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PHY 5246: Theoretical Dynamics, Fall 2015

November 2nd, 2015

Midterm Exam # 2

Always remember to write full work for what you do. This will help your grade in
case of incomplete or wrong answers. Also, no credit will be given for an answer, even if
correct, if you give no justification for it.

Write your final answers on the sheets provided. You may separate them as long as
you put your name on each of them. We will staple them when you hand them in. Ask
if you need extra sheets, they will be provided. Remember to put your name on each of
them and add them after the problem they refer to.



Name: Solutions

Problem 1

A particle of mass m moves in an attractive central-force field

F(r) = − k

rβ+1
r̂ ,

for k and β (positive) constants, and r̂ the unit vector in the radial direction from the
center of force.

(1.a) Write the Lagrangian of the particle m and explain your choice of generalized coor-
dinates (how many generalized coordinates? why?)

For a central-force motion the vector angular momentum (l) is conserved since
N = r × F(r) = 0 and N = l̇. This implies that the motion is planar, since the
vectors r and ṙ are constrained to always lye in a plane orthogonal to l, and l is
constant. It is then natural to choose planar polar coordinates (r and θ) to describe
the motion, and write the Lagrangian as,

L = T − V =
1

2
m(ṙ2 + r2θ̇2) +

1

β

k

rβ
, (1)

where we have derived the expression of V (r) = −k/β/rβ from F (r) = −∂V/∂r.

(1.b) Construct the effective potential Veff(r) for which the radial equation of motion
reads:

mr̈ = −∂Veff(r)

∂r
.

The equation of motion for θ expresses the conservation of the magnitude of the
angular momentum, i.e.

d

dr
(mr2θ̇) = 0 → mr2θ̇ = l0 , (2)

where l0 is a constant (of motion). On the other hand, the equation of motion for
r reads,

mr̈ −mrθ̇2 − k

β

(−β)

rβ+1
= 0 , (3)

or, using Eq. (2),

mr̈ − l20
mr3

+
k

rβ+1
= 0 → mr̈ =

l20
mr3

− k

rβ+1
= Feff(r) = −∂Veff(r)

∂r
, (4)



where we have rewritten it as the equation of motion for a one-dimensional system
subject to an effective central force Feff(r) which can be defined in terms of an
effective potential

Veff(r) = −
∫
drFeff(r) =

l20
2mr2

− 1

β

k

rβ
=

l20
2mr2

+ V (r) . (5)

(1.c) Sketch Veff(r) for the case i) β < 0, ii) 0 < β < 2, and iii) β > 2. For what values
of β does a stable circular orbit exist? For what values of β are all orbits bounded?
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which is any rational number.

One can see from the sketches in the figure that a stable circular orbit exists only
for β < 0 and 0 < β < 2, since the effective potential has a minimum for r = r0,
where r0 defines the radius of the circular orbit. For β > 2 Veff(r) has a maximum
for r = r0 and the circular orbit is not stable. One also sees that only for β < 0 all
the orbits are bounded.

(1.d) For those values of β which support the existence of a stable circular orbit, calculate
the radius, r0, of the circular orbit in terms of the (conserved) angular momentum
(l0) and other constants.

The radius of the circular stable orbit is obtained from the equation

∂Veff(r)

∂r
= − l20

mr3
+

1

β
β

k

rβ+1
= 0 → 1

r3

(
− l

2
0

m
+

k

rβ−2

)
= 0 , (6)

from which one can derive r0 as

l20
m

=
k

rβ−2
0

→ rβ−2
0 =

mk

l20
→ r0 =

(
l20
mk

) 1
2−β

. (7)



(1.e) Let r = r0 + η and derive the equation of motion for radial deviations, assuming η
small. Under what conditions will the perturbed orbit be closed?

The equation of motion for r = r0 + η is

mη̈ =
l20

m(r0 + η)3
− k

(r0 + η)β+1
. (8)

Expanding in η one gets,

mη̈ =
l20
mr3

0

(
1− 3

η

r0

)
− k

rβ+1
0

(
1− (β + 1)

η

r0

)
+O(η2) , (9)

which can be recast in the form,

mη̈ =

(
l20
mr3

0

− k

rβ+1
0

)
− η

(
3l20
mr4

0

− k(β + 1)

rβ+2
0

)
+O(η2) , (10)

and finally, by observing that the first parenthesis vanishes due to the condition on
Veff that defines r0, one gets,

η̈ + ω2
rη = 0 , (11)

with

ω2
r =

l20
m2r4

0

(2− β) → ωr =
√

2− β l0
mr2

0

, (12)

which shows how the radial displacement undergoes harmonic oscillations of fre-
quency ωr. When the orbit is closed the frequency of radial oscillations has to be
commensurate with the angular frequency (ωθ = θ̇), i.e. the ratio of the two has to
be a rational number, or,

ωr
ωθ

=
m

n
↔ nωr = mωθ , (13)

where m and n are integers.
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Problem 2

A particle moves in an attractive spherically symmetric potential

V (r) = − k
r4

,

with k constant. What is the total cross section for capture of a particle incident from
infinitely far away with initial velocity v0 and impact parameter b? Remember that

σcapture = πb2
max ,

where bmax is the maximum impact parameter that will result in capture.

The central force acting in this problem is of the form studied in Problem 1 with
β = 4. Therefore, we can use the general treatment of Problem 1 without having to
justify all the steps again. Notice however that in this problem the potential is missing
a prefactor 1

β
and therefore you have to trace that factor of 1

4
through your results for

Problem 1 in order not to do mistakes.
In particular, since β > 2, we know from the sketches in part 1.c) that the effective

potential has a maximum that we can calculate to be at

r0 =

(
4km

l20

) 1
2

, (14)

and the maximum value of the effective potential is,

V max
eff = Veff(r0) =

l40
8km2

− kl40
16k2m2

=
1

16

l40
km2

. (15)

In order for the particle to be captured by the center of force, the particle has to come
in with enough energy to pass the potential barrier (of the one-dimensional problem with
potential Veff). The initial energy of the particle is purely kinetic, T0 = 1

2
mv2

0, where v0

is related to the angular momentum (which is a constant of motion, see part 1.a)) by
l0 = mv0b (b=impact parameter). Therefore, the particle will be captured if

T0 > V max
eff → 1

2
mv2

0 >
1

16

l40
km2

→ 1

2
mv2

0 >
1

16

m4v4
0b

4

km2
→ b <

(
8k

mv2
0

) 1
4

≡ bmax ,

(16)
and, for a given initial velocity v0 there is a maximum impact parameter for which capture
is possible. The capture cross section is then given by,

σcapture = πb2
max = π

(
8k

mv2
0

) 1
2

. (17)
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Problem 3

Consider a system of two one-dimensional coupled oscillators described by the La-
grangian

L =
1

2
(ẋ2

1 + ẋ2
2)− ω2

0

2
(x2

1 + x2
2) + αx1x2 ,

where ω0 and α are real constants.

(3.a) Find normal frequencies and normal modes.

The normal frequencies ω1 and ω2 are solutions of the equation,

det(−ω2T + V) = 0 −→ det

(
−ω2 + ω2

0 −α
−α −ω2 + ω2

0

)
= 0 ,

where we use that,

T =

(
1 0
0 1

)
, V =

(
ω2

0 −α
−α ω2

0

)
.

ω1 and ω2 are then simply given by,

(−ω2 + ω2
0)2 − α2 = 0 −→ ω2

1,2 = ω2
0 ∓ α

and the corresponding normal modes η1 and η2 can be written as,

η1 = a1e
iω1t , η2 = a2e

iω2t

where a1 and a2 can be derived from the eigenvalue-like equations:(
−ω2

1 + ω2
0 −α

−α −ω2
1 + ω2

0

)(
a11

a12

)
= 0 −→

(
α −α
−α α

)(
a11

a12

)
= 0 −→ a11 = a12

(
−ω2

2 + ω2
0 −α

−α −ω2
2 + ω2

0

)(
a21

a22

)
= 0 −→

(
α α
α α

)(
a21

a22

)
= 0 −→ a21 = −a22

and upon normalization,

a11 = a12 =
1√
2

and a21 = −a22 =
1√
2
.



(3.b) Write x1 and x2 in terms of normal modes and describe how the system oscillates
in each normal mode separately.

x1 = a11η1 + a21η2 =
1√
2
eω1t +

1√
2
eω2t ,

x2 = a11η1 + a21η2 =
1√
2
eω1t − 1√

2
eω2t .

The displacements of the two oscillators will be given by (real part only),

x1 =
1√
2

[cos(ω1t) + cos(ω2t)] ,

x2 =
1√
2

[cos(ω1t)− cos(ω2t)] .

If we choose initial conditions for which only η1 is active (x1(0) = x2(0), ẋ1(0) =
ẋ2(0)), then x1(t) = x2(t), i.e. the two oscillators oscillate is phase with requency
ω1) (symmetric mode). Vicevera, if we choose initial conditions for which only η2

is active (x1(0) = −x2(0), ẋ1(0) = −ẋ2(0)), then x1(t) = −x2(t), i.e. the two
oscillators oscillate with opposite phase and frequency ω2) (antisymmetric mode).

(3.c) Assume α � ω2
0 (weak coupling): show that the two oscillators oscillate with the

same frequency (ωf = ω0) and their amplitudes vary harmonically with frequency
ωb = α/(2ω0) and opposite phase (i.e. when one of the amplitudes is minimal the
other is maximal). This is the well-known phenomenon of beats.

In the limit α� ω2
0 we can approximate ω1 and ω2 as follows,

ω1 =
√
ω2

0 − α ' ω0 −
α

2ω0

,

ω2 =
√
ω2

0 + α ' ω0 +
α

2ω0

.

The displacements of the two oscillators will then be,

x1 '
1√
2

[
cos

(
ω0t−

α

2ω0

t

)
+ cos

(
ω0t+

α

2ω0

t

)]
,

x2 '
1√
2

[
cos

(
ω0t−

α

2ω0

t

)
− cos

(
ω0t+

α

2ω0

t

)]
.

and subsequently,

x1 '
√

2 cos(ω0t) cos

(
α

2ω0

t

)
,

x2 '
√

2 sin(ω0t) sin

(
α

2ω0

t

)
,



where we see that the two oscillators both oscillate with fast frequency ωf = ω0

while the amplitudes of their oscillations vary harmonically with slow frequency
ωs = α/(2ω0), and opposite phase (i.e. one amplitude varies as cos(ωs), the other as
sin(ωs)). Every ω0/α seconds one of the two amplitudes is minimal and the other is
maximal. This is the phenomenon of beats, which therefore happens with frequency
α/ω0.


