l cos θ

with l = l0 − αt so that l̇ = −α. The only generalized
coordinate is {θ} (l is a time dependent constraint, it tells
us how long the string is; the dynamics of how this happen
is neither explained nor given, so you should not consider it
as a coordinate!). The Lagrangian is given by finding the
kinetic and potential energies

T =
1

2
m(ẋ2 + ẏ2) =

1

2
m(l̇2 + l2θ̇2)

=
1

2
m(α2 + l2θ̇2)

V = −mgl cos θ

L = T − V =
1

2
m(α2 + l2θ̇2) +mgl cos θ.

The equation of motion is

d

dt

∂L

∂θ̇
−

∂L

∂θ
= 0 ⇒ m[l2θ̈ + 2ll̇θ̇] +mgl sin θ = 0



⇒ θ̈ −
2α

l
θ̇ +

g

l
sin θ = 0. (4)

which can be simply interpreted as the θ component of 2nd Newton’s law for this system,
i.e.

maθ = m(lθ̈ + 2l̇θ̇) = −mg sin θ = Fθ . (5)

(2.b)

The energy function h is

h = θ̇
∂L

∂θ̇
− L = θ̇ml2θ̇ −

1

2
m(α2 + l2θ̇2)−mgl cos θ

= −
1

2
mα2 +

1

2
ml2θ̇2 −mgl cos θ ,

while the energy is given by

E = T + V =
1

2
m(α2 + l2θ̇2)−mgl cos θ

= h +mα2.

This shows that the two quantities are not equal, they differ by a constant term h =
E − mα2. This is to be expected since the relation between Cartesian and generalized
coordinates is time dependent.

(2.c)

Since l = l(t),
dh

dt
=

dE

dt
= −

∂L

∂t
6= 0.

and h is not is not an integral of motion. The total energy E is not conserved either.
Actually, since h = E + const., dE/dt = dh/dt 6= 0. The physical interpretation is that
the system is not closed; the mechanical energy that we are adding by shortening the
string is not being accounted for.
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Problem 3

A particle of mass m and charge e moves with velocity v in the presence of an electric
field E and a magnetic field B, and is therefore subject to a force

F = e(E+ v ×B) .

(3.a) Show that the particle’s equations of motion can be derived from the Lagrangian

L =
1

2
mv2 − eφ+ eA · v ,

where φ and A are the scalar and vector potentials in terms of which the fields E
and B can be expressed as

E = −∇φ−
∂A

∂t
, B = ∇×A .

(3.b) Show that the energy function of the system is

H =
1

2
mv2 + eφ .

Assuming that A and φ are time independent, show that H is conserved. Is H equal
to the energy of the system? Explain why.

(3.c) Show that the equations of motion are invariant under a gauge transformation of
the form

A′

i = Ai + ∂iΛ ,

φ′ = φ− ∂tΛ ,

where Λ = Λ(~x, t) is a generic scalar function of ~x and t, ∂i = ∂/∂xi, and ∂t = ∂/∂t
(Hint : consider how the transformation acts on the Lagrangian).

(3.a)

Starting from the expression of the force, one can work out F = ma component by
component (i.e. mẍ = eEx + e(x × B)x = . . .), or, using a more compact notation, one
can write that the ith component of the force is

Fi = e(Ei + ǫijkvjBk) , (6)



where,

Ei = −∂iφ− ∂tAi , (7)

Bi = ǫijk∂jAk ,

and summation over repeated indeces is always understood. The equations of motion
then are

mvi = −e∂iφ− e∂tAi + eǫijkvjǫklm∂lAm (8)

= −e∂iφ− e∂tAi + evj∂lAm(δilδjm − δimδjl)

− −e∂iφ− e∂tAi + e(vm∂iAm − vl∂lAi)

= −e∂iφ+ evm∂iAm − e
dAi

dt

= −e∂i(φ− vmAm)− e∂ivmAm − e
dAi

dt

and are equivalent to (notice that ∂ivm = 0),

d

dt
(mvi + eAi) + ∂i(eφ− evjAj) =

d

dt

∂L

∂vi
−

∂L

∂xi

, (9)

where L is the Lagrangian function defined as,

L =
1

2
mv2 − eφ+ eA · v . (10)

(3.b)

The energy function is defined as

H = q̇j
∂L

∂q̇j
− L (11)

=
1

2
mv2 + ev ·A+ eφ− ev ·A =

1

2
mv2 + eφ .

H is conserved since (under the assumption that φ and A are time independent)

dH

dt
= −

∂L

∂t
= 0 . (12)

This is expected, since the magnetic part of the force (v × B) does not do work on the
charge (being orthogonal to v). However, H is not equal to the energy of the system, it
is just the sum of the kinetic energy and the scalar electromagnetic potential.



(3.c)

Under the given gauge transformation the Lagrangian L transforms as follows

L → L′ = L+ e∂tΛ + ev · ∇Λ = L+ e
dΛ

dt
, (13)

Since L and L′ differ only by a total derivative with respect to time, they yield exactly
the same equations of motion. This is expressed by saying that the Lagrangian is gauge
invariant.


